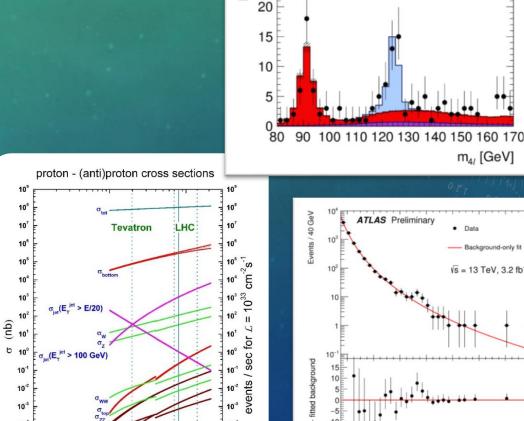
OVERVIEW DEL PROCESSORE FAST TRACKER PER ATLAS

G. VOLPI - UNIVERSITÀ ED INFN DI PISA

PER CONTO DELL'ESPERIMENTO ATLAS ED IL GRUPPO FTK



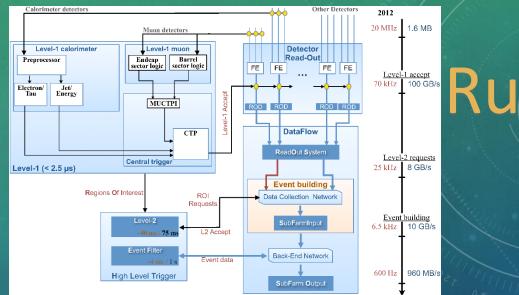
INTRODUZIONE

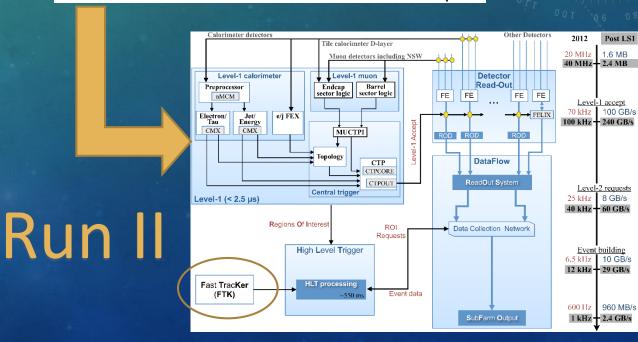
- ATLAS ha raccolto numerosi successi durante il Run I, rafforzati dai primi dati del Run II
 - Scoperta del Bosone di Higgs e prime misure delle sue proprietà
 - Misure di altissime precisione sui più importanti processi dello SM
 - Limiti stringenti sui modelli di Fisica oltre lo SM
- Le misure sono in sostanziale accordo con lo SM, ma discrepanze appaiono e punti di interesse sono presenti
 - Necessario raccogliere campioni abbondanti di fenomeni rari o non ancora accessibili
 - Esplorare tutti i meccanismi di produzione del Higgs e particelle attese dalle sue estensioni
- Per sfruttare al meglio le potenzialità dell'esperimento è indispensabile mantenere e migliorare la capacità di identificare fenomeni interessanti
 - Il livello di complessità delle collisioni è infatti cresciuto già all'inizio del Run II, con la prospettiva di maggiore pileup del corso del run

 α

(s = 8 TeV: Ldt = 20.3 fb

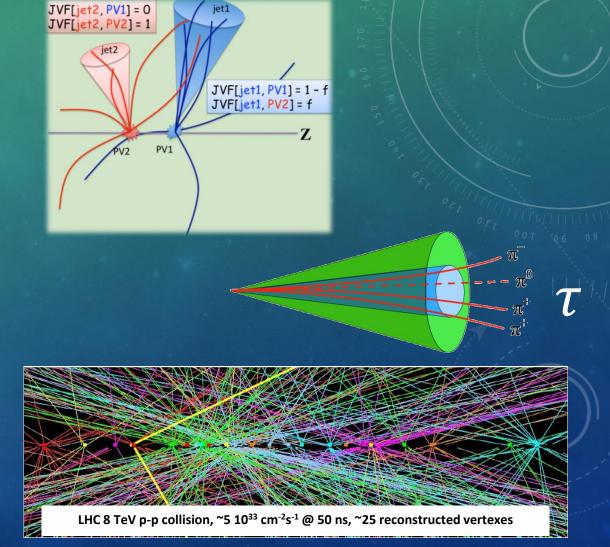
ATLAS-CONF-2015-081

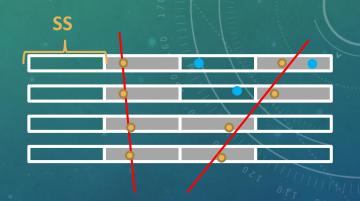

m₄₁ [GeV]


