

NA62 e KLEVER: test del Modello Standard in decadimenti ultra-rari dei mesoni K

Roberta Volpe Universita` e INFN Firenze per la Collaborazione NA62

Incontri di Fisica delle Alte Energie Genova, 1 Aprile, 2016

Indice

Motivazioni per la misura di Br(K→πνν)

Fisica dei K all' SPS

▷ Canale carico K⁺→π⁺vv

Esperimento NA62

Descrizione e performance sottorivelatori

Primo sguardo ai dati del 2015

 \gtrsim Canale neutro $K_L \rightarrow \pi^0 v v$

▷ KLEVER: studi di fattibilita` per una possibile misura di BR($K_L \rightarrow \pi^0 vv$) all' SPS

FUTURO A BREVE TERMINE PRESENTEE (adesso->2018) FUTURO A LUNGO TERMINE

(dal 2026)

I decadimenti K→πvv

(short distance)

puo` essere predetto teoricamente con molta precisione

 $BR(K_L \to \pi^0 \nu \bar{\nu}) = \kappa_L \left(\frac{\mathrm{Im}\lambda_t}{\lambda^5} X\right)^2 (1 - \delta_\epsilon), \qquad (6.2)$

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} (1 + \Delta_{EM}) \left[\left(\frac{Im \lambda_{t}}{\lambda^{5}} X \right)^{2} + \left(\frac{Re \lambda_{t}}{\lambda^{5}} X + \frac{Re \lambda_{c}}{\lambda} (P_{c} + \delta P_{c,u}) \right)^{2} \right],$$
(6.3)

K+ incertezza maggiore (contributo da quark leggeri)

BR(K $\rightarrow \pi v v$)

modo piu` pulito per indagare contributi non-SM alle transizioni s->d

IFAE2016

UNIVERSITÀ DEGLI STUDI FIRENZE

Fisica dei K all' SPS

UNIVERSITÀ DEGLI STUDI FIRENZE

•**¿**'97-'01: ΝΑ48: ε'/ε

•⊱′02: NA48/1: K_S decadimenti rari

• * '03-'04: NA48/2: K[±] CP violation, semileptonici, QCD a bassa energia

• 107-'08: NA62: Lepton universality (usando l'apparato NA48)

• ***** '14 - NA62:

- 🗹 Installazione completata
- **Markov States and Sta**

Messa a punto e calibrazione dei sottorivelatori

Studio della qualita` dei dati e prestazioni dei sottorivelatori

"The Kaon factory"

5

Collaborazione NA62

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna(JINR), Fairfax, *Ferrara, Florence, Frascati*, Glasgow, Liverpool, Louvain-la-Neuve, Mainz, Merced, Moscow (INR), *Naples, Perugia, Pisa*, Prague, Protvino (IHEP), *Rome I, Rome II,* San Luis Potosi, SLAC, Sofia, TRIUMF, *Turin*, Vancouver (UBC)

Scopo principale:

misura di BR(K⁺→π⁺νν) con 10% di precisione:

O(100) eventi di segnale SM, in 2 anni di presa dati

★10¹³ decadimenti di K⁺

★accettanza al 10%

- reiezione del fondo> 10¹²
- fondo < 20%
- misura del fondo con precisione 10%

vasto programma di fisica, SM e BSM

$$\frac{BR(K^+ \to \pi^+ \nu \bar{\nu})}{BR(norm)}$$

fondo:

- altri decadimenti del K
- attivita` del fascio

Ingredienti necessari:

- ⋅ regione di decadimento lunga 60 m
 ⋅ ottime
 - * ricostruzione cinematica
 - ⊱ identificazione K,π,μ
 - & ermeticita` nella rivelazione di fotoni e muoni
 - 🗧 misure di tempi

$$\frac{(N_{\pi\nu\nu}^{data} - N_{\pi\nu\nu}^{bkg})}{(A_{\pi\nu\nu}\epsilon_{\pi\nu\nu}^{trig})} \frac{(A_{norm}\epsilon_{norm}^{trig})}{(N_{\pi\nu\nu}^{data} - N_{norm}^{bkg})}$$

incertezze sistematiche sull'accettanza e fondo possono essere ridotte scegliendo opportunamente il canale di normalizzazione

Roberta Volpe

7

UNIVERSITÀ DEGLI STUDI FIRENZE

K-TAG

Tracciatori: GTK e STRAW

Roberta Volpe

Sistemi di veto per fotoni e muoni

Roberta Volpe

IFAE2016

11

RICH (Ring Imaging CHerenkov)

Total Length 270m

maggiori dettagli nella presentazione di Riccardo Lollini

IFAE2016

specchi:

recipiente:

• raggio di curvatura: 34 m

• riflettivita` > 90%

Obiettivo:

- fornire trigger L0
- **∂** σ(t) < 100 ps
- >> per 15<p<35 GeV:
 - •⊱ efficienza ID pioni ~ 90%
 - mis-ID (muoni) ~ 1%

differenza tra il tempo medio di due gruppi di hit nello stesso anello Cherenkov

12

RICH (prestazioni)

UNIVERSITÀ DEGLI STUDI FIRENZE

Primo sguardo ai dati 2015

Roberta Volpe

IFAE2016

UNIVERSITÀ DEGLI STUDI FIRENZE

Primo sguardo ai dati 2015

• prestazioni dei singoli rivelatori misurate con i dati 2015 a bassa intensita`, risultano vicine agli obiettivi

UNIVERSITÀ DEGLI STUDI FIRENZE

 migliorie effettuate per alcuni sottorivelatori durante l'ultimo shutdown invernale

 Atti 2015: principalmente a bassa intensita` (analisi effetuate), ma verificato il funzionamento anche al 100% di intensita` (analisi in corso).

