Risultati recenti nella fisica di BESIII

Elisa Fioravanti

INFN Ferrara On behalf of the BESIII Collaboration

Incontri di Fisica delle Alte Energie 30 Marzo - 01 Aprile 2016 Genova

- The BESIII experiment
- Selected results from:
 - Charm Physics
 - Charmonium Spectroscopy
- Conclusions

Beijing Electron Positron Collider II

BESIII Detector

2004: BEPCII/BESIII Construction Double ring Beam energy: 1-2.3 GeV Designed Luminosity 1x10³³cm⁻² s⁻¹ 2008: test run 2009-today: BESIII physics run Luminosity 0.85 x 10³³cm⁻² s⁻¹

(日)

240 m

Linac: 200 m

The BESIII detector

Nucl. Instr. Meth. A614, 345 (2010)

1T superconducting magnet

- 8 layers (end caps) + 9 layers (barrel) Image: A image: A
- ΔΟ/4π=93%

BESIII physics program

- Light hadron Physics
 - Meson and baryon spectroscopy
 - Multiquark states
 - Threshold effects
 - Glueballs and hybrids
 - Two-photon physics
 - Form factors
- $\bullet~{\rm QCD}$ and τ
 - Precision R measurement
 - au decay
- Charmonium physics
 - Precision spectroscopy
 - Transitions and decays

- XYZ meson physics
 - Y(4260), Y(4360) properties
 - $Z_c(3900)^+,\ldots$
- Charm physics
 - Semi-leptonic form factors
 - Decay constants f_D and f_{D_s}
 - CKM matrix: |V_{cd} and |V_{cs}|
 - $D^0 \overline{D}^0$ mixing, CPV
 - Strong phases
- Precision mass measurements
 - au mass
 - D, D* mass

BESIII physics program

- Light hadron Physics
 - Meson and baryon spectroscopy
 - Multiquark states
 - Threshold effects
 - Glueballs and hybrids
 - Two-photon physics
 - Form factors
- $\bullet~{\rm QCD}$ and τ
 - Precision R measurement
 - au decay
- Charmonium physics
 - Precision spectroscopy
 - Transitions and decays

- XYZ meson physics
 - Y(4260), Y(4360) properties
 - $Z_c(3900)^+,\ldots$
- Charm physics
 - Semi-leptonic form factors
 - Decay constants f_D and f_{D_s}
 - CKM matrix: $|V_{cd}|$ and $|V_{cs}|$
 - $D^0 \overline{D}^0$ mixing, CPV
 - Strong phases
- Precision mass measurements
 - au mass
 - D, D^* mass

Data samples

Data sample	E _{cm}	Years
1.3×10 ⁹	J/ψ at 3.097 GeV	$2009 (0.225 \times 10^9) + 2012$
0.5×10 ⁹	$\psi(2S)$ at 3.686 GeV	$2009 (0.106 \times 10^9) + 2012$
2.92 fb^{-1}	$\psi(3770)$ at 3.773 GeV	2010+2011
$0.5 \ {\rm fb}^{-1}$	$\psi(4040)$ at 4.009 GeV	2011
0.024 fb ⁻¹	au mass scan at around 3.554 GeV	2011
$1.9 {\rm ~fb^{-1}}$	Y(4260) at 4.23 GeV and 4.26 GeV	2013
$0.5 \ {\rm fb}^{-1}$	Y(4360) at 4.36 GeV	2013
$0.5 \ {\rm fb}^{-1}$	Y(4260) and Y(4360) scan	2013
$0.8 \ {\rm fb}^{-1}$	R scan, 104 energy points between 3.85 and 4.59 GeV	2014
$1.0 {\rm ~fb^{-1}}$	at 4.42 GeV	2014
$0.1 \ {\rm fb}^{-1}$	at 4.47 GeV and 4.53 GeV for line shape	2014
0.04 fb ⁻¹	at 4.575 GeV (around the threshold of Lambda Charm)	2014
$0.5 \ {\rm fb^{-1}}$	at 4.60 GeV	2014

< P

Data sample	E _{cm}	Years
1.3×10 ⁹	J/ψ at 3.097 GeV	$2009 (0.225 \times 10^9) + 2012$
0.5×10 ⁹	$\psi(2S)$ at 3.686 GeV	$2009 (0.106 \times 10^9) + 2012$
2.92 fb ⁻¹	$\psi(3770)$ at 3.773 GeV	2010+2011
0.5 fb ⁻¹	$\psi(4040)$ at 4.009 GeV	2011
0.024 fb ⁻¹	au mass scan at around 3.554 GeV	2011
$1.9 \ {\rm fb}^{-1}$	Y(4260) at 4.23 GeV and 4.26 GeV	2013
0.5 fb ⁻¹	Y(4360) at 4.36 GeV	2013
0.5 fb ⁻¹	Y(4260) and Y(4360) scan	2013
0.8 fb ⁻¹	R scan, 104 energy points between 3.85 and 4.59 GeV	2014
1.0 fb ⁻¹	at 4.42 GeV	2014
0.1 fb ⁻¹	at 4.47 GeV and 4.53 GeV for line shape	2014
0.04 fb ⁻¹	at 4.575 GeV (around the threshold of Lambda Charm)	2014
0.5 fb ⁻¹	at 4.60 GeV	2014