vs = 13 TeV, 3.2 fb

E (TeV)

EVOLUZIONE DEL TDAQ DI ATLAS

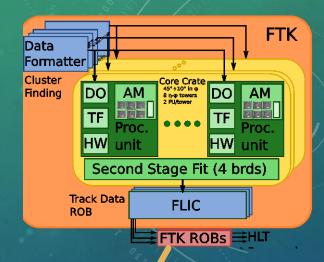

- Nel Run I ATLAS l'infrastruttura di ATLAS per il Sistema di DAQ è stato basato su un trigger a 3 livelli
 - Primo livello basato su HW dedicato e basato sull'informazione dei calorimetri e dei rivelatori a muoni
 - Livelli successive basati su CPU con risorse organizzate in 2 computing farm distinte
 - Level-2 e Event filter
- Durante il LS1 l'infrastruttura ha subito dei mutamenti
 - La divisione tra Level-2 ed Event Filter è sparita. consentendo di avere algoritmi con maggiore latenza
 - L'infrastruttura di rete è migliorata, garantisci maggiore potena e flessiilità
 - Miglioramenti nelle performance del software del HLT dopo un'intensa campagna di ottimizzazione
- Previsto l'inserimento di un processore HW per il tracciamento: FTK
 - Argomento principale di questa presentazione, fondamentale il contributo italiano

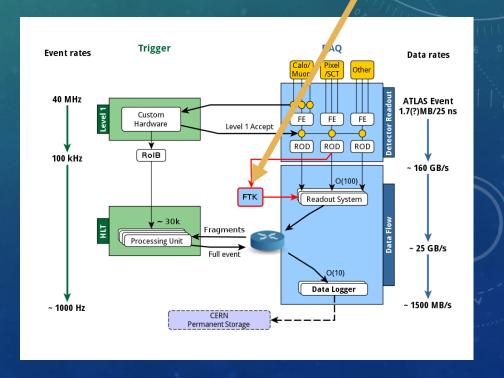

L'USO DEL TRACCIATORE NEL TRIGGER

- Le tracce sono uno strumento fondamentale per identificare processi chiave per SM e BSM
 - Identificazione di b-jet, decadimenti adronici dei tau
- Consente di mitigare gli effetti di «confusione» legati alle molte collisioni in sovrapposizione
 - identificare i vertici di tutte le collisioni nell'evento per associare oggetti prodotti dalla stessa collisione
 - Ridurre l'effetto del pileup nell'identificazione di vertici: JVF, track jets, correggere la determinazione della MET, particle flow, ...
- Il tracciatore al silicio fornisce informazione sull'evento a partire da pochi centimetri dal punto di collisione
 - Altissima densità di punti, problema di calcolo oneroso per HLT
 - In ATLAS la tracciature limitata a RoI o completa ma per una frazione limitata degli eventi

TRACCIARE USANDO CHIP DI MEMORIA ASSOCIATIVA

- Una possibile soluzione per ricostruire tracce usando tutti dati dell'inner detector, con bassa latenza è l'uso di Memorie Associative
- L'algoritmo di tracciatura prevede di separare il «pattern recognition» ed il «track fitting» in 2 passi sequenziali
 - Il pattern recognition si basa disponibilità di un dizionario precalcolato di tracce, pattern
 - Le tracce sono calcolate a bassa risoluzione, ottimizzando la capacità di reiezione e la dimensione della banca di pattern
 - Gli hit associati con un pattern trovato in un evento sono quindi usati per costruire candidati di tracce
 - La precisione piena del rivelatore è ripristinata
 - Il calcolo dei parametri sfrutta trasformazioni conformi, riducendo il calcolo dei parametri ad un prodotto scalare
- Procedura già provata a CDF, migliorata per essere utilizzata in ATLAS
 - Capacità di utilizzare pixel, ricostruzione 3D, maggiore flessibilità




