

Nadia Pastrone INFN TORINO

IFAE 2016 – Genova - 30 Marzo 2016

- LHC riparte @ 13 TeV: primi splashes per IFAE 2016
- Apparati sperimentali
- Risultati dai dati 2015
- Prospettive per il Run2
- Conclusioni

Sommario

Large Hadron Collider (LHC)

Installed in 26.7 km LEP tunnel

Depth of 70-140 m

Lake of Geneva

Control Room

IFAE2016 – Genova - 30 Marzo 2016

Nadia Pastrone INFN Torino

LHC

LHC ring

Goal luminosità integrata con 25 ns bunch crossing:

- 2015: ~ 4 fb⁻¹ @ 13 TeV (2x2244 bunches nominali)
- 2016: ~ 25 fb⁻¹ @ 13 TeV

 β^* = 40 cm in ATLAS e CMS; 3 m in LHCb; 10 m in ALICE

Ottimizzazione ramp-up/squeeze alta intensità e luminosità integrata

• Run2: ~100 fb⁻¹

Preparazione per (o direttamente) operazione @ 14 TeV

• 300 fb⁻¹ prima di LS3

LHC Injector Upgrade (LIU \rightarrow LS2) e High Luminosity LHC (HL-LHC \rightarrow LS3) ben definiti e in fase di costruzione

IFAE2016 – Genova - 30 Marzo 2016

Nadia Pastrone INFN Torino

Date (UTC)

IFAE2016 – Genova - 30 Marzo 2016

Pb Pb @ 2015

- Luminosità picco (disegno): 1×10²⁷ cm⁻²s⁻¹

- o ALICE livellata a luminosità di disegno
- \circ ATLAS/CMS fino a un max 3.5x10²⁷ cm⁻²s⁻¹
- Luminosità (3 settimane fisica):
 - Goal ioni pesanti 2015 :300 500 μb⁻¹
 - ALICE 430 μb⁻¹; ATLAS/CMS ~700/600 μb⁻¹; anche LHCb

PbPb collisions

24 days data-taking in 2015

Tracking is challenging, some systems reached the maximal design throughput (additional deadtime)

Online data reconstruction impossible: using minimum bias triggers.

ALCE

Piano di lavoro:

RUN2 (2015, 2016, 2018) : 1 nb⁻¹ Pb-Pb con rivelatori migliorati e raddoppio energia (2015 e 2018), e un run p-Pb con statistica x10 nel 2016 (Lol LHCf)

Futuro:

RUN3 + RUN4 (2021, 22, 23 and 27, 28, 29): 10 nb⁻¹ con ulteriori miglioramenti apparati e in aggiunta un run dedicato a basso campo e pPb

Collisioni Pb-Pb @5.02 TeV

5.0G

1m

Readout Event builder 9m

17m

25m

33m

ALICE Pb-Pb Run 2: arXiv:1512.06104 [nucl-ex]

Gli apparati per Run2

ATLAS Insertable B-Layer (IBL)

Long Shutdown 2013-14 (LS1)

- Nuovi tubi a vuoto Be zona collisione
- Riparazioni e consolidamento camere muoni
- Nuovi servizi, nuovi link ottici
- Nuovi sistemi di monitor di fascio

ATLAS:

- IBL - Insertable B-Layer

CMS:

- Quarta stazione RPC Endcap
- Prima del LS2 (2019-20) CMS:
 - Nuovo rivelatore a pixel

IFAE2016 – Genova - 30 Marzo 2016

Trigger/DAQ per Run2

- Long Shutdown 2013-14 (LS1)
 Goal: L1 rate up to 100 kHz
 ATLAS:
 - Nuovo trigger topologico L1
 - Nuovo high-level trigger (HLT)
 - Nuovo Fast TracK Trigger (FTK)
 CMS:
 - Nuovo trigger calorimetrico
 - Nuovo DAQ/Nuove CPU per HLT
 - Calcolo multi-threading, multi-core
 - Prima del LS2 (2019-20)

ATLAS:

- 2016-17: FTK completo

CMS:

