

Stochastic Gravitational Wave Background: Sources and Searches

Anirban Ain Research Scholar, IUCAA

Gravitational Waves

- The existence of gravitational waves is one of the most intriguing predictions of the General Theory of Relativity
- GWs are distortions in the spacetime geometry that propagate with the speed of light, analogous to ripples on the surface of a pond.

- Inspiral
- Continuous
- Burst
- Stochastic

- Inspiral
- Continuous
- Burst
- Stochastic

Inspiral GWs are generated during the end-of-life stage of binary systems where the two objects merge into one.

Stochastic Gravitational Wave Background: Sources and Searches

IUCAA

Pune, India

- Inspiral
- Continuous
- Burst
- Stochastic

Continuous GWs are produced by systems that have a fairly constant and well-defined frequency.

Stochastic Gravitational Wave Background: Sources and Searches

IUCAA

Pune, India

- Inspiral
- Continuous
- Burst
- Stochastic

Burst GWs come from short-duration unknown or unanticipated sources. (These are expected unexpected)

- Inspiral
- Continuous
- Burst
- Stochastic

SGWB is a combination of GWs which are relic of early universe phenomenas and unresolved astrophysical sources.

Stochastic Gravitational Wave Background

- A background to all gravitational wave signals.
- Source is cosmological or unresolved independent and uncorrected events.

$$\Omega_{gw} = \frac{1}{\rho_c} \frac{d\rho_{gw}}{d\ln(f)}$$

$$h_{\rm c}(f) = 3 \times 10^{-20} h_{100} \sqrt{\Omega(f)} \frac{100 \,{\rm Hz}}{f}$$

 Two objects in a circular Keplerian orbit radiate gravitational waves with luminosity

$$L_0 = \frac{32}{5} \frac{G^4}{c^5} \frac{M^2 m^2 (M+m)}{a^5}$$

 The gravitational waves has a frequency twice of the orbital frequency

$$f_{GW} = 2\frac{1}{2\pi}\sqrt{\frac{G(M+m)}{a^3}}$$

Gravitational Wave From Eccentric Orbit

Stochastic Gravitational Wave Background: Sources and Searches

Anirban Ain

IUCAA

Pune, India

- An exoplanet or extrasolar planet is a planet that does not orbit the Sun.
- 1523 confirmed exoplanets, total 4826 candidates.
- "One or more (1.4) bound planets per Milky Way star."

Exoplanet Databases

- Many publicly available databases
 - Exoplanet Orbit Database (exoplanets.org)
 - The Extrasolar Planets Encyclopaedia (exoplanet.eu)
 - NASA Exoplanet Archive (exoplanetarchive.ipac.caltech.edu)

Characteristic Strain Spectra

University La Sapienza, 11 Sep 2015

Anirban Ain 🗙

IUCAA

Pune, India

Radiometric Mapping of SGWB

With data from 2 detectors using interferometry (similar to radio astronomy) it is possible to map the entire sky using Aperture synthesis techniques.

- Cross-correlate detector outputs
- Make maps using timedependent phase delay

Cross-Correlation to detect pattern

Stochastic Gravitational Wave Background: Sources and Searches

University La Sapienza, 11 Sep 2015

Anirban Ain 🎬

IUCAA

Pune, India

Stochastic Gravitational Wave Background: Sources and Searches

-0.5

0.5

1.5

-1.5

-1

-2

sky-map 2

sky-map 3

11111111111111111111111111111111111111
THE REPORT OF A DESCRIPTION OF A DESCRIP
section of the sectio
And the party of the second
PUMBLED COMMUNICATION AND A DESCRIPTION
1. NUMBER 1888 PART INCOME TO A REAL PROPERTY AND INCOME.
and the second
\$11221str 7: 1022406.7 \$2905120st 555
BRANKSON, STREAM SYSTEM IN 19
CONTRACTOR OF A DESCRIPTION OF A DESCRIP
ADDRESS OF SHEET AND ADDRESS OF MILLING
NOT REPORT OF A DESCRIPTION OF A DESCRIP
CONTRACTOR OF A CONTRACT OF A
INCOMES INCOMESTIC INCOMESTIC
100 million 201 13300 331111 Mar. 201

sky-map

sky-map 2

sky-map 3

Actual Sky

Cleaning the dirty-map

Gravitational wave radiometry: Mapping a stochastic gravitational wave background

Sanjit Mitra et.al.