Charmonium spectroscopy

Image: A math a math

Data sample	E _{cm}	Years
1.3×10 ⁹	J/ψ at 3.097 GeV	$2009 (0.225 \times 10^9) + 2012$
0.5×10^{9}	$\psi(2S)$ at 3.686 GeV	$2009 (0.106 \times 10^9) + 2012$
2.92 fb ⁻¹	$\psi(3770)$ at 3.773 GeV	2010+2011
$0.5 \ {\rm fb}^{-1}$	$\psi($ 4040 $)$ at 4.009 GeV	2011
$0.024 \ {\rm fb}^{-1}$	au mass scan at around 3.554 GeV	2011
$1.9 \; {\rm fb}^{-1}$	Y(4260) at 4.23 GeV and 4.26 GeV	2013
$0.5 \ {\rm fb}^{-1}$	Y(4360) at 4.36 GeV	2013
$0.5 \ {\rm fb^{-1}}$	Y(4260) and Y(4360) scan	2013
$0.8 \ {\rm fb^{-1}}$	R scan, 104 energy points between 3.85 and 4.59 GeV	2014
$1.0 {\rm ~fb^{-1}}$	at 4.42 GeV	2014
$0.1 { m ~fb^{-1}}$	at 4.47 GeV and 4.53 GeV for line shape	2014
$0.04 \ {\rm fb}^{-1}$	at 4.575 GeV (around the threshold of Lambda Charm)	2014
$0.5 \ {\rm fb}^{-1}$	at 4.60 GeV	2014

Charm physics

э

メロト メロト メヨト メ

Charm Physics

- Study of dynamics of $D^0 \to K^- e^+ \nu$) and $D^0 \to \pi^- e^+ \nu$) decays (PRL92,072012(2015))
- Study of decay dynamics and CP asymmetry in $D^+ \rightarrow K_L e^+ \nu_e$ decays (PRD92,112008(2015))
- Measurement of the form factors in the decay $D^+ \rightarrow \omega e^+ \nu_e$ and search for the decay $D^+ \rightarrow \phi e^+ \nu$ (PRD92,071101R(2015))
- Search for $D^0 \rightarrow \gamma \gamma$ and improved measurement of the branching fraction for $D^0 \rightarrow \pi^0 \pi^0$ (PRD91,112015(2015))
- Measurement of the Absolute Branching Fraction for $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ (PRL115,221805(2015))
- Measurement of the Absolute Hadronic Branching Fraction for Λ_c^+ Baryon (PRD116,052001(2016))
- Many other results not covered in this talk:
 - Measurement of y_{CP} in $D^0 \bar{D}^0$ oscillation using quantum correlations in $e^+e^- \rightarrow D^0 \bar{D}^0$ (PLB744,339(2015))
 - Study of $D^+
 ightarrow K^- \pi^+ e^+
 u_e$ (arXiv:1512.08627)
 -

Measurement of $\mathcal{B}(D^0 \rightarrow K^-(\pi^-)e^+\nu_e)$ - PRD92,072012(2015)

 $D^0 \rightarrow K^- e^+ \nu_e$ Emire=Eheam-Eh--Ea+ 4000 $\vec{p}_{miss} = \vec{p}_{n0} - \vec{p}_{b-} - \vec{p}_{a+}$ (h=hadron: e=positron) Direct measurements of the absolute branching 2000 fractions for $D^0 \rightarrow K^- e^+ \nu_e$ and $D^0 \rightarrow \pi^- e^+ \nu_e$ Events / (2.5 MeV decays using 2.92 fb $^{-1}$ taken at 3.773 GeV. 0 $\rightarrow \pi^- e^-$ 400 $\mathcal{B}(D^0 \to K^- e^+ \nu) = (3.505 \pm 0.014 \pm 0.033)\%$ 300 $\mathcal{B}(D^0 \to \pi^- e^+ \nu) = (0.2950 \pm 0.0041 \pm 0.0026)\%$ 200 100 -02 -0 1 0 01 Umice (GeV $\Gamma(\pi^-e^+v)/\Gamma_{total}$ $\Gamma(\mathbf{K} e^* \mathbf{v}) / \Gamma_{eeee}$ (0.279+0.027+0.016)% (3.45+0.10+0.19)% BELLS BRLLR (0.288±0.008±0.003)% CLEO-C (3.50±0.03±0.04)% CLEO-6 (3.505±0.014±0.033) % BESTIT Γ (K e'v) /Γ (K π')×Γ^{-DOG2034} (K π' Babar PRD91 (2015) 052022 (3.53±0.27±0.43±0.05)% ×691 (3.49±0.23±0.23±0.05)% $\Gamma (\pi^- e^+ v) / \Gamma (R^- e^+ v) \times \Gamma^{PDG2014} (R^- e^+ v)$ (0.359±0.071±0.011±0.005)% 8691 (3.80+0.10±0.17±0.05)% CLEO2 0.366+0.138+0.046+0.005)% (3.60+0.03+0.05+0.05)5 (0.291±0.021±0.018±0.004) % CLEO2 3.55±0.05)% PDG201 (0.289±0.008)9 PDG2014 3 3.5 5.5 0.4