2016: completamento nuovo trigger

- unique geometrical coverage \rightarrow
- outstanding track momentum and vertex resolution \rightarrow
- \rightarrow excellent Particle Identification performance
- unique trigger strategy

LHCb: trigger

Tracking efficiency > 96 % 45 fs Decay time resolution Momentum resolution 0.5 - 1.0 % Software trigger input 10⁶ events / s

- Part of the physics programme
- Turbo

FULL

Calibration

needs billions of recorded

- candidates (e.g. charm measurements): but with no need for the rest of the event.
- Searches for rare states and rare decays still need the FULL event to take advantage of *new algorithms* (e.g. new MuonId)
- New algorithms have to be developed and calibrated, online performance (efficiency, rejection power) has to be measured.

La nuova frontiera dell'energia

Sezioni d'urto inclusive

IFAE2016 – Genova - 30 Marzo 2016

Nadia Pastrone

Produzione di bosoni singoli @ 13 TeV

IFAE2016 – Genova - 30 Marzo 2016

Also: LHCb σ_Z (2.0 < η < 4.5) in agreement with SM (PDFs)

Produzione di di-bosoni @ 13 TeV

IFAE2016 – Genova - 30 Marzo 2016

Nadia Pastrone INFN Torino

0.0

500

1000

2500 3000 *m*(*l*(*l*)) [GeV]

2000

1500

Higgs @ 13 TeV

ATLAS

Canale γγ: osservata significanza 1.5σ attesa 1.9σ Canale 4 leptoni: osservata significanza 0.7σ attesa 2.8σ

Compatinbilità combinata con SM 1.3σ MANCA analisi WW e altri dati !!!!

Ricerca nel canale di-leptoni @ 13 TeV

Ricerca: getti + massa mancante @ 13 TeV

Courtesy Andrea Giammanco

Ricerche BSM @ 13 TeV

Tagli laschi per validare i dati

Top : importante fondo alle ricerche BSM

IFAE2016 – Genova - 30 Marzo 2016

Ricerche BSM @ 13 TeV

Tagli laschi per validare i dati

Top : importante fondo alle ricerche BSM

IFAE2016 – Genova - 30 Marzo 2016

B mesons as search tool for NP

Where do we stand with K*µµ? A small recap:

LHCb has a >3 σ discrepancy in the P₅' variable (combination of spin amplitudes): NP or imprecise calculations?

LHCb continued to look into close relatives to find any common sign:

- Φ(KK)µµ: accessible spin amplitudes compatible with SM, dB/dq² a bit low (but it's a general trend)
- πµµ: dB/dq² compatible sith SM, just a bit low (but it's a general trend)

Now waiting for:

- CMS, ATLAS (promised to look into it)
- improved hadronic corrections in SM

L. Malgeri - Moriond QCD 2016 - Exp. Summary

The CKM matrix and more

Long-term effort to overconstrain CKM matrix continues. Huge contributions from LHCb

A precise measurement of γ (tree) together with sin(2B) (mix) or $|V_{ub}|$ (tree), fixes the unitarity triangle. All other measurements probe these two.

LHCb reported:

- $|V_{ub} / V_{cb}|$ from $\Lambda_b \rightarrow p \mu \nu$ at 5% precision (closer to exclusive B-factory result)
- World's best single Δm_d measurement: 0.5050 ± 0.0021± 0.0010 ps⁻¹ (B-factories: $\sigma_{ave} = 0.005 \text{ ps}^{-1}$)
- Precision on sin(2β) approaches that of B-factories: 0.73 ± 0.04 ± 0.02
- World's best constraints on CP violation in B⁰_(s) mixing (a_{sl}^s, a_{sl}^d) in agreement with SM (D0 sees 3.6σ deviation)
- Search for CPT violation (difference in mass or width) in B⁰_(s) system, measurement of sidereal phase dependence of CPT violating parameter

Goal: dimezzare errore su y

LHCb is among the major contributors (in the last few years) constraining the parameters, angles and sides, of the *bd*-triangle, as evident from the evolution of the global fit (taken here from CKM fitter)

The constraint on the angle γ was improved significantly, but it is still the less stringent.

