

Galactic Science with Fermi-LAT

Di Venere L. Caragiulo M.

for the Fermi-LAT collaboration

University and INFN of Bari

IFAE Genova, 31st March 2016

Gamma-ray sky obtained with 5 years of Fermi-LAT data with E>1GeV

Gamma-ray Space Telescope

The Fermi-LAT experiment

31st March 2016

Space Telescope

Supernova Remnants

Sermi

Gamma-ray Space Telescope

Spectral energy distribution (SED) of SNRs

Gamma-ray Space Telescope

Spectral energy distribution (SED) of SNRs

7

Thought to be cosmic ray sources:

 γ -ray flux originates from the interaction of <u>accelerated particles</u> with the SNR environment: **SNR paradigm for Cosmic Rays**

Radio to X-ray range

<u>Synchrotron peak</u>

Three competitor processes for GeV-TeV energy range

- Inverse Compton
- Bremsstrahlung

• Pion decay

Gamma-ray Space Telescope

31st March 2016

'Pion bump' in SNRs

Gamma-ray

- Search of known SNRs in 3 years of Fermi-LAT data
- 36 SNR candidates with spatial association with radio counterparts
 - 17 extended sources: 4 new
 - 13 point-like sources: 10 new

- Interacting SNRs
- Young SNRs
- Classified candidates
- Marginal candidates
- Point-like sources

RCW 86

Leptonic interpretation

See M.Caragiulo poster

M. Ajello et al., ApJ 819 (2016) 98

Gamma-ray Space Telescope

Fermi-LAT pulsars

205 pulsars detected by LAT!

Public list of Fermi detected pulsars https://confluence.slac.stanford.edu/x/ 5JI6Bg White: young gamma-ray selected pulsars Green: radio and X-ray selected pulsars Cyan: CGRO pulsars Red: radio selected millisecond pulsars Yellow: gamma-ray selected millisecond pulsars

Gamma-ray Space Telescope

Fermi-LAT pulsar search

- Search for known radio or X-ray pulsars in LAT data using given timing models
- Multi-wavelength observations of LAT unassociated sources: search for pulsations in radio and X-ray
- Blind pulsation search: Einstein@Home project

More than 10000 yrs of CPU time! 14 new gamma-ray pulsar detected!

Gamma-ray

'P – Pdot' diagram

Pulsar Wind Nebulae

Space Telescope

 Energy is carried away in a magnetized wind of charged particles.

Crab

• PWNe contain both the relic accelerated particles from the pulsar and particles accelerated within the termination shock.

Conclusions

There is much more to say...

- Gamma-ray binaries
- Novae
- Crab flare
- ...

... and much more to be discovered!

Stay tuned for more Fermi-LAT results!

Supernova Remnants

Kepler SNR

Energetics of SNRs

- SN explosion energy $E_{SN} \sim 10^{51}$ erg
- Rate of explosion in the Galaxy R_{SN}~3 SN/century
- Confinement time of cosmic rays $\tau_e \sim 10$ Myr
- Cosmic-ray energy density ρ_{CR} ~1 eV cm⁻³

 $ρ_{CR} = R_{SN} E_{SN} τ_e ε$ Acceleration efficiency required ε ≤ 10%

31st March 2016

Gamma-ray Space Telescope

SNRs as sources of CRs

Tycho SNR in X-ray light Chandra X-ray Observatory

Galactic Cosmic ray spectrum $N(E) \propto E^{-2.7}$ $N(E) = Q_{inj}(E)\tau_{esc}(E)$ $\tau_{esc}(E) \propto E^{-0.6 \div -0.3}$

from B/C ratio measurements

 $Q_{inj}(E) \propto E^{-2.1 \div -2.4}$

- SN explosion energy E_{SN}~10⁵¹ erg
- Rate of explosion in the Galaxy R_{SN}~3 SN/century
- Confinement time of cosmic rays $\tau_e \sim 10$ Myr
- Cosmic-ray energy density ρ_{CR}~1 eV cm⁻³

$$\rho_{CR} = R_{SN} E_{SN} \tau_e \epsilon \qquad \qquad \text{Acceleration efficiency} \\ required \epsilon \sim 10\%$$

31st March 2016

n^{*i*} Non-linear diffusive shock acceleration theory

Diffusive Shock Acceleration

 Conservation of mass, momentum and energy

Gamma-ray Space Telescope

- Predicts an accelerated particle distribution $\propto E^{-q}$, with q = 2 in case of strong SNR shocks

Non linear Diffusive Shock Acceleration

- Generalization of conservation equations with the introduction of CR contribution
- Predicts softer accelerated particle distribution: q = 2.1 2.4
- Magnetic field amplification: most important evidence of NLDSA

Credit: NASA/CXC/ Rutgers/K.Eriksen et al. Di Venere L. IFAE 2016

Tycho and RCW86

Tycho

• Young type Ia SNR

Space Telescope

- Evidence of magnetic field amplification
- Point-like source in the GeV-TeV energy range
- Hadronic interpretation of the SED

Tycho SNR in X-ray light Chandra X-ray Observatory

See M.Caragiulo poster

RCW 86

- Young type Ia SNR
- Detected as extended source also in the GeV-TeV energy range
- Leptonic interpretation of the SED

RCW 86 SNR in X-ray light obtained with Chandra X-ray observatory e XMM-Newton.

Gamma-ray Space Telescope Gamma-ray Space Telescope

M. Ackermann et al., Science 345.6196 (2014), 554

Gamma-ray

The GW region was not in LAT FoV at the time of the GW event: search at t_{GW}+[4442-4867]s

Flux ULs