Risultati recenti nella fisica di BESIII

PRD92 072012(2015

Measurement of $f_{+}^{K(\pi)}(0)$ - PRD92,072012(2015)

From a study of the differential decay rates they obtain the products of hadronic form factor and the magnitude of the CKM matrix element:

 $\begin{array}{l} f_{+}^{\kappa}(0)|V_{cs}| = 0.7172 \pm 0.0025 \pm 0.0035 \\ f_{+}^{\pi}(0)|V_{cd}| = 0.1435 \pm 0.0018 \pm 0.0009 \end{array}$

Combining these products with the values of $|V_{cs(d)}|$ from the SM constraint fit (PDG):

 $f_{+}^{K}(0) = 0.7368 \pm 0.0026 \pm 0.0036$ $f_{+}^{\pi}(0) = 0.6372 \pm 0.0080 \pm 0.0044$

Study of $D^+ \to K_L e^+ \nu_e$; $D^+ \to \omega e^+ \nu_e$; $D^+ \to \phi e^+ \nu_e$

Using 2.92 fb⁻¹ of electron-positron annihilation data collected at $\sqrt{s} = 3.773$ GeV, they obtained the first measurements of (PRD92,112008 (2015)):

 $\begin{array}{l} \mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) = (4.481 \pm 0.027 \pm 0.103)\% \\ \text{CP asym. } A_{CP}^{D^+ \to K_L e^+ \nu_e} = (-0.59 \pm 0.60 \pm 1.48)\% \\ \text{Product of hadronic from factor and the magnitude of the CKM element:} \\ f_{+}^{K}(0) | V_{cs} | = 0.728 \pm 0.006 \pm 0.011 \\ f_{+}^{K}(0) = 0.748 \pm 0.007 \pm 0.012 \text{ using } | V_{cs} | \text{ from the SM constrained fit} \end{array}$

Using 2.92 fb⁻¹ of electron-positron annihilation data collected at $\sqrt{s} = 3.773$ GeV, they obtained an improved measurements of (PRD92,071101R(2015)):

 $\mathcal{B}(D^+ \to \omega e^+ \nu_e) = (1.63 \pm 0.11 \pm 0.08) \times 10^{-3}$

The parameters defining the corresponding hadronic from factor ratios at zero momentum transfer are determined for

the first time:

$$\begin{split} r_V = V(0)/A_1(0) = 1.24 \pm 0.09 \pm 0.06 \\ r_2 = A_2(0)/A_1(0) = 1.06 \pm 0.15 \pm 0.05 \\ \text{They also searched for the decay } D^+ \to \phi e^+ \nu_e \text{:} \\ \mathcal{B}(D^+ \to \phi e^+ \nu_e) < 1.3 \times 10^{-5} \end{split}$$

Search for $D^0 \to \gamma \gamma$ and measurement of $\mathcal{B}(D^0 \to \pi^0 \pi^0)$

Using 2.92 fb⁻¹ of electron-positron annihilation data collected at \sqrt{s} =3.773 GeV, they searched for the flavor-changing neutral current process $D^0 \rightarrow \gamma \gamma$ using a double-tag technique.

No signal has been found ${\cal B}(D^0 o \gamma \gamma) < 3.8 imes 10^{-6}$ at 90% CL

Using 2.92 fb⁻¹ of electron-positron annihilation data collected at $\sqrt{s} = 3.773$ GeV, they obtained an improved measurements of:

 $\mathcal{B}(D^0 \to \pi^0 \pi^0) = (8.24 \pm 0.21 \pm 0.30) \times 10^{-4}$

Precise measurement of the $\mathcal{B}(D^0 \to \pi^0 \pi^0)$ can improve understanding of SU(3) flavor symmetry breaking effect in D^0 decays, benefiting theoretical predictions of CP violation in *D* decays.

Measurement of the Absolute Branching Fraction for $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

Using 567 pb⁻¹ of electron-positron annihilation data collected at \sqrt{s} =4.599 GeV, they reported the first measurement of the absolute branching fraction for $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$.

An accurate measurement of $\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)$ is a key ingredient in calibrating LQCD calculations, which, will play an important role in understanding different Λ_c^+ semileptonic decays.