What the Interferometers Observe

$$s_{\mathcal{I}_1}(t) = h_{\mathcal{I}_1}(t) + n_{\mathcal{I}_1}(t)$$

 $s_{\mathcal{I}_2}(t) = h_{\mathcal{I}_2}(t) + n_{\mathcal{I}_2}(t)$

$$\tilde{s}(t;f) := \int_{t-\tau/2}^{t+\tau/2} \mathrm{d}t' \, s(t') \, e^{-i2\pi f t'}$$

Stochastic Gravitational Wave Background: Sources and Searches

The Cross-Spectral Density

$$\mathbf{C}^{I} \equiv C_{ft}^{I} := \widetilde{s}_{\mathcal{I}_{1}}^{*}(t; f) \, \widetilde{s}_{\mathcal{I}_{2}}(t; f)$$
$$\mathbf{n}^{I} \equiv n_{ft}^{I} := \widetilde{n}_{\mathcal{I}_{1}}^{*}(t; f) \, \widetilde{n}_{\mathcal{I}_{2}}(t; f)$$

$$\sigma_{Ift}^2 := \langle n_{ft}^{I*} n_{ft}^I \rangle = \frac{\tau^2}{4} P_{\mathcal{I}_1}(t; f) P_{\mathcal{I}_2}(t; f)$$

Stochastic Gravitational Wave Background: Sources and Searches

Anisotropy Map
$$\mathcal{P}(\widehat{\Omega}) := \sum_{\alpha} \mathcal{P}_{\alpha} e_{\alpha}(\widehat{\Omega})$$

Spectrum of Sky
$$H(f)$$

Stochastic Gravitational Wave Background: Sources and Searches

What CSD is expected

$$\langle C_{ft}^I \rangle := \tau H(f) \sum_{\alpha} \mathcal{P}_{\alpha} \gamma_{ft,\alpha}^I$$

$$\gamma_{ft,\alpha}^{I} := \sum_{A} \int_{S^2} d\hat{\mathbf{\Omega}} F_{\mathcal{I}_1}^{A}(\hat{\mathbf{\Omega}}, t) F_{\mathcal{I}_2}^{A}(\hat{\mathbf{\Omega}}, t) e^{2\pi i f \frac{\hat{\mathbf{\Omega}} \cdot \mathbf{\Delta} \mathbf{x}_I(t)}{c}} e_{\alpha}(\hat{\mathbf{\Omega}})$$

Stochastic Gravitational Wave Background: Sources and Searches

Maximum Likelihood Estimation of The SGWB

$$\hat{\mathcal{P}}_{\alpha} \equiv \hat{\mathcal{P}} = \Gamma^{-1} \cdot \mathbf{X}$$

$$\mathbf{X} = \frac{4}{\tau} \sum_{Ift} \frac{H(f)\gamma_{ft,\alpha}^{I*}}{P_{\mathcal{I}_1}(t;f)P_{\mathcal{I}_2}(t;f)} \widetilde{s}_{\mathcal{I}_1}^*(t;f) \widetilde{s}_{\mathcal{I}_2}(t;f)$$

$$\mathbf{\Gamma} = 4 \sum_{Ift} \frac{H^2(f)}{P_{\mathcal{I}_1}(t;f) P_{\mathcal{I}_2}(t;f)} \gamma_{ft,\alpha}^{I*} \gamma_{ft,\alpha'}^{I}$$

Right ascension [hours]

Stochastic Gravitational Wave Background: Sources and Searches

IUCAA

Pune, India

Folding

The main idea behind folding the data is that the radiometric data can be folded into data from 1 sidereal day (i.e. 23 hr 56 min 4 sec). This folding reduces computation for a search on the data of a run by few hundred fold.

Folding Formula

$$\begin{aligned} X_{\alpha} &= \sum_{Ift} K_{\alpha,ft}^{I*} \, \sigma_{Ift}^{-2} \, C_{ft}^{I} \\ &= \sum_{Ift_{sid}} K_{\alpha,ft_{sid}}^{I*} \sum_{i_{day}} \sigma_{If(i_{day}+t_{sid})}^{-2} \, C_{f(i_{day}+t_{sid})}^{I} \\ \Gamma_{\alpha\alpha'} &= \sum_{Ift} K_{\alpha,ft}^{I*} \, \sigma_{Ift}^{-2} \, K_{ft,\alpha'}^{I} \\ &= \sum_{I,ft_{sid}} K_{\alpha,ft_{sid}}^{I*} \, K_{ft_{sid}}^{I} \, \alpha' \sum_{i_{day}} \sigma_{If(i_{day}+t_{sid})}^{-2} \end{aligned}$$

Stochastic Gravitational Wave Background: Sources and Searches

Anirban Ain

IUCAA Pune, India

Three days of LIGO S5 data from GPS time 860832366 sec to 861090858 sec. Each point on the spiral represents one segment marked by a GPS time and its colour represents the corresponding sidereal time. The projected ring at the bottom represents folded data.

Stochastic Gravitational Wave Background: Sources and Searches

Data Folding at a Glance

CSD (C): The Cross Spectral Density is the cross-correlation

of the data from the two interferome	eters.	0 0102
PSD (P) : It is the one-sided P ower noise from the two individual interfe	Spectral Density of the erometers.	$\sigma^2 = \frac{T^2}{4} P_1 P_2$
Dirty Map for stochastic search	$\mathbf{X} = \sum_{time} K \sigma^{-2} C = \sum_{time \ of \ day} K \sum_{\substack{same \ time \ different}} K \sum_{\substack{same \ different}} K \sum_{same \ $, $\sigma^{-2}C$
Fisher Matrix for stochastic search	$\Gamma = \sum_{time} K^* \sigma^{-2} K = \sum_{time \ of \ day} K^* K$	$\sum_{\substack{ne \ time \ of \\ f ferent \ days}} \sigma^{-2}$