Hadron zoo: XYZ mesons

Topic of Moriond QCD, only this much...

D0 announced new state in $m(B_s(\rightarrow J/\psi \phi)\pi^{\pm})$ spectrum which may be a tetra-quark (*bsud*) [1602.07588, Feb 2016]

Prompt cross-check by LHCb did not confirm the observation in 20 times larger B_s sample. Upper limit on $\rho \sim 1\%$, but this may depend on beam/energy/ analysis. No public material yet, but more information expected this week.

Other experiments are also looking

Moriond EW, Mar 19, 2016

Experimental Summary

LHCb as fixed-target experiment: SMOG

SMOG allows to inject gas in the beampipe close to the VELO region.

Scientific motivation:

- Sensitive probes of nuclear structure
- Cross-section measurement of pHe → pX, dominant systematic uncertainty in dark matter searches with antimatter in cosmic rays.

SMOG: System for Measuring the Overlap with Gas

	√s [GeV]	Date	Acquisition time
pNe	110.4	Aug. 25/26	13 h
рНе	110.4	Sept. 8	8 h
pAr	110.4	Oct. 15-18	29 h

- Possibility to study particles in the **forward direction** at LHC (neutrals: γ , π^0 , n)
 - Forward secondary particles carry a great fraction of the primary energy
- 6.5 TeV + 6.5 TeV in the LHC frame $\rightarrow \sim 10^{17} \text{ eV}$ in the laboratory frame (LAB)
- Calibration of hadronic interaction models used for the simulation of atmospheric showers

CMS-TOTEM @13 TeV ($\beta^* = 90 \text{ m}$)

✓ Independent DAQ

Level 1 Trigger exchange Offline merging

- Totem LV1 Rate ~ 50kHz → recorded ~ 3 · 10⁹ events collected!
- CMS HLT Rate ~ 10kHz → recorded
- ✓ Elastic >10⁹ (Totem standalone)
- ✓ Low Mass DPE ~100 · 10⁶ events (Totem-CMS)
 - Merged and analysis ongoing.
 - Double arm Top-Top, Bottom-Bottom trigger ~200 · 10⁶ events, missing mass searches.
 - Merging ongoing

 \checkmark

- Dijets pT~ 20 GeV − pT ~ 32 GeV, DiMuon, SingleMu & HF gap ~ 40 · 10⁶ events
 - Merging ongoing

Totem $\beta^*=2500m$ run speciale 2016

Measure elastic scattering in Nuclear-Coulomb interference region at 13TeV

- ✓ Search for 3 gluon $J^{pc}=1^{--}$ state
- ✓ Already in the 8 TeV data we observed ~2-3 σ effect
 - Non exponential behavior at low |t|
 - Lower ρ value at higher energy.

Nadia Pastrone INFN Torino

IFAE2016 – Genova - 30 Marzo 2016

Nadia Pastrone INFN Torino

First things first: the 750 GeV bump

Changes presented in the last two weeks

ATLAS:

- new analyses (separate for spin-0, spin-2)
- new calibration (from final 2012)
- combination with Run I
 CMS:
- re-reco with new calibrations (10% sensitivity increase)
- spin2 and spin0 hypotheses tested (same analysis)
- Added 25% statistics from BField-off

	spin 0 Local	spin 0 global	spin2 Local	spin 2 Global
Atlas (13 TeV only) - width 6%	3.9σ	2.0σ	3.6σ	Ι.8σ
CMS (13 TeV+8TeV) narrow width	3.4σ	Ι.6σ	~3.40	~I.5σ

L. Malgeri - Moriond QCD 2016 - Exp. Summary

The Gold Rush: [INSPIRES][list]

Date	papers	
16 Dec	10	
25 Dec	101	
1 Jan	137	
1 Feb	212	
1 Mar	263	
1 Apr	?	