$$p_i = \sum_j C_{ij} \cdot x_j + q_i$$

DESIGN DEL PROCESSORE FAST TRACKER

- FTK design finalizzato nel 2013 con la presentazione del TDR
- Computing power organizzato in processori indipendenti
 - Dati organizzati in 64 torri proiettive η-φ
 - 8 processori indipendenti per torre
 - Latenza di processamento estremamente ridotta ed alta frequenza di processamento
 - Tracciamento completo entro 100 μs
- Tracciatura usa chip VLSI custom e FPGA di ultima generazione
 - 8192 AM chips, capaci di registrare fino ad 1 miliardo di patterns
 - Più di 2000 FPGA in schede VME e ATCA
- FTK sarà visto dagli algoritmi di selezione come un algortimo standard
 - Stesso formato degli algoritmi forniti dagli altri algoritmi, basso payload
 - Possibilità di raffinare le tracce se utile per le selezioni

LA PIPELINE COMPLETA DEGLI ALGORITMI

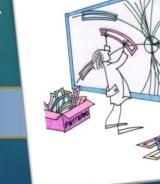
2.1m

Barrel semiconductor tracker

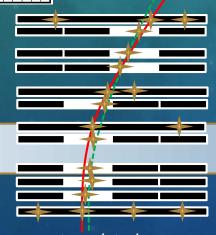
Pixel defectors

Barrel transition radiation tracker

End-cap transition radiation tracker

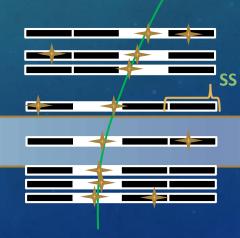

End-cap semiconductor tracker

FTK has a custom clustering algorithm, running on FPGAs


Data are geometrically distributed to the processing units and compared to existing track patterns.

Pattern matching limited to 8 layers: 3 pixels + 5 SCTs.

Hits compared at reduced resolution.

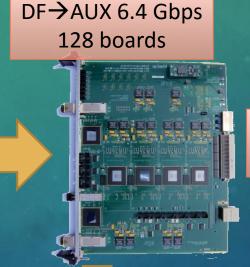


Good 8-layer tracks are extrapolated to additional layers, improving the fit

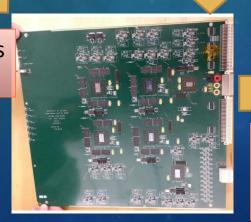
$$p_i = \sum_j C_{ij} \cdot x_j + q_i$$

$$\chi^2 = \sum_i \left(\sum_j A_{ij} \cdot x_j + k_i\right)^2$$

Full hit precision restored in good roads.
Fits reduced to scalar products.


FTK PIPELINE BANDWIDTH SUMMARY

ROD→DF/IM 2 Gbps/link, 380 links 32 boards



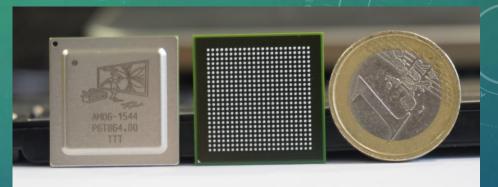
DF→DF
~25 Gbps between shelves
40 Gbps within the shelf

AUX→SSB 6.4x4 Gbps 32 boards

AUX→AMB 12 Gbps AMB→AUX 16 Gbps

SSB→FLIC 32 Gbps total FLIC→ROS 32 Gbps total 2 boards

IFAE 2016, Genova - 31/03/2016


RICERCA DEI CLUSTER E DISTRIBUZIONE DEI DATI

- La porta d'ingresso del sistema è composto da «Input Mezzanine» (IM) e «Data Formatter» (DF)
- Il sistema finale sarà composto da 32 DF e 128 IM
 - Raccoglie 700 Gbps dall'ID di ATLAS
- La IM raccoglie i dati raw da pixel e strip
 - Implementa un algoritmo di clustering in real-time capace di sostenere un input rate di 40 MHz
 - Responsabilità della scheda e FW: INFN Frascati (LNF),
 Pisa e Waseda (Tokyo)
 - 2 Modelli basati su FPGA diversi: Spartan 6 o Artix 7
 - Tutte le 80 schede per modello sono già disponibili ed in fase di test
- Il DF sfrutta la tecnologia ATCA ed ha la possibilità di gestire fino a 4 IMs
 - Backplane full-mesh in grado di garantire fino a 40 MB/s punto-punto

