

L'esperimento LHCf Misura delle distribuzioni di energia e impulso trasverso delle particelle prodotte in avanti a LHC

E. Berti

Università e INFN di Firenze a nome della Collaborazione LHCf

IFAE 2016 Sessione Dottorandi Genova, 30 Marzo - 1 Aprile 2016

The LHCf Collaboration

*^{,**}Y.Itow, *Y.Makino, *K.Masuda, *Y.Matsubara, *E.Matsubayashi, ***H.Menjo, *Y.Muraki, *Y.Okuno, *^{,**}T.Sako, *M.Ueno, *Q.D.Zhou

^{*}Institute for Space-Earth Environmental Research, Nagoya University, Japan ^{**}Kobayashi-Maskawa Institute, Nagoya University, Japan ^{***}Graduate School of Science, Nagoya University, Japan

K.Yoshida Shibaura Institute of Technology, Japan

T.Iwata, K.Kasahara, T.Suzuki, S.Torii

Waseda University, Japan

Y.Shimizu, T.Tamura Kanagawa University, Japan

N.Sakurai Tokushima University, Japan

M.Haguenauer Ecole Polytechnique, France

W.C.Turner LBNL, Berkeley, USA

O.Adriani, E.Berti, L.Bonechi, M.Bongi, G.Castellini, R.D'Alessandro, P.Papini, S.Ricciarini, A.Tiberio

INFN, Univ. di Firenze, Italy INFN, Univ. di Catania, Italy

A.Tricomi

A-L.Perrot

CERN, Switzerland

Ultra High Energy Cosmic Rays (UHECR)

Calibrazione dei modelli

Cosa misurare?

- sezione d'urto (TOTEM, ATLAS, CMS, ALICE)
- molteplicità (ATLAS, CMS)
- distribuzioni di E e p_t nella forward region e

inelasticità k = 1 - p_{lead}/p_{beam} (LHCf)

Perché LHC?

• misurare le caratteristiche delle EAS ad un'energia vicina a quella degli UHECR

Run p-p √s=14 TeV → 10¹⁷eV p su p a riposo

• verificare la validità di **leggi di scala** (Feynman scaling, $<p_{T}>$ scaling, limiting fragmentation) utili per estrapolare i parametri ad energie superiori a 10^{17} eV

Run p-p √s=0.9, 2.76, 7, 13 TeV

 studiare la dipendenza del rate di produzione delle particelle secondarie al variare del numero di nucleoni del bersaglio

Run p-p, p-Pb

L'esperimento LHCf

Distribuzione di energia dei neutroni $p-p \sqrt{s} = 7 \text{ TeV}$

Distribuzione di p_{τ} dei π^{0} p-p $\sqrt{s} = 7$ TeV

Feynman scaling ed altre leggi di scala

Validità delle leggi di scala verificate da LHCf

- <p_T> scaling ±10%
- limiting fragmentation ±15%
- Feynman scaling ±20%

Buona validità delle leggi di scala

Nuclear modification factor

Plot preliminari p-p √s = 13 TeV massa invariante M_{yy}

Plot preliminari p-p $\sqrt{s} = 13$ TeV Distribuzioni di energia dei fotoni

Back Up

La fisica dei raggi cosmici

Componente elettromagnetica

Componente muonica

Flusso di energia a LHC

Disposizione dei rivelatori di LHCf

Risultati pubblicati

	Proton equivalent energy in LAB (eV)	γ	n	π ^o	
SPS test beam		NIM A, 671, 129 (2012)	JINST 9 P03016 (2014)		
p+p 900 GeV	4.3x10 ¹⁴	Phys. Lett. B 715, 298 (2012)			
p+p 7 TeV	2.6x10 ¹⁶	Phys. Lett. B 703, 128 (2011)	Phys. Lett. B 750 (2015) 360-366	Phys. Rev. D 86, 092001 (2012) + Submitted to Phys. Rev. D (Type-II)	
p+p 2.76 TeV	4.1x10 ¹⁵			Phys. Rev. C 89, 065209 (2014)	
p+Pb 5.02 TeV	1.4x10 ¹⁶			+ Submitted to Phys. Rev. D (Type-II)	Presa dati comune
p+p 13 TeV	9.0x10 ¹⁶	Data taken in June 2015 after the restart of LHC Analysis is on-going			LHCf +
p+Pb 8.1 TeV	3.6x10 ¹⁶	Letter of Intent j	ust submitted to the	LHC Committee	ATLAS

L. Bonechi, LHCC Open Session – 02 March 2016

Distribuzione di energia dei fotoni p-p √s = 7 TeV

Distribuzione di p_z dei π^0 p-p $\sqrt{s} = 7$ TeV

Plot preliminari p-p $\sqrt{s} = 13$ TeV Type-I π^0 event

LHCf Arm2 Detector π^0 Candidate Event LHC p-p, $\sqrt{s} = 13$ TeV Collisions