Theoretical predictions: 1.4%-9.2% [PRD40,2955(1989), PRD40,2944(1989), PRD43,2939(1991), PRD45,3266(1992), PRD53,1457(1996), PLB431,173(1998), PRD60,034009(1999), PRC72,035201(2005)] PDG2015:(2.9\pm0.5)% [Belle PRL113,042002(2014): $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = (6.84^{+0.32}_{-0.40})\%]$

Measurement of the Absolute Hadronic Branching Fraction for Λ_c^+ Baryon (PRL116,052001(2016))

- The first measurement of absolute hadronic branching fractions of Λ_c^+ baryon at the $\Lambda_c^+\bar\Lambda_c^-$ product threshold.

- 12 Cabibbo-favored Λ_c^+ hadronic decay modes are analyzed with a double-tag technique, based on a sample of 567 pb⁻¹ collected at \sqrt{s} =4.6 GeV.

- A global least-squares fitter is utilized to improve the measured precision.

Mode	This work (%)	PDG (%)
pK_S^0	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30
$pK^{-}\pi^{+}$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50
$pK_S^0\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35
$pK^{-}\pi^{+}\pi^{0}$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0
$\Lambda \pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28
$\Lambda \pi^+ \pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3
$\Lambda\pi^+\pi^-\pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7
$\Sigma^0 \pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28
$\Sigma^+ \pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34
$\Sigma^+ \pi^+ \pi^-$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0
$\Sigma^+ \omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0
-		

Charmonium Spectroscopy

- Observation of the $\psi(1^3D_2)$ State in $e^+e^- \rightarrow \pi^+\pi^-\gamma\chi_{c1}$ (PRL115,011803(2015))
- Search for the Y(4140) via $e^+e^-
 ightarrow \gamma \phi J/\psi$ (PRD91,032002(2015))
- Observation of $Z_c(3900)^{\pm}$ in $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ (PRL110,252001(2013))
- Observation of $Z_c(3900)^0$ in $e^+e^- \to \pi^0 \pi^0 J/\psi$ (PRL115,112003(2015))
- Confirmation of a charged charmoniumlike state $Z_c(3885)^{\mp}$ in $e^+e^- \rightarrow \pi^{\pm}(D\bar{D}^*)^{\mp}$ with double D tag (PRD92,092006(2015))
- Observation of $Z_c(3885)^0$ in $e^+e^- \to \pi^0 (D\bar{D}^*)^0$ (PRL115,222002(2015))
- Observation of $Z_c(4020)^{\pm,0}$ in $e^+e^- \rightarrow \pi^{+,0}\pi^{-,0}h_c$ (PRL111,242001(2013), PRL113,212002(2014))
- Observation of $Z_c(4025)^{\pm,0}$ in $e^+e^- \rightarrow \pi^{\pm}(D^*\bar{D}^*)^{\mp,0}$ (PRL112,132001(2014), PRL115,182002(2015))
- Many other results not covered in this talk:
 - Observation of $e^+e^-
 ightarrow \gamma X(3872)$ PRL 112, 092001(2014)
 - Observation of $e^+e^-
 ightarrow \omega \chi_{c0}$ PRL 114, 092003 (2015)
 - Observation of $Z_c(3885)^{\mp}$ with single D tag (PRL112,022001(2014))
 -

イロト イ団ト イヨト イヨト

Charmonium spectrum

- Below the $D\bar{D}$ threshold, all expected states have been observed, with properties in good agreement with theory.

- Many unexpected states have been reported above the $D\bar{D}$ threshold (XYZ). Several exotic hypotheses as to their nature: tetraquarks, hadronic molecules, hybrids, glueballs, hadro-quarkonia.

X states:

- Observed in B decays, pp and $p\bar{p}$ collisions

Y states:

- charmonium-like states with $\mathsf{J}^{PC}=\!\!1^{--}$
- Observed in direct e^+e^- annihilation or in ISR

Z states:

- charmonium-like states carrying electric charge
- Must contain at least a $c \bar{c}$ and a light $q \bar{q}$

Exotic charmonium-like states interpretation

Molecular state

Loosely bound state of a pair of mesons. The dominant binding mechanism should be pions echange

NA Tornqvist PLB 590, 209 (2004) ES Swanson PLB 598,197 (2004) E Braaten & T Kusunoki PRD 69 074005 (2004) CY Wong PRC 69, 055202 (2004) MB Voloshin PLB 579, 316 (2004) F Close & P Page PLB 578,119 (2004)

Tetraquark

L Maiani et al PRD 71.014028 (2005) Bound state of four guarks, i.e. diguark-antidiguark T-W Chiu & TH Hsieh PRD 73, 111503 (2006) Distinctive feature of multi-guark picture with respect to charmonium: D Ebert et al PLB 634, 214 (2006)

- Prediction of many new states

- Possible existence of new states with nonzero charge, strangeness or both

Charmonium Hybrids

Bound states with a pair of guarks and one excited gluon Lattice and model predictions found that the lowest charmonium hybrids lies around 4200 MeV

P Lacock et al (UKOCD) PLB 401, 308 (1997) SL Zhu PLB 625, 212 (2005) FE Close, PR Page PLB 628, 215 (2005) E Kou, O Pene PLB 631, 164 (2005)

Glueball Bound states of gluons

N. Brambilla et al., Eur. Phys. J. C71: 1534, 2011

....