IL CHIP DI MEMORIA ASSOCIATIVA: AM06

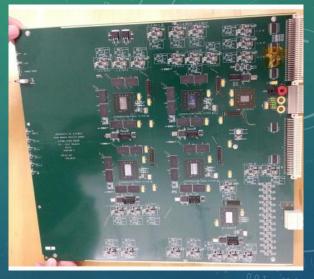
- Il chip di memoria associativa è il cuore del sistema
 - Progettato da INFN (Milano, Pisa, Frascati) e LPNHE (Parigi) per FTK
- Caratteristiche principali
 - Tecnologia TSMC CMOS 65 nm
 - 168 mm², 421 M transistor
 - 128 k patterns per chip, in 64 blocchi, 8 layers da 16 bits
 - Possibilità di uso di «don't care» bits, da 3 a 6 bit ternary
 - Complessità paragonabile ad un processore commerciale
- Produzione cominciata a Novembre
 - 9 wafer con transistor «tipici», «fast» e «slow»
- Test e caratterizzazione in corso su «slow» e «fast»
 - Performance in linea con le attese
 - Consumo osservato di 3-4 W/chip

Siti di test: Milano, Frascati e Parigi

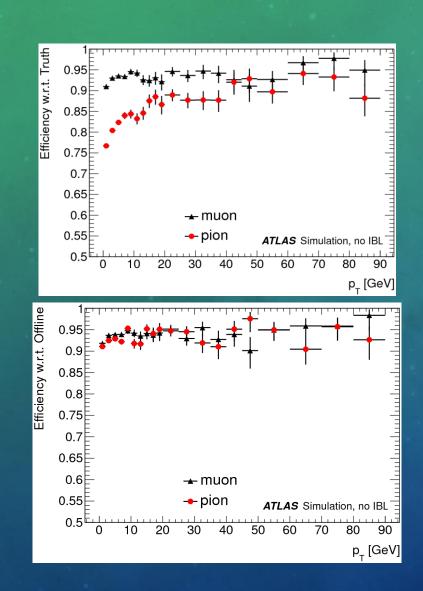
Overview of the ATLAS FTK - G. Volpi

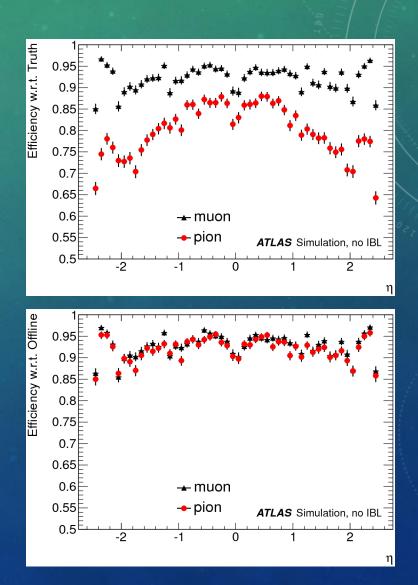
LA SCHEDA DI MEMORIA ASSOCIATIVE

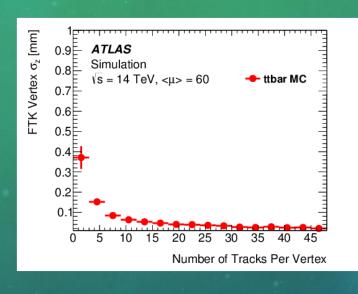
- Scheda di memoria associative composta da una motherboard (AMBSLP) ed un daughter board con 16 AM chip 06 (LAMB)
 - Entrambe le schede progettate da Univ ed INFN Pisa
- LAMB (v3) in fase di pre-produzione utilizzando i primi chip testati da Milano e Parigi
 - 5 schede prodotte dal servizio di elettronica del CERN