Conclusioni

- ATLAS e CMS hanno già pubblicato > 1000 lavori, LHCb > 300 lavori...
- La maggior parte delle misure finora sono in accordo con il Modello Standard
- si è appena aperto però un nuovo territorio di esplorazione
- Finalmente LHC si avvicina ai parametri di disegno in energia e luminosità
- Il Run2 è appena cominciato
 da 4 fb⁻¹ nel 2015 si vogliono accumulare 100 fb⁻¹ per fine 2018
- LHC in fase di messa a punto, sara' pronto tra circa 4 settimane
- Anche gli esperimenti si preparano con cosmici, i primi splashes...
- Grande attività per migliorare gli apparati con i nuovi componenti di Fase1 e stesura TDR-Fase2 per HL-LHC
- Si comincia a discutere in vista della European Strategy per il 2019
- Periodo straordinario, di sfide tecnologiche, di intenso lavoro, di sforzi finanziari e umani... di grandissime aspettative!

2015 operation

- 2. most of the uncertainties in searches for NP are related to precise determination of SM/QCD parameters:
 - α_S, PDFs, gluon content, MPI,V+jets distributions, single and di-boson productions,....

For details on α_s see Thomas' summary

LHCb

BABAR, Belle and LHCb observed excesses (>3 σ) of B \rightarrow D(*) $\tau\nu$ relative to B \rightarrow D(*) $\mu\nu$ and B \rightarrow D(*) $e\nu$.

$$R(X) = \frac{\Gamma(B \to X\tau\bar{\nu})}{\Gamma(B \to X(e/\mu)\bar{\nu})}$$

Inclusive W and Z production

Very rich physics: strong PDF dependence, probes for QCD, precision electroweak physics

ATLAS, CMS & LHCb studied single gauge boson production at 7, 8, 13 TeV, LHCb covers complementary phase space in x, Q²

- 13 TeV W/Z cross section measurements (→ right plots)
- p_T(Z) @ 8 TeV from ATLAS shows resummation needed at low p_T to describe data, NNLO below data at high p_T
- Charge asymmetry results by CMS and LHCb rather well predicted by theory
- LHCb high-rapidity cross sections well predicted with NNLO and PDFs
- 8 TeV Z → µµ angular analysis by CMS, sensitive to Z polarisation and decay structure

Leptonic decays of Z & W are also standard candles to verify and calibrate e/μ performance

Also: LHCb σ_Z (2.0 < η < 4.5) in agreement with SM (PDFs)

Experimental Summary

Diboson production

Highly important sector of LHC physics, intimately related to electroweak symmetry breaking

ATLAS & CMS studied diboson production at 7, 8, 13 TeV. Detailed inclusive, fiducial and differential cross-section analyses at 8 TeV. First 13 TeV results. Theoretical predictions at NNLO needed to match data.

- ZZ @ 13 TeV measured by ATLAS & CMS, WZ by CMS: all agree with SM
- WW @ 8 TeV cross-sections agree with SM NNLO + p_T resummation
- WZ @ 8 TeV by ATLAS shows deviations from SM (NLO only)
- Zγ @ 8 TeV by ATLAS & CMS, matched by NNLO SM predictions
- VBS: evidence in W+W+qq channel, new 8 TeV results on (W/Z)γqq (CMS), and WZqq (ATLAS), no observation yet
- Tri-boson process Wγγ & Zγγ observed by CMS, evidence for Wγγ by ATLAS
- Large set of anomalous coupling limits

Top mass improving precision

- avoid double counting systematics
- re-calibrate in-situ (JES, ...)
- minimize uncertainties by selecting (weighting) carefully the data

m, [GeV]

Studies for the Muon Identification for the LHCb Upgrade

Exploring *Machine Learning* algorithms also in the reconstruction, already at trigger level, **combining in fast multivariate classifiers low-level detector quantities.**

For example, a Boosted Decision Tree was developed for the muon identification combining

- discrepancy between measured hits and extrapolated tracks (variable already used in current algorithms)
- number of extrapolated tracks consistent with the hits relevant to the muon identification (isolation)
- **TDC of the electronic channels recording the hits** (reject electronic noise)

Under evaluation for Run2!

For details, refer to the LHCb Posters in the Students' Poster Session.

Results relative to muon preselection

Standard Model Production Cross Section Measurements

Status: Nov 2015