Conventional charmonium

C Meng & KT Chao PRD 75, 114002 (2007) W Dunwoodie & V Ziegler PRL 100 062006 (2008) O Zhang, C Meng & HO Zheng arXiv:0901.1553

Risultati recenti nella fisica di RESIII

Observation of $e^+e^- \rightarrow \pi^+\pi^- X(3823)$ - PRL115,011803(2015)

- The X(3823) was discovered by Belle in $B \rightarrow \chi_{c1}\gamma K$, PRL 111,032001(2013). Mass and width consistent with the missing $\psi(1^3D_2)$ state - BESIII: Study of $e^+e^- \rightarrow \pi^+\pi^-X(3823)$, $X(3823) \rightarrow \gamma \chi_{c1,c2}$ at center of mass energies from 4.19 to 4.6 GeV, with 4.67 fb⁻¹.

• The X(3823) is a good candidate for the ψ_2 charmonium state with $J^{PC}=2^{--}$

- Mass and width are in agreement with potential model prediction for 1^3D_2
- not enough statistics to distinguish between D- and S-wave hypothesis
- The fit of the energy-dependent cross section for the process is compatible with both Y(4360) and $\psi(4415)$ line shapes

Search for the Y(4140) via $e^+e^- \rightarrow \gamma \phi J/\psi$ - PRD91,032002 (2015)

- The Y(4140) was discovered by CDF in $B^+ \rightarrow \phi J/\psi K^+$, PRL102,242002 (2009).
- Not observed by Belle (PRL104,112004(2010)), BABAR (PRD91,012003(2015)) and LHCb (PRD85,091103(2012).
- Enhancement observed recently by CMS (PLB734, 261(2014)) and D0 (PRD89,012004(2014))
- BESIII: Search for Y(4140) decays into $\phi J/\psi$ through the process $e^+e^- \rightarrow \gamma \phi J/\psi$ with 1094 pb⁻¹ at 4.23 GeV, 827 pb⁻¹ at 4.26 GeV and 545 pb⁻¹ at 4.36 GeV

No significant signal found at BESIII

$$\begin{split} \sigma^{\mathcal{B}} \cdot \mathcal{B} &= \sigma(e^+e^- \to \gamma Y(4140)) \cdot \mathcal{B}(Y(4140) \to \phi J/\psi): \\ & \text{at } 4.23 \text{ GeV}: < \! 0.35 \text{ pb at } 90\% \text{ CL} \\ & \text{at } 4.26 \text{ GeV}: < \! 0.28 \text{ pb at } 90\% \text{ CL} \\ & \text{at } 4.36 \text{ GeV}: < \! 0.33 \text{ pb at } 90\% \text{ CL} \end{split}$$

The UL are of the same order of magnitude as $\sigma^B \cdot B = \sigma(e^+e^- \rightarrow \gamma X(3872)) \cdot B(X(3872) \rightarrow \pi^+\pi^- J/\psi)$ [PRL 112, 092001]: at 4.23 GeV: 0.27 \pm 0.09 \pm 0.02 pb at 4.26 GeV: 0.33 \pm 0.12 \pm 0.02 pb

Considering: $\mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi)=5\%$ arXiv:0910.3138 $\mathcal{B}(Y(4140) \rightarrow \phi J/\psi)=30\%$ PRD80, 054019 (molecular calculation)

$$\frac{\sigma^B(e^+e^- \to \gamma Y(4140))}{\sigma(e^+e^- \to \gamma X(3872))} \leq 0.1 \text{ at } 4.23 \text{ and } 4.26 \text{ GeV}$$

Discovery of the $Z_c(3900)^{\pm}$ - PRL 110, 252001 (2013)

- Study of the $e^+e^-\to\pi^+\pi^-J/\psi$ process at the center of mass energy of 4.260 GeV using a 525 $\rm pb^{-1}$

- Choosing the heavier J/ ψ combination per events removes reflection at 3.45 GeV/c²
- Unbinned maximum likelihood fit to the $\pi^\pm J/\psi$ invariant mass distribution

 $\frac{\pm J/\psi}{\sigma(e^+e^- \rightarrow \pi^\pm Z_c(3900)^{\mp} \rightarrow \pi^+\pi^- J/\psi)} = (21.5\pm3.3\pm7.2)\%$

Search for a neutral $Z_c(3900)$ isospin partner - PRL115,112003(2015)

- First evidence by CLEO-c - $e^+e^- \rightarrow J/\psi\pi^+\pi^-$ at 4.17 GeV - m=3904±4±5 MeV/c² - Γ =37 (Fixed) MeV - Significance 3.7 σ Isospin triplet is established!