 - Altre schede in produzione ed attese presto
- AMBSLP, produzione del prototipo finale (v5) della scheda in corso
- Cruciale la capacità di gestire link seriali ad alta frequenza
 - Pattern matching ottenuto entro 10 us
- Capacità di alimentare stabilmente i 64 AM chip (8 M patterns) con 4
 DCDC da 80 A picco
 - Consumo massimo stimato di 300 W
- Funzionamento del sistema verificato all'interno del DAQ di ATLAS

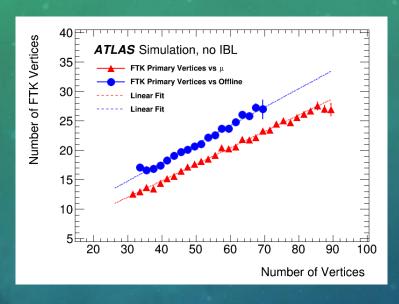

11

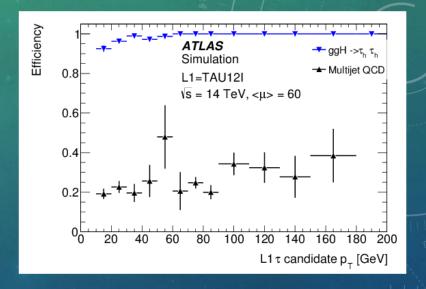
Overview of the ATLAS FTK - G. Volpi IFAE 2016, Genova - 31/03/2016

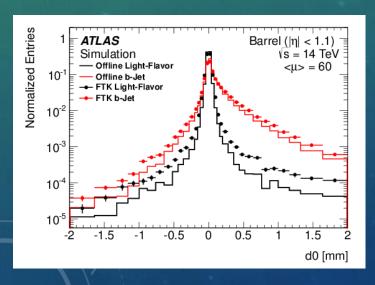

TRACK FITTING E PREPARAZIONE DEI DATI

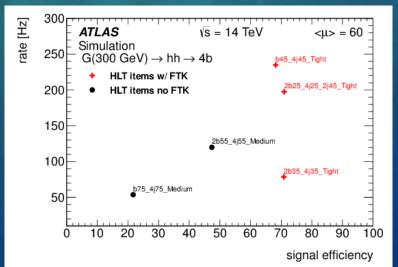

- Fit suddiviso in 2 step sequenziali
 - Primo fit utilizza 8 layer, usando gli hit compatibili con road trovate dalla AMBSLP
 - Combinazioni di bassa qualità rigettate
 - Tracce di buona qualità estese a 12 layer, aumentando la qualità e diminuendo la quantità di «fake»
- Primo fit sequenziale fatto dall AUXiliary card
 - Installata come modulo posteriore della AMBSLP
- Secondo fit gestito dalla «Second Stage Board» (SSB)
 - Contenuta nello stesso crate VME
- Tracce finali prodotte dalla SSB raccolti dal «FTK to Level-2 Interface Card»
 - Implementato in un crate ATCA