Roberta Volpe

UNIVERSITÀ DEGLI STUDI FIRENZE

Nota interna di NA62,

KOTO (JPARC) osservera` pochi $K_L \rightarrow \pi^0 v v$

KOTO2: ~ 100 $K_L \rightarrow \pi^0 \nu \nu$ (~2025)

Considerations for the design of an experiment to measure pronta tra pochi giorni BR($K_L \rightarrow \pi^0 v \bar{v}$) at the CERN SPS

A. Bradley, M.B. Brunetti, F. Bucci, A. Cassese, N. Doble, D. Di Filippo, E. Gamberini,
 L. Gatignon, A. Gianoli, E. Imbergamo, M. Lenti, S. Martellotti, A. Mazzolari, M. Moulson¹,
 I. Neri, F. Petrucci, P. Rubin, R. Volpe

KLEVER (KLong Experiment to detect VEry Rare decays), PRIN 2013-2016 (bando 2010-2011)

approccio complementare a KOTO (diverse energie)

sensitivita` competitiva

stessa infrastruttura ECN3

possibile riutilizzo del calorimetro di NA48/NA62

Fascio primario: protoni 400 GeV, bersaglio di Be, 10^{19} pot/yrFascio secondario: 5×10^{12} K_L decay/yr $p(K_L) = 90$ GeV

A62 , 10¹⁹ pot/yr 90 GeV

Roberta Volpe

16

Interazione p-Be

bersaglio lungo 40 cm, r=1mm

Sfida maggiore: stimare il contributo da neutroni e fotoni nel fascio secondario

Studio dell'interazione p-Be effettuata con GEANT4 e FLUKA

FLUKA da` migliore accordo con dati Atherton per particelle cariche

Unici dati disponibili a energie (400 GeV) e angoli (<1 mrad) rilevanti per KLEVER sono in Atherton et al. (1980) Solo particelle cariche sono state misurate

Per le particelle cariche usiamo la parametrizzazione da Atherton

$$\frac{d^2 N}{dp \, d\Omega} = A \left[\frac{B}{p_0} e^{-Bp/p_0} \right] \left[\frac{Cp^2}{\pi} e^{-C(p\theta)^2} \right]$$
$$\frac{d^2 N_{K_L}}{dp \, d\Omega} = \frac{1}{4} \cdot \frac{d^2 N_{K^+}}{dp \, d\Omega} + \frac{3}{4} \cdot \frac{d^2 N_{K^-}}{dp \, d\Omega}$$

Roberta Volpe

Sistema di collimatori (GEANT4)

Final

105 m

W

W

Defining

collimator

particelle secondarie generate con la

distribuzione di energia ottenuta

60 m

Absorber

Dump

15 m

collimator

Ir

protoni

2.4 mrad

spesso 1.8 cm

- •0.1-1% fotoni
- •80% neutroni

•80% KL

usando cristalli di tungsteno fotoni ad alta energia possono essere ridotti di un fattore 5 rispetto a tungsteno amorfo

IFAE2016

Sistema di collimatori (GEANT4)

Roberta Volpe

IFAE2016

UNIVERSITÀ DEGLI STUDI FIRENZE

Sistema di rivelatori

Selezione

Studi con "fast Monte Carlo"

- con efficienze parametrizzate
- assunzione: 2 clusters sono separati se la loro distanza e` > 6 cm
- KL distribuzione di energia Atherton
- apertura angolare 0.3 mrad
- 103 m (collimatore) < z(vtx) < 243 m (inizio del calorimetro)

<u>Selezione</u> (pensata per ridurre $K_L \rightarrow \pi^0 \pi^0$):

- 2 cluster nel LKr e niente altro
- 105 m< z(vtx) < 155 m (FV)
- distanza tra i cluster r > 35 cm
- $P_T(\gamma\gamma) > 0.12 \text{ GeV}$

Calorimetro LKr (simulazione GEANT4)

Fotoni che non vengono intercettati da alcun rivelatore (>100 mrad)

I fotoni con E < 200 MeV non verrebbero rivelati con alta efficienza,

per questo e`stato scelto il limite di 100 mrad

Roberta Volpe

Stima del fondo neutro

Conclusioni

• NA62 e` pronto per iniziare la presa dati di fisica a fine Aprile

Ci aspettiamo una misura di
Br(K⁺→π⁺vv) con incertezze al
10% nel 2018

E`stata investigata la fattibilita`
 di un nuovo esperimento per il
 decadimeno neutro all' SPS (presa
 dati dopo LHC LS3, 2026)