Risultati recenti nella fisica di BESIII

Confirmation of $Z_c(3885)^{\pm}$ in $e^+e^- \rightarrow \pi^{\pm}(D\bar{D}^*)^{\mp}$ using double D tag method - PRD92,092006(2015)

- Combined study of the processes $e^+e^- \rightarrow \pi^+D^0D^{*-}$ ($\pi^+D^0\bar{D}^0$ -tag.) and $e^+e^- \rightarrow \pi^+D^-D^{*0}$ ($\pi^+D^-D^0$ -tag.) using 1090 pb⁻¹ at \sqrt{s} =4.23 GeV and 827 pb⁻¹ at \sqrt{s} =4.26 GeV.

- Double tag method: reconstruction of the bachelor π and $D\bar{D}$ pair: this allows to use more D decays modes and effectively suppresses background.

- Simultaneous fit to the $M(D\bar{D}^*)$ distributions for the two processes.

- m=3881.7 \pm 1.6 \pm 1.6 MeV/c²; Γ =26.6 \pm 2.0 \pm 2.1 MeV; Significance > 10 σ
- The angular distribution is consistent with $J^P = 1^+$.
- The results are consistent with single D tag results (PRL112,022001(2014))

Search for $Z_c(3885)^0$ in $e^+e^- \rightarrow \pi^0 (D\bar{D}^*)^0$ - PRL115,222002(2015)

- Study of the processes $e^+e^- \rightarrow \pi^0 (D\bar{D}^*)^0$, where $(D\bar{D}^*)^0$ refers to D^+D^{*-} or $D^0\bar{D}^{*0}$ using 1092 pb⁻¹ at $\sqrt{s} = 4.23$ GeV and 826 pb⁻¹ at $\sqrt{s} = 4.26$ GeV.

Observation of $Z_c(4020)^{\pm,0}$ in $e^+e^- \rightarrow \pi^{+,0}\pi^{-,0}h_c$

-Study of $e^+e^- \rightarrow \pi^{+,0}\pi^{-,0}h_c$ at center of mass energies from 3.90 to 4.42 GeV. - $h_c \rightarrow \gamma \eta_c$; η_c reconstructed in 16 hadronic decay modes

- Simultaneous fit to the $M_{\pi^\pm h_c}$ distributions

at 4.23, 4.26 and 4.36 GeV using 2.46 fb $^{-1}$.

- A structure, $Z_c(4020)^\pm$ is observed with significance $> 8.9\sigma$

 $- m = 4022.9 \pm 0.8 \pm 2.7 MeV/c^2$

- $\Gamma = 7.9 \pm 2.7 \pm 2.6$ MeV

- Simultaneous fit to the $M_{\pi^0}^{recoil}$ distributions at 4.23, 4.26 and 4.36 GeV using 2.46 fb⁻¹. - A structure, $Z_c(4020)^0$ is observed with

significance $> 5\sigma$

 $- m = 4023.9 \pm 2.2 \pm 3.8 \text{ MeV}/c^2$

- Width is fixed to be the same as its charged partner

Another isospin triplet is established!

Observation of $Z_c(4025)^{\pm,0}$ in $e^+e^- \rightarrow \pi^{\pm}(D^*\overline{D^*})^{\mp,0}$

-Study of $e^+e^- \rightarrow \pi^0 (D^*\bar{D}^*)^0$ at 4.26 GeV using 1092 pb⁻¹ at \sqrt{s} =4.23 GeV and 826 pb^{-1} at $\sqrt{s}=4.26$ GeV.

- Unbinned maximum likelihood fit to the $M_{\pi^0}^{recoil}$ distribution.

- A structure, $Z_c(4025)^0$ is observed with significance 7.4 σ
- $m = 4025.5^{+2.0}_{-4.7} \pm 3.1 \text{ MeV/c}^2$
- Γ=23 0+6 0+1 0 MeV

-Study of $e^+e^- \rightarrow \pi^{\pm}(D^*\bar{D}^*)^{\mp}$ at 4.26 GeV using 827 pb^{-1} .

- Unbinned maximum likelihood fit to the M^{recoil} distribution.

- A structure, $Z_c(4025)^+$ is observed with significance 10σ

- m=4026.3±2.6±3.7 MeV/c²
- Γ=24.8+5.6+7.7 MeV

Parameters very similar to $Z_c(4020) \rightarrow$ needed rigorous spin analysis.