Overview of the ATLAS FTK - G. Volpi


'AtlasPublic


FTK PERFORMANCE: HLT ALGORITHMS

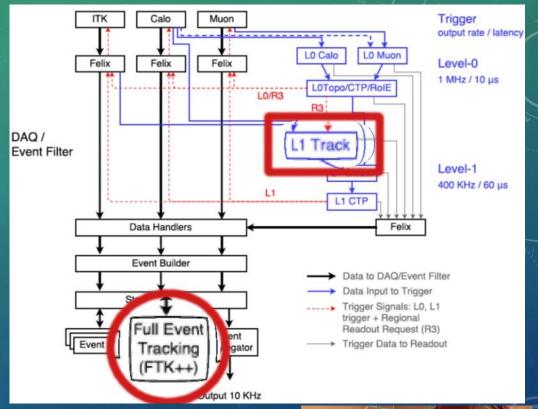
14

Overview of the ATLAS FTK - G. Volpi IFAE 2016, Genova - 31/03/2016

INTEGRAZIONE E TEST DELL'INFRASTRUTTURA

- Primi passi dell'integrazione di FTK nella DAQ di ATLAS in corso
- Sviluppo del software di controllo e monitoraggio in corso
 - Parte delle IM e dei DF già installati
 - Integrazione degli altri prototipi in corso, sistema in veloce evoluzione
- Test in corso per validare l'infrastruttura
 - Attenzione sul design dei crate VME
- Alimentazione della «Processing Unit» richiede 7 kW
 - Power supply custom costruito con l'aiuto di CAEN
 - Raffreddamento attraverso fan-tray custom costruito dall'INFN di Pavia

SCHEDULE DELL'INTEGRAZIONE DI FTK IN ATLAS


Step	IM	DF	AUX	AMB	AMChip	SSB	FLIC	Milestones	Expected
Α	4	1	1*	1	05	1	1	Nel TDAQ	In progress
В	32*	8*	1*	1	06	1	1*	Nel TDAQ	In progress
3°	128	32	16	1	06	1	2	Nel TDAQ	4/2016
4°	128	32	16	16	06	8	2	Barrel (mu=40)	7/2016
5°	128	32	32	32	06	8	2	Full detector (mu=40)	2/2017
Final	128	32	128	128	06	32	2	TDR Specs	2018/Lumi driven

- Integrazione in corso, con copertura del barrel durante l'estate del 2016
 - HW necessario per sostenere pileup fino a 40
- Copertura completa del detector attesa per l'inizio della presa dati del 2017
- Il numero finale di schede, in grado di sostenere fino a pileup 80, sarà installato per il 2018
 - La quantità di schede sarà guidato dalla disponibilità delle schede ma anche dalle performance di LHC e dalle necessità di ATLAS

PROSPETTIVE FUTURE

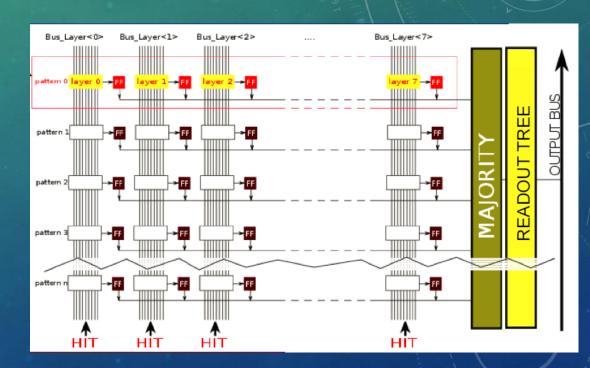
- L'integrazione di FTK è ancora in corso, la tecnologia utilizzata è importante per future applicazioni
- Durante HL-LHC l'informazione delle tracce sarà di importanza anche maggiore
 - Sarà identificare segnali rari in un numero di eventi di pileup di 140 e oltre
- ATLAS si aspetta di poter continuare ad avere tracciamento a 100 KHz prima dell'HLT e in RoI per il Level 1
 - Le AM sono l'unica soluzione tecnologica per il L1Track
 - Tecnologia favorita per FTK++, in competizione con GPU ed altri acceleratori
 - Attenzione anche da parte di CMS per la tecnologia nel caso del «Track Trigger»
- Possibilità di uso delle memorie in coprocessori
 - Anche per uso extra-HEP, visitate il poster di C. Sotiropoulou poster su applicazioni per l'imaging

ATLAS LO/L1 Infrastructure for HL-LHC

CONCLUSIONI

- FTK consentirà al sistema di trigger e acquisizione dati di ATLAS di ricostruire completamente le tracce per ogni evento raccolto dal trigger di Livello 1, fino a 100 kHz, con latenza minore di 100 μs
- Consente di superare le limitazioni imposta dalla tracciatura in «Regioni di Interesse» per canali di primo piano
- Aumenta la capacità per tutti le selezioni del HLT di mitigare gli effetti negativi dell'alta luminosità
 - Si aspettano benefici diretti in trigger per jet da b-quark e leptoni T
 - Consentirà di implementare correzioni evento per evento per misure calorimetriche
 - Possibilità di ricostruire tutti i vertici delle collisioni ed associare gli oggetti alla collisione di origine
- La costruzione dell'HW e in dirittura di arrivo e la fase di installazione è in corso
 - Alcune schede hanno già terminato la produzione (IM e DF)
 - Altre sono nella fase finale di produzione o pre-produzione
- Copertura della zona centrale entro il 2016, copertura completa all'inizio del 2017
- La tecnologia sviluppata per FTK è un ottimo candidato per trigger di traccia per HL-LHC
 - Con possibili usi in altri campi: image processing, analisi biomedicale, ...

