

Metal vs Insulator: Experiments

Increasing with T

Decreasing with T

Metal-Insulator transition

QUANTUM PHASE TRANSITION (T=0)

Why a so difficult problem?

→ The two limits, that of a good metal and that of a good insulator, are very different physical systems, which can be characterized by very different elementary excitations.

→ No simmetry breaking
An obvious order parameter theory is not available.

→ Strongly correlated-coupled situations
No perturbative control

Wide landscape...

- 1. Interactions: electron-electron
- 2. Disorder

"Standard" Fails

Description in terms of single almost free "electrons" breaks down

Quantum strongly correlated soup

New mechanisms...

We need new description

which goes beyond single particle logic!!

Our methods

Classical Gravity General Relativity

Black Hole Physics

GAUGE GRAVITY
DUALITY

Our question(s):

- 1) How to produce an insulator within this framework?
- 2) How to produce a Metal-Insulator transition?
- 3) Can we have different types as in Nature?

What is the plan...

1) How to speak about Condensed Matter through Black Holes ...

Metals and Insulators in Holography...

Non Linear **Electrodynamics**

Massive Gravity

Just few words...

WE CAN SPEAK ABOUT

STRONGLY COUPLED QUANTUM FIELD THEORIES
USING WEAKLY COUPLED CLASSICAL GRAVITY

How to get it from a black hole...

- 1. Take a black hole and put charge into
- 2. Shake it
- 3. Analyze its response
- 4. Use Kubo Formulas
- 5.Read conductivity

Ingredients:

Gravity (+ negative cosmological constant)

U(1) vector field = ELECTRIC CHARGE

1st Attempt

Reissner Nordstrom Black Hole

$$S = \int d^{d+1}x \sqrt{-g} \left[\frac{1}{2\kappa^2} \left(R + \frac{d(d-1)}{L^2} \right) - \frac{1}{4g^2} F^2 \right].$$

Holography:

Graphene:

There is an infinite DC Conductivity!

What's wrong?

No Momentum Dissipation

Weakly coupled logic: "Pinball"

$$\frac{d}{dt} p(t) = q E - \frac{p(t)}{\tau}$$

$$\sigma_{DC} = \frac{n q^2 \tau}{m}$$

A lot of simplifications but a very good phenomenological model

COLLISION TIME, RATE OF MOMENTUM DISSIPATION
IONS, IMPURITIES, DISORDER
BREAKING OF TRANSLATIONAL INVARIANCE

2nd Attempt

$$S_{bulk} = \int d^4x \sqrt{-g} \left(\mathcal{R} - 2\Lambda - \frac{F^2}{4e^2} + \mathcal{D}(\phi^I, \dots) \right)$$

Translational Sym. Breaking: Dissipative Sector → Momentum Gets dissipated

Easiest way: MASSIVE GRAVITY

What do we get?

Nice, but what about an Insulator?

Why we dont get it?

Incomplete phenomenology!

Why not?

$$S_{bulk} = \int d^4x \sqrt{-g} \left(\mathcal{R} - 2\Lambda - \frac{F^2}{4e^2} + \mathcal{D}(\phi^I, \dots) \right)$$

This statement
Can be formalized
rigorously

$$\sigma_{DC} = \frac{1}{e^2} (1) + \dots$$

Dissipative Contribution (à la Drude)

Ex. Massive Gravity
$$\sigma_{DC} = \frac{1}{e^2} \left(1 + \frac{\mu^2}{m^2} \right)$$

This means there is a bound which prevents to get insulators

How to overcome it?

Way(s) of proceeding...

$$S_{bulk} = \int d^4x \sqrt{-g} \left(\mathcal{R} - 2\Lambda - \frac{F^2}{4e^2} + \mathcal{D}(\phi^I, \dots) \right)$$

We need to modify the Maxwell term in the action And we can do it in several ways

$$\sigma_{DC} = \frac{1}{e^2} (1 + \dots)$$

The dilatonic (known) case

String theory inspired (embedding known)

Adding a new (running) scalar degree of freedom

$$\mathcal{S} = \int d^4x \sqrt{-g} \left(R - \frac{1}{2} (\partial \phi)^2 - V(\phi) - \frac{Z(\phi)}{4e^2} F^2 + \mathcal{D}_m(\phi, \psi^I, \dots) \right)$$

 new dof
 Dissipative sector

$$\sigma_{DC} = \frac{1}{e^2} (Z(\phi)_{horizon} + \dots)^{-1}$$

Rich phenomenology

Habemus Insulators

An additional gain

STRANGE METALS :
$$\sigma \propto \frac{1}{T}$$
 $\Theta_H \propto \frac{1}{T^2}$

Famous and robust LINEAR T RESISTIVITY

From holography:
$$\sigma \propto \sigma_{ccs} + \sigma_{diss}$$
 $\Theta_H \propto \frac{D}{\mathcal{Q}} \sigma_{diss}$

If
$$\sigma_{ccs}=rac{1}{e^2}$$
 like with standard maxwell term $ightharpoonup$

Otherwise we can achieve having two different scales And reproducing the right phenomenology (scalings)

2 other (new) options

$$S_{bulk} = \int d^4x \sqrt{-g} \left(\mathcal{R} - 2\Lambda \left(-\frac{F^2}{4e^2} + \right) \mathcal{D}(\phi^I, \dots) \right)$$

1) Non Linear Electrodynamics

$$-\frac{1}{4e^2}F^2 \to -\frac{1}{4e^2}\mathcal{K}\left(F^2\right)$$

2) Coupling the dissipative sector with the gauge field

$$-\frac{1}{4e^2}F^2 \to -\frac{1}{4e^2}Y(\phi^I,\dots)F^2$$

What do they mean?

1) Non Linear Electrodynamics

Self Interactions between "charge carriers "

2) Coupling dissipative sector with gauge field
Interactions between "disorder-impurities" and the "charge carriers"

Mott Insulators Primer

Materials which should be metallic (following band theory)

But once measured they are insulators

WHY? Strong electron - electron self interactions Localization

Non Linear Electrodynamics Results

METAL- INSULATOR TRANSITION à LA MOTT

Non Linear Electrodynamics Results

Optical conductivity in the insulating phase

Disorder & Insulators Primer

Interactions between charge carriers (electrons)

And disorder produce insulating behaviours

Note: for the reason of before a disorder driven insulator has not been found yet in holography!

Disorder Driven Scenario Results

Disorder Driven Insulator

Disorder Driven Metal-Insulator Transition

Disorder Driven Scenario Results

Old results...

New results...

Take home 1st message

To capture a more complete condensed matter phenomenology we have to go beyond:

$$S_{bulk} = \int d^4x \sqrt{-g} \left(\mathcal{R} - 2\Lambda - \frac{F^2}{4e^2} + \mathcal{D}(\phi^I, \dots) \right)$$

There are several ways

Doing so we can get insulators and metal-insulator transitions

Conclusions

Non Linear Electrodynamics

Mott Insulators Mott Transitions

Coupling dissipative sector (massive gravity)

To Maxwell

Disordered Insulators and disorder driven MIT

Close future

- Holographic insulator(s)
- Effective field theory for condensed matter
- Hard Gapped Insulators
- Scalings
- Magnetic field
- Disorder instabilities

Far Future...

Phenomenology and comparison with real experiments

ORA LO
SAI
ANCHE
TU!