State	$\frac{Process}{e^+e^-} \to$	Decay Mode	$\frac{Mass}{(MeV/c^2)}$	Width (MeV)	Ref
$Z_{c}(3900)^{\pm}$	$\pi^+\pi^- J/\psi$	$J/\psi\pi^{\pm}$	$3899.0 {\pm} 3.6 {\pm} 4.9$	$46{\pm}10{\pm}20$	PRL110,252001(2013)
$Z_c(3900)^0$	$\pi^0\pi^0 J/\psi$	$J/\psi\pi^0$	$3894.8 {\pm} 2.3 {\pm} 3.2$	$29.6 {\pm} 8.2 {\pm} 8.2$	PRL115,112003(2015)
$Z_{c}(3885)^{\pm}$	$\pi^{\pm}(D\bar{D}^*)^{\mp}$	$D^0 D^{*-} \ D^+ ar D^{*0}$	3883.9±1.5±4.2	24.8±3.3±11.0	PRL112,022001(2014) Single D tag
$Z_{c}(3885)^{\pm}$	$\pi^{\pm}(D\bar{D}^{*})^{\mp}$	D ⁰ D* D D ^{*0}	3881.7±1.6±1.6	26.6±2.0±2.1	PRD92,092006(2015) Double D tag
$Z_c(3885)^0$	$\pi^0 (D ar D^*)^0$	$D^+ D^{*-} D^0 \bar{D}^{*0}$	$3885.7^{+4.3}_{-5.7}8.4$	$35^{+11}_{-12}{\pm}15$	PRL115,222002(2015)
$Z_{c}(4020)^{\pm}$	$\pi^+\pi^-h_c$	$h_c \pi^{\pm}$	$4022.9 {\pm} 0.8 {\pm} 2.7$	$7.9{\pm}2.7{\pm}2.6$	PRL111,242001(2013)
$Z_c(4020)^0$	$\pi^0 \pi^0 h_c$	$h_c \pi^0$	$4023.9{\pm}2.2{\pm}3.8$	Fixed	PRL113,212002(2014)
$Z_c(4025)^{\pm}$	$\pi^{\mp}(D^*\bar{D}^*)^{\pm}$	D*+D*0 D*-D*0	4026.3±2.6±3.7	24.8±5.6±7.7	PRL112,132001(2014)
$Z_c(4025)^0$	$\pi^0 (D^* \bar{D}^*)^0$	D ^{*0} D̄ ^{*0} D ^{*+} D ^{*-}	$4025.5^{+2.0}_{-4.7}{\pm}3.1$	23.0±6.0±1.0	PRL115,182002(2015)

- BESIII is successfully operating since 2008, and continues to take data
- It is an excellent laboratory to study charm and charmonium spectroscopy:
 - High statistics
 - Low background
- Many interesting results have been obtained, only few of them are covered in this talk
 - "Form factor of baryons and light hadrons" Poster by Piero Patteri
- Future:
 - More data will be collected
 - Higher luminosity is expected from BEPCII
 - More detailed studies will be done

THANKS FOR YOUR ATTENTION!

BACKUP SLIDES

Risultati recenti nella fisica di BESIII

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

Measurement of $f_{+}^{K(\pi)}(0)$ - PRD92,072012(2015)

In the limit of zero positron mass, the differential rate for $D^0 \rightarrow K^-(\pi^-)e^+\nu_e$ decay is given by

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{cs(d)}|^2 |\vec{p}_{K^-(\pi^-)}|^3 |f_+^{K(\pi)}(q^2)|^2, \qquad (1.1)$$

where G_F is the Fermi coupling constant, $\vec{p}_{K^-(\pi^-)}$ is the threemomentum of the $K^-(\pi^-)$ meson in the rest frame of the D^0 meson, and $f_+^{K(\pi)}(q^2)$ represents the hadronic form factors of the hadronic weak current that depend on the square of the four-momentum transfer $q = p_{D^0} - p_{K^+(\pi^-)}$. These form factors describe strong interaction effects that can be calculated in lattice quantum chromodynamics (LQCD).

FIG. 6 (color online). Differential decay rates for $D^0 \rightarrow K^- e^+ \nu_e$ as a function of q^2 . The dots with error bars show the data and the lines give the best fits to the data with different form-factor parametrizations.

FIG.7 (color online). Differential decay rates for $D^0 \rightarrow \pi^- e^+ \nu_e$ as function of q^2 . The dots with error bars show the data and the lines give the best fits to the data with different form-factor parametrizations.

< D > < A > < B >

⁷IG. 9 (color online). Projections on $f_{\perp}^{\pi}(q^2)$ for $D^0 \rightarrow \pi^- e^+ \nu_e$.

FIG. 8 (color online). Projections on $f_+^K(q^2)$ for $D^0 \rightarrow K^- e^+ \nu_e$.

Measurement of $f_{+}^{K(\pi)}(0)$ - PRD92,072012(2015)

FIG. 10 (color online). Comparisons of the measured form factors (squares with error bars) with the LQCD calculations [26] (solid lines present the central values, bands present the LQCD uncertainties).

