Misura diretta di sezioni d'urto di interesse astrofisico a LUNA: la reazione $^{22}Ne(p,\gamma)^{23}Na$

IFAE 2016

Federico Ferraro (per la collaborazione LUNA)

INFN

Università degli studi di Genova

INFN-Sezione di Genova

aboratory Underground Nuclear Astrophysics

LUNA

IFAE 2016

Federico Ferraro

IFAE 2016

LUNA

Bersaglio gassoso

La reazione ²²Ne(p, γ)²³Na

²³Na

• osservate direttamente per la prima volta 3 risonanze (durante la fase HPGe)

La reazione ²²Ne(p, γ)²³Na

IFAE 2016

Fase BGO

Sistema di pompaggio differenziale

Rivelatore BGO (attorno alla camera)

Purificatore

Connessioni del sistema di controllo del calorimetro

Risonanza a 156.2 keV

Decadimento dallo stato eccitato a 8943.5 keV del ²³Na

Spettro somma

Risonanze a bassa energia risultati <u>preliminari</u>

Cattura diretta risultati <u>preliminari</u>

2.000 mbar 22Ne, Ep=205 keV

Conclusioni

COSA ABBIAMO FATTO NEGLI ULTIMI TEMPI...

- •Abbiamo osservato direttamente per la prima volta 3 risonanze (fase HPGe della misura)
- •Sono stati **posti limiti superiori molto più stringenti** di quelli presenti in letteratura, risolvendo un problema nella determinazione del tasso di reazione stellare
- •É stato misurato il contributo non risonante alla sezione d'urto a 205 keV e 310 keV

COSA ABBIAMO IN MENTE PER IL FUTURO?

- •Dobbiamo misurare il contributo non risonante alla sezione d'urto in altri due punti, così da poter compiere un'**estrapolazione a bassa energia**
- Misureremo entro fine anno la sezione d'urto della reazione
 ²²Ne(α, γ)²⁶Mg utilizzando lo stesso setup
- •Molte altre reazioni da studiare

Grazie per l'attenzione

INFN LNGS/GSSI, Italy

A. Boeltzig, G.F. Ciani, A. Formicola, I. Kochanek, M. Junker **HZDR Dresden, Germany** D. Bemmerer, M. Takacs Università di Padova and INFN Padova, Italy C. Broggini, A. Caciolli, R. Depalo, R. Menegazzo, D. Piatti **INFN Roma 1. Italy** C. Gustavino **MTA-ATOMKI Debrecen, Hungary** Z. Elekes, Zs. Fülöp, Gy. Gyurky, T. Szucs **INAF** Teramo, Italy O. Straniero Università di Genova and INFN Genova, Italy F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli Università di Milano and INFN Milano, Italy A. Guglielmetti, D. Trezzi Università di Napoli and INFN Napoli, Italy A. Best, A. Di Leva, G. Imbriani Università di Torino and INFN Torino, Italy G. Gervino University of Edinburgh, United Kingdom M. Aliotta, C. Bruno, T. Davinson Università di Bari and INFN Bari, Italy

Riserva

Sezione d'urto

Debolmente variabile

Fortemente variabile

Tasso di reazione risonante

$$\sigma_{\rm BW}(E) = \frac{\lambda^2}{4\pi} \frac{(2J+1)(1+\delta_{01})}{(2j_0+1)(2j_1+1)} \frac{\Gamma_a \Gamma_b}{(E_r - E)^2 + \Gamma^2/4}$$

 $\omega \equiv (2J+1)(1+\delta_{01})/[(2j_0+1)(2j_1+1)]$

$$\begin{split} N_A \langle \sigma v \rangle &= \left(\frac{8}{\pi m_{01}}\right)^{1/2} \frac{N_A}{(kT)^{3/2}} \int_0^\infty E \sigma_{\rm BW}(E) e^{-E/kT} dE \\ &= N_A \frac{\sqrt{2\pi} \hbar^2}{(m_{01} kT)^{3/2}} \omega \int_0^\infty \frac{\Gamma_a \Gamma_b}{(E_r - E)^2 + \Gamma^2/4} e^{-E/kT} dE \end{split}$$

$$\begin{split} N_A \langle \sigma v \rangle &= N_A \frac{\sqrt{2\pi}\hbar^2}{(m_{01}kT)^{3/2}} e^{-E_r/kT} \omega \frac{\Gamma_a \Gamma_b}{\Gamma} 2 \int_0^\infty \frac{\Gamma/2}{(E_r - E)^2 + \Gamma^2/4} \, dE \\ &= N_A \frac{\sqrt{2\pi}\hbar^2}{(m_{01}kT)^{3/2}} e^{-E_r/kT} \omega \frac{\Gamma_a \Gamma_b}{\Gamma} 2\pi \\ &= N_A \left(\frac{2\pi}{m_{01}kT}\right)^{3/2} \hbar^2 e^{-E_r/kT} \omega \gamma \end{split}$$

Il ciclo NeNa

- Ciclo di combustione dell'idrogeno
- Influenza la nucleosintesi degli elementi tra ²⁰Ne e ²⁶Al (collegamento al ciclo MgAl)
- Attivo nelle stelle RGB, AGB (HBB) e nelle esplosioni di CN e SN Ia

J. Marion and W. Fowler, ApJ 125 221-32 (1957)

- C. Iliadis et al., ApJSS 142, 105-137 (2002)
- N. Prantzos et al., A&A 470, 179190 (2007)
- R. G. Izzard et al., A&A 466, 641 (2007)
- E. Carretta et al., A&A 505, 117 (2009)
- A. Parikh et al., A&A 557, A3 (2013)