Folding is applicable to any analysis which applies a periodic linear operator on a function of CSD and PSD with a sum over several days.

$$\sum_{time} QF(C,P) = \sum_{time \ of \ day} Q \sum_{\substack{same \ time \ of \ days}} F(C,P)$$

 $C = \widetilde{s}_1^* \widetilde{s}_2$

Comparison of maps

Stochastic Gravitational Wave Background: Sources and Searches

Anirban Ain

IUCAA

Pune, India

Errors in [RMS(FSID-SID)/RMS(SID)]

Real parts of FSID Fisher matrix	= 2.50e-05
Imaginary parts of FSID Fisher matrix	= 3.65e-05
Dirty SpH	= 4.24e-04
Clean SpH	= 4.49e-04
Dirty map	= 3.62e-04
Clean map	= 4.25e-04
Variance map	= 3.21e-06
SNR map	= 3.64e-04

Stochastic Gravitational Wave Background: Sources and Searches

IUCAA Pune, India

Advantages of Folding

- Efficiency: Processing time reduced by ~300 fold for full S5 data.
- Portability: Total S5 data becomes 1.3 GB, can fit in a USB key.
- **Convenience:** Dirty details are already included (overlapping window, data quality cuts). Parallel processing is not needed for standard searches.
- Modularity: Folding is independent of analysis pipeline. FSID can be implemented in MATLAB/Python codes in mat/gwf/HDF format.
- Management: Results are for 1day, easy to predict computation time and data size of outputs.

A full radiometer search can be done on a personal computer.

The folding code is ready.

The differences in the results from SID and FSID are less than ~0.01% for full S5.

The Advantages of Folded Data

Dirty steps are all included

- Overlapping window correction
 - was already incorporated in the algebra
- Stationarity cuts (recently implemented in the code)
 - provides the current integrated cross-PSD option
 - plus single detector and narrow band options
- This makes analysis of folded data very clean

Search for Narrowband Sources

- Using the present search methods, detection of monochromatic sources is surely impossible since it integrates over all frequencies.
- To detect monochromatic sources, instead of calculating,

$$\mathbf{X} = \frac{4}{\tau} \sum_{Ift} \frac{H(f)\gamma_{ft,\alpha}^{I*}}{P_{\mathcal{I}_1}(t;f)P_{\mathcal{I}_2}(t;f)} \widetilde{s}_{\mathcal{I}_1}^*(t;f) \widetilde{s}_{\mathcal{I}_2}(t;f)$$

• We calculate

$$\mathbf{X}(f) = \frac{4}{\tau} \sum_{It} \frac{\gamma_{ft,\alpha}^{I*}}{P_{\mathcal{I}_1}(t;f) P_{\mathcal{I}_2}(t;f)} \widetilde{s}_{\mathcal{I}_1}^*(t;f) \widetilde{s}_{\mathcal{I}_2}(t;f)$$

for each frequency bin

- The computational time increases by factor of 2000 approximately.
- Full S5 analysis takes 50 hours and produces 540 GB of intermediate data approximately.
- So the narrowband search will take 10 cpu years and require 800 TB of disk space.

Stochastic Gravitational Wave Background: Sources and Searches

IUCAA

Pune. India

Blind All-Sky Search for Narrowband Sources using Folded Data

- We have already folded the entire S5 data into one sidereal day 1.3 GB.
- All-sky search using Matlab on IUCAA cluster takes only 8 minutes for one frequency bin. It produces 2 GB of intermediate data.
- The entire analysis will take 10 CPU days and produce 2.5 TB of processed data.

Current Status of the search

- We have incorporated data quality cuts (existing scheme and few more) in the folding code
- We have demonstrated using the stochastic pipeline that a narrowband search can be done in reasonable time.
 - using a very narrow frequency filter. (example in next slides)
 - but we will not do it this way, we are writing a new python code.

Folding pipeline has been extensively validated - code review will start soon

Narrowband search will be ready before the end of O1

Maps from full S5 for different frequency

University La Sapienza, 11 Sep 2015

A new pipeline for folded data

- These calculations only requires a set of the general overlap reduction function.
- Once we have that set, the blind all sky search is just few matrix multiplications.
- We are planning to switch to python for better use of HEALPix and parallelisation of the code.
- This may also be applicable to the standard stochastic searches

Stochastic Gravitational Wave Background: Sources and Searches

IUCAA

Pune. India

- Processed data will be thousands of skymaps
 * one for each frequency
- Planning an **easy interface** to browse through this data
- We are also exploring ways of quoting key characteristics of this data for easy presentation, e.g.,
 - * max upper limits and the corresponding frequency at each frequency (i.e., 2 maps)
 - * histograms at each pixel (make a map of std dev?)
 - * find expected statistics of the histograms and outliers
 - * place joint constraints on physical parameters of narrow-band sources

SGWB from exoplanets are not detectable with present detectors, but hope remains for the future.

Now you can run stochastic search on your laptop.