Krteček (Czech cartoon) fotografato a Praga durante NA62 meeting 2015

Grazie per l'attenzione

IFAE2016

Performance	Expected		
Kinematic rejection inefficiency	$10^{-3} \div 10^{-4}$	Decay	events / year
	102 103	$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ [SM]	45
Muon ID RICH inefficiency	$10^{-2} \div 10^{-3}$	$K^+ ightarrow \pi^+ \pi^0$	5
Pion ID RICH efficiency	> 90%	$K^+ \rightarrow \mu^+ \nu$	1
Positron ID RICH inefficiency	10 ⁻³	$K^+ \rightarrow \pi^+ \pi^- \pi^+$	< 1
Muon ID Calorimeter inefficiency	10-5	$K^+ ightarrow \pi^+ \pi^- e^+ \nu$ + other 3-track decays	< 1
Pion ID Calorimeter efficiency	> 90%	$K^+ ightarrow \pi^+ \pi^0 \gamma$ (IB)	1.5
Positron ID LKr inefficiency	10-2	$K^+ ightarrow \mu^+ u \gamma$ (IB)	0.5
Photon rejection inefficiency in I Kr	$10^{-5} (> 10 \text{ GeV})$	$K^+ ightarrow \mu^+(e^+) \pi^0 u$, others	negligible
Thotom rejection memciency in LKi	10 (>10 GeV)	Total background	< 10
Photon rejection inefficiency in LAV	$10^{-3} \div 10^{-4}$		
Photon rejection inefficiency in SAC	$10^{-2} \div 10^{-3}$		
Kaon ID efficiency in KTAG	95%		
Kaon – Pion mis-ID	<1%		

$$A_{\pi\nu\nu} = \epsilon_{KTAG} \cdot \epsilon_{GTK} \cdot \epsilon_{STRAW} \cdot \dots$$

Decay	Physics	Present limit (90% C.L.) / Result	NA62
$\pi^+\mu^+e^-$	LFV	1.3×10^{-11}	0.7×10^{-12}
$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	0.7×10^{-12}
$\pi^{-}\mu^{+}e^{+}$	LNV	5.0×10^{-10}	0.7×10^{-12}
$\pi^- e^+ e^+$	LNV	6.4×10^{-10}	2×10^{-12}
$\pi^{-}\mu^{+}\mu^{+}$	LNV	1.1×10^{-9}	0.4×10^{-12}
$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	4×10^{-12}
$e^- \nu \mu^+ \mu^+$	LNV	No data	10-12
$\pi^{+}X^{0}$	New Particle	$5.9 \times 10^{-11} m_{X^0} = 0$	10 ⁻¹²
$\pi^+\chi\chi$	New Particle	_	10-12
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10-11
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10-11
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10 ⁻¹²
$\mu^+ \nu_h, \nu_h \rightarrow \nu \gamma$	Heavy neutrino	Limits up to $m_{\nu_h} = 350 MeV$	
R _K	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better
$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁵ events
$\pi^{0}\pi^{0}e^{+}\nu$	χPT	66000 events	O(10 ⁶)
$\pi^0\pi^0\mu^+\nu$	χPT	-	O(10 ⁵)

KLEVER

KLEVER

Mode	BR	Generated	Accepted	ϵ	$BR \times \epsilon$
		$(\times 10^{6})$			
$\pi^{\pm}e^{\mp}v_e$	$(40.55 \pm 0.11)\%$	0.24	18	7.4×10^{-5}	3.0×10^{-5}
$\pi^{\pm}\mu^{\mp}\nu_{\mu}$	$(27.04 \pm 0.07)\%$	44.8	23	5.1×10^{-7}	1.4×10^{-7}
$\pi^+\pi^-\pi^0$	$(12.54 \pm 0.05)\%$	153	11	7.2×10^{-8}	9.0×10^{-9}
$\pi^+\pi^-$	$(1.967 \pm 0.010) \times 10^{-3}$	0.73	16	2.2×10^{-5}	4.3×10^{-8}

Decay mode	Decay generator
$K_L \to \pi^- e^+ \nu$	KL3 Decayer
$K_L \to \pi^+ e^- \nu$	KL3 Decayer
$K_L \to \pi^- \mu^+ \nu$	KL3 Decayer
$K_L \to \pi^+ \mu^- \nu$	KL3 Decayer
$K_L \to \pi^0 \pi^0 \pi^0$	phase space
$K_L \to \pi^0 \pi^+ \pi^-$	phase space
$K_L \rightarrow \gamma \gamma$	phase space
$K_L \to \pi^0 \nu \bar{\nu}$	phase space

	Tungsten (W)	Indium Antimonide (InSb)
Atomic number Z	74	
Density ρ [g/cm ³]	19.3	5.78
Nuclear int. length λ_{int} [cm]	9.95	
Nuclear coll. length λ_{coll} [cm]	5.72	
Moliere radius R _m [cm]	0.93	
Radiation length X ₀ [cm]	0.35	

KLEVER

UNIVERSITÀ DEGLI STUDI FIRENZE

Roberta Volpe

IFAE2016