Overview of the ATLAS FTK - G. Volpi IFAE 2016, Genova - 31/03/2016


GRAZIE A TUTTI PER L'ATTENZIONE

Overview of the ATLAS FTK - G. Volpi

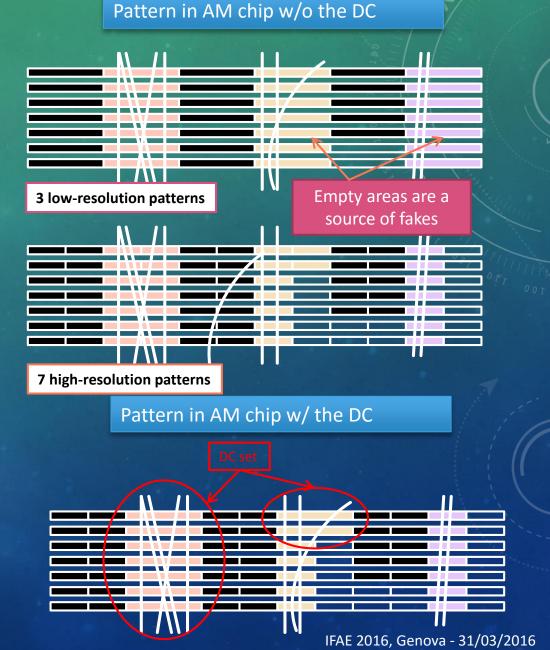
PATTERN MATCHING WITH AM CHIP

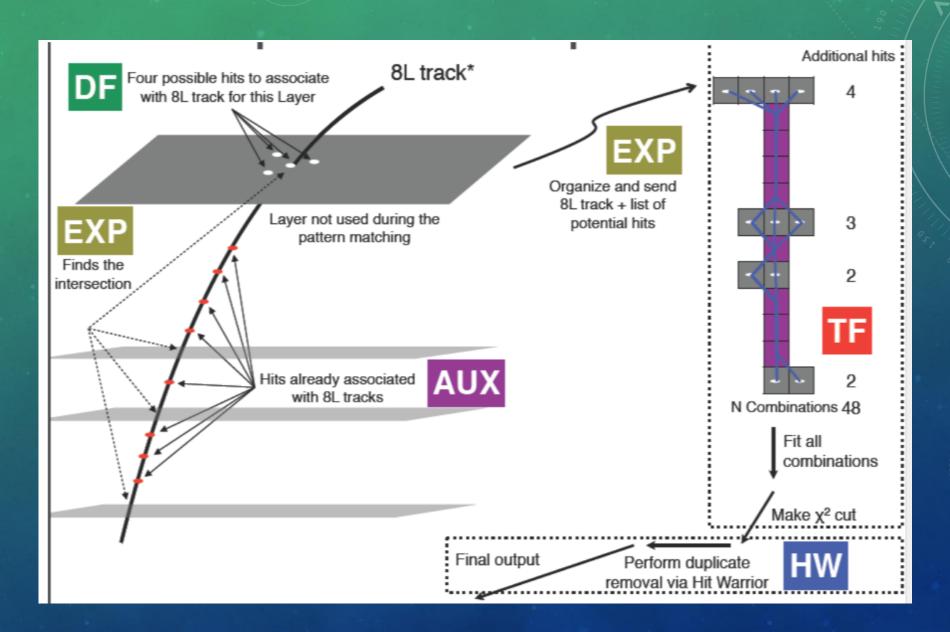
- The AM chip is a special CAM chip
- The AM identify the presence of stored patterns in the incoming data
 - Input data arrives through independent busses
 - Patterns with enough matching data are selected
 - Threshold can be reprogrammed
 - DC feature (next slide) allow different match precision
- The chips are installed in boards able to send data to all the chips in parallel
 - At every clock incoming data can be compared with all the patterns