 Alcuni di essi non sono mai stati osservati direttamente

Fase HPGe

- •HPGe @ 90° (90% rel. eff.)
- •HPGe @ 55° (137% rel. eff.)
- •22-25 cm Pb

•Contenitore anti-radon

- •sostegno da 4 cm di Cu per HPGe @ 55°
- •Schermatura di Pb dentro alla camera
- •Schermatura di W in prossimità del calorimetro
- •Schermatura di Pb sul retro

Fase HPGe

CERNCOURIER

VOLUME 56 NUMBER 2 MARCH 2016

LUNA observes a rare nuclear reaction that occurs in giant red stars

In December, the Laboratory for Underground Nuclear Astrophysics (LUNA) experiment (*CERN Courier* October 2004 p31) reported the first direct observation of sodium production in giant red stars, one of the nuclear reactions that are fundamental to the formation of the elements that make up the universe.

LUNA is a compact linear accelerator for light ions (maximum energy 400 keV). A unique facility, it is installed in a deep-underground laboratory and shielded from cosmic rays. The experiment aims to study the nuclear reactions that take place inside stars, where elements that make up matter are formed and then driven out by gigantic explosions and scattered as cosmic dust.

For the first time, LUNA has observed three low-energy resonances in the neon-sodium cycle, the ${}^{22}Ne(p,q){}^{23}Na$ reaction, responsible for sodium production in red giants and energy generation. LUNA recreates the energy ranges of nuclear reactions and, with its accelerator, goes back in time to one hundred million years after the Big Bang, when the first stars formed and the processes that gave rise to the huge variety of elements in the universe started.

This result is an important piece in the puzzle of the origin of the elements in the universe, which LUNA has been studying for 25 years. Stars assemble atoms through a complex system of nuclear reactions. A very small fraction of these reactions have been studied at the energies existing inside of the stars, and a large part of those few cases have been observed using LUNA.

A high-purity germanium detector with relative efficiency up to 130% was used for this particular experiment, together with a windowless gas target filled with enriched gas. The rock surrounding the underground facility at the Gran Sasso National Laboratory and additional passive shielding protected the experiment from cosmic rays and ambient radiation, making the direct observation of such a rare process possible.

Members of the LUNA collaboration pictured next to the facility.

Further reading

F Cavanna *et al.* (The LUNA Collaboration) 2015 *Phys. Rev. Lett.* **115** 252501

Fase HPGe

- Prima misura diretta della risonanza a 189.5 keV:
 - $\omega \gamma_{189.5 \ keV} \ge 0.12 \times 10^{-6} \,\text{eV}$ (90% C.L.)

Eur. Phys J. A (2014) 50: 179

• Misura precisa di $\omega \gamma_{189.5 \ keV}$:

 $\omega \gamma_{189.5 \ keV}$ = (1.87 ± 0.06) × 10⁻⁶ eV

• 2 risonanze osservate direttamente per la prima volta a 259.7 keV e 156.2 keV e misura della loro forza:

 $\omega \gamma_{259.7 \ keV} = (6.89 \pm 0.16) \times 10^{-6} \text{ eV}$ $\omega \gamma_{156.2 \ keV} = (1.48 \pm 0.06) \times 10^{-7} \text{ eV}$

• Limiti superiori sulla forza delle risonanze a 215 keV, 105 keV e 71 keV:

 $ωγ_{215 \ keV} ≤ 2.8 × 10^{-8} \text{ eV}$ $ωγ_{105 \ keV} ≤ 7.6 × 10^{-9} \text{ eV}$ $ωγ_{71 \ keV} ≤ 1.5 × 10^{-9} \text{ eV}$ Phys. Rev. Lett. **115**, 252501

Profili di P e T

Profili di P e T

Profili di P e T

PROFILO DI PRESSIONE

PROFILO DI TEMPERATURA

IFAE 2016

Profilo di densità

IFAE 2016

Il setup del rivelatore BGO

Calorimetro

- Moduli NI-cRIO
- Controllore integrato pragrammato in LabVIEW
- 4 RTDs (3 lato caldo, 1 lato freddo)
- Controllo attivo della temperatura: 8 resistori di potenza
- Raffreddamento a liquido del lato freddo
- Potenza senza fascio: \sim 120 W
- Potenza con fascio: $\sim 80 \text{ W}$

Efficienza

- •Misurata lungo l'asse
- •10 posizioni (camera di 10,8 cm)
- •¹³⁷Cs, ⁷Be, ⁸⁸Y, ⁶⁰Co, ¹⁴N(p,γ)¹⁵O
- •Sostegno in materiale leggero
- •Simulazioni MC

Sostegno della sorgente

Efficienza

In corso una regolazione fine del MC (per riprodurre I dati delle sorgenti e gli spettri in azoto)

Il ciclo NeNa

- ²²Ne fornisce neutron per la nucleosintesi guidata dall cattura neutronica (tramite reazione competitive alla ²²Ne(p,γ)²³Na)
- In uno scenario ricco di idrogeno, il ²²Ne viene distrutto prevalentemente tramite la reazione ²²Ne(p,γ)²³Na

IFAE 2016

Fondo in assenza di fascio

Sum Energy Spectrum

$^{22}Ne@E_p=71~keV$ (al centro della camera di interazione)

Sum of different runs

Ar @ $E_p = 71 \text{ keV}_{(al centro della camera di interazione)}$

Sum of different runs

Sum Energy Spectrum