< □ > < 同 >

Study of $D^+ \to K_L e^+ \nu_e$; $D^+ \to \omega e^+ \nu_e$; $D^+ \to \phi e^+ \nu_e$

$$\begin{split} A_{CP} &\equiv \frac{\mathcal{B}(D^+ \to K^0_L e^+ \nu_e) - \mathcal{B}(D^- \to K^0_L e^- \bar{\nu}_e)}{\mathcal{B}(D^+ \to K^0_L e^+ \nu_e) + \mathcal{B}(D^- \to K^0_L e^- \bar{\nu}_e)} \\ &= (-0.59 \pm 0.60 \pm 1.48)\%. \end{split} \tag{8}$$

This result is consistent with the theoretical prediction in Ref. [4] (–3.3 \times 10^–3).

$$\begin{split} \frac{d\Gamma}{dq^2 d\cos\theta_1 d\cos\theta_2 d\chi dm_{axx}} &= \frac{3}{8(4\pi)^4} G_F^2 |V_{cd}|^2 \frac{p_{od}^2}{M_D^2} \mathcal{B}(\omega \to \pi\pi\pi) |\mathcal{B}\mathcal{W}(m_{xxx})|^2 [(1+\cos\theta_2)^2 \sin^2\theta_1 |H_+(q^2,m_{xxx})|^2 \\ &\quad + (1-\cos\theta_2)^2 \sin^2\theta_1 |H_-(q^2,m_{xxx})|^2 + 4\sin^2\theta_2 \cos^2\theta_1 |H_0(q^2,m_{xxx})|^2 \\ &\quad + 4\sin\theta_2 (1+\cos\theta_2) \sin\theta_1 \cos\theta_1 \cos\chi H_+(q^2,m_{xxx}) H_0(q^2,m_{xxx}) \\ &\quad - 4\sin\theta_2 (1-\cos\theta_2) \sin\theta_1 \cos\theta_1 \cos\chi H_-(q^2,m_{xxx}) H_0(q^2,m_{xxx}) \\ &\quad - 2\sin^2\theta_2 \sin^2\theta_1 \cos2\chi H_+(q^2,m_{xxx}) H_-(q^2,m_{xxx}) H_0(q^2,m_{xxx}) \end{split}$$

FIG. 3. Definitions of the helicity angles in the decay $D^+ \rightarrow \omega i W^+$, $\omega \rightarrow \pi^+ \pi^- \pi^0$, $W^+ \rightarrow e^+ \nu_e$ for the three-body (θ_1) and two-body (θ_2) D^- -daughter decays, where both angles are defined in the rest frame of the decaying meson.

where G_p is the Fermi constant, p_w is the ω momentum in the D rest frame, $\mathcal{B}(\omega \to \pi\pi\pi)$ is the branching fraction of $\omega \to \pi\pi\pi$, m_{exc} is the invariant mass of the three pions, and $\mathcal{BW}(m_{exc})$ is the Breit-Wigner function that describes the ω line shape. The helicity amplitudes can in turn be related to the two axial-vector form factors $A_{1,2}(q^2)$ and the vector form factor $V(q^2)$. For the q^2 dependence, a single pole parametrization [24] is applied:

$$V(q^2) = \frac{V(0)}{1 - q^2/m_V^2}, \qquad A_{1,2}(q^2) = \frac{A_{1,2}(0)}{1 - q^2/m_A^2},$$
 (3)

where the pole masses m_V and m_A are expected to be close to $M_{D^*(1^-)} = 2.01$ GeV/ c^2 and $M_{D^*(1^+)} = 2.42$ GeV/ c^2 [13] for the vector and axial form factors, respectively. The ratios of these form factors, evaluated at $q^2 = 0$, $r_V = \frac{\pi}{\Lambda_1(0)}$ and $r_2 = \frac{\pi^2}{\Lambda_1(0)}$, are measured in this paper.

Observation of $Z_c(3885)^{\pm}$ in $e^+e^- \rightarrow \pi^{\pm}(D\bar{D}^*)^{\mp}$ using single D tagmethod - PRL 112, 022001 (2014)

- Study of the $e^+e^- o \pi^\pm (Dar D^*)^\mp$ at $\sqrt{s}{=}4.26~{
m GeV}$ using a 525 pb $^{-1}$

- Single D tag method: Reconstruction of the π and one final state D meson; the presence of the \bar{D}^* is inferred from energy-momentum conservation.

Parameters similar to $Z_c(3900)$. A J^P quantum number determination for the $Z_c(3900)$ needed

Fit to angular distribution favours $J^P = 1^+$ If this is $Z_c(3900)^{\pm}$, the ratio of partial decay widths is: $\frac{\Gamma(Z_c(3885) \rightarrow D\bar{D}^*)}{\Gamma(Z_c(3900) \rightarrow \pi J/\psi)} = 6.2 \pm 1.1 \pm 2.7$ This ratio is much smaller than typical values for decays of con-

ventional charmonium states above the open charm threshold:

$$\frac{\Gamma(\psi(3770) \to D\bar{D})}{\Gamma(\psi(3770) \to \pi^+ \pi^- J/\psi)} = 482 \pm 84$$

This suggests the influence of very different dynamics in the Y(4260)- $Z_c(3900)$ system