AM CONSUMPTION: ~ 3.5 W for 128 kpatterns

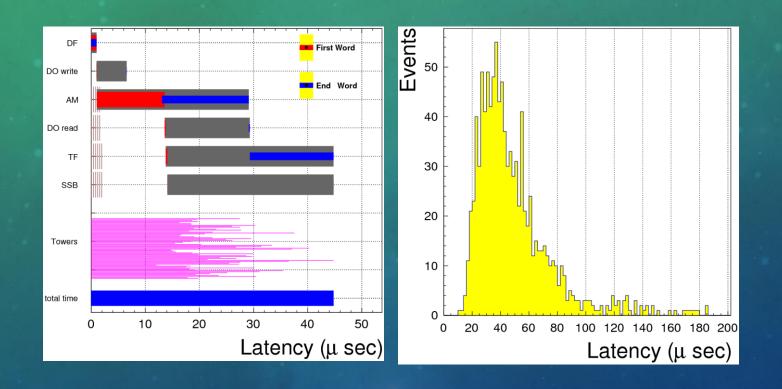
AM COMPUTING POWER

Each pattern can be seen as 4 32 bits comparators, operating at 100 MHz. $50 \ 10^6 \ \text{MIP/chip} \rightarrow 4 \ 10^{11} \ \text{MIP}$ in the whole AM system


THE AM CHIP HISTORY



- 90's Full custom VLSI chip 0,7 mm AMS (INFN-Pisa) 128 patterns, 6x12 bit words each (F. Morsani et al., The AM chip: a Full-custom MOS VLSI Associative memory for Pattern Recognition, IEEE Trans. on Nucl. Sci.,vol. 39, pp. 795-797 (1992).) 25 MHz clock
- 1998 FPGA (Xilinx 5000) for the same AMchip (P. Giannetti et al., A Programmable Associative Memory for Track Finding, Nucl. Intsr. and Meth., vol. A 413/2-3, pp.367-373, (1998)).
- 1999 first standard cell project presented at LHCC
- 2006 AMChip 03 Standard Cell UMC 0,18 mm, 5k patterns in 100 mm² for CDF SVT upgrade total: AM patterns (L. Sartori, A. Annovi et al., A VLSI Processor for Fast Track Finding Based on Content Addressable Memories, IEEE TNS, Vol 53, Issue 4, Part 2, Aug. 2006). 50 MHz clock
- 2012 AMchip04 (Full custom/Std cell) TSMC 65 nm LP technology, 8k patterns in 14mm² Pattern density x12. First variable resolution implementation. (F. Alberti et al, 2013 JINST & C01040, doi:10.1088/1748-0221/8/01/C01040) 100 MHz
- 2013 AMchip05, 4k patterns in 12 mm² a further step towards final AMchip version. **Serialized**I/O buses at 2 Gbs, further power reduction approach. BGA 23x23 package.
- End 2015 AMchip06: 128k patterns in 180 mm². Final version of the AMchip for the ATLAS experiment.


DON'T CARE FEATURES

- The LSB bit in AM match lines can use up to 6 ternary bits
 - Each bit allow 0, 1 and X (don't care)
 - K. Pagiamtzis and A. Sheikholeslami, Solid-State Circuits, IEEE Journal of, vol. 41, no. 3, 2006
 - The DC bits allow to reduce the match precision where required
- The use of DC solves the problem of balancing the match precision
 - Low resolution patterns allow smaller pattern bank size (less chips, less cost), but the probability of random coincidences grows
 - High resolution increase the filtering power at the price of a much larger banks
 - DC allows to merge similar pattern in favored configurations (less patterns) maintaining high-resolution and rejection power where convenient

FTK SYSTEM EXPECT PERFORMANCE (LATENCY)

The expected latency of the FTK pipeline has been carefully emulated highlighting how full tracking reconstruction can be achieved within 100 μ s.

Results obtained combining the emulation results with the parameters from the boards' design.

Overview of the ATLAS FTK - G. Volpi