

IFAE 2016 Genova, 31/3

Fenomenologia dei neutrini sterili leggeri

Antonio Palazzo

Università di Bari & INFN

Outline

Introduzione

Anomalie negli esperimenti short-baseline: una review critica

Neutrini sterili e CPV: una nuova sfida per gli esperimenti long-baseline

Conclusioni

Introduzione

Neutrini Sterili

Molte estensioni del Modello Standard comportano singoletti del suo gruppo di gauge

Neutrini sterili studiati in diversi contesti:

- GUT, modelli see-saw, leptogenesi
- TeV, produzione a LHC e impatto su EWPOs
- keV, candidati di dark matter
- eV, anomalie negli esperimenti di oscillazione SBL
 - sub-eV, reattori LBL e neutrini solari

Neutrini sterili leggeri

Grande interesse nella comunità scientifica

arXiv:1204.5379v1 [hep-ph] 18 Apr 2012

Light Sterile Neutrinos: A White Paper

K. N. Abazajian^a,¹ M. A. Acero,² S. K. Agarwalla,³ A. A. Aguilar-Arevalo,² C. H. Albright,^{4,5} S. Antusch,⁶ C. A. Argüelles,⁷ A. B. Balantekin,⁸ G. Barenboim^a,³ V. Barger,⁸ P. Bernardini,⁹ F. Bezrukov,¹⁰ O. E. Bjaelde,¹¹ S. A. Bogacz,¹² N. S. Bowden,¹³ A. Boyarsky,¹⁴ A. Bravar,¹⁵ D. Bravo Berguño,¹⁶ S. J. Brice,⁵ A. D. Bross,⁵ B. Caccianiga,¹⁷ F. Cavanna,^{18, 19} E. J. Chun,²⁰ B. T. Cleveland,²¹ A. P. Collin,²² P. Coloma,¹⁶ J. M. Conrad,²³ M. Cribier,²² A. S. Cucoanes,²⁴ J. C. D'Olivo,² S. Das,²⁵ A. de Gouvêa,²⁶ A. V. Derbin,²⁷ R. Dharmapalan,²⁸ J. S. Diaz,²⁹ X. J. Ding,¹⁶ Z. Djurcic,³⁰ A. Donini,^{31,3} D. Duchesneau,³² H. Ejiri,³³ S. R. Elliott,³⁴
 D. J. Ernst,³⁵ A. Esmaili,³⁶ J. J. Evans,^{37,38} E. Fernandez-Martinez,³⁹ E. Figueroa-Feliciano,²³ B. T. Fleming^a, ¹⁸ J. A. Formaggio^a, ²³ D. Franco, ⁴⁰ J. Gaffiot, ²² R. Gandhi, ⁴¹ Y. Gao, ⁴² G. T. Garvev, ³⁴ V. N. Gavrin, ⁴³ P. Ghoshal, ⁴¹ D. Gibin, ⁴⁴ C. Giunti, ⁴⁵ S. N. Gninenko, ⁴³ V. V. Gorbachev,⁴³ D. S. Gorbunov,⁴³ R. Guenette,¹⁸ A. Guglielmi,⁴⁴ F. Halzen,^{46,8} J. Hamann,¹¹ S. Hannestad,¹¹ W. Haxton,^{47,48} K. M. Heeger,⁸ R. Henning,^{49,50} P. Hernandez,³ P. Huber^b, ¹⁶ W. Huelsnitz, ^{34,51} A. Ianni, ⁵² T. V. Ibragimova, ⁴³ Y. Karadzhov, ¹⁵ G. Karagiorgi, ⁵³ G. Keefer,¹³ Y. D. Kim,⁵⁴ J. Kopp^a,⁵ V. N. Kornoukhov,⁵⁵ A. Kusenko,^{56,57} P. Kyberd,⁵⁸ P. Langacker,⁵⁹ Th. Lasserre^a,^{22,40} M. Laveder,⁶⁰ A. Letourneau,²² D. Lhuillier,²² Y. F. Li,⁶¹ M. Lindner,⁶² J. M. Link^b,¹⁶ B. L. Littlejohn,⁸ P. Lombardi,¹⁷ K. Long,⁶³ J. Lopez-Pavon,⁶⁴ W. C. Louis^a,³⁴ L. Ludhova,¹⁷ J. D. Lykken,⁵ P. A. N. Machado,^{65,66} M. Maltoni,³¹ W. A. Mann,⁶⁷ D. Marfatia,⁶⁸ C. Mariani,^{53,16} V. A. Matveev,^{43,69} N. E. Mavromatos,^{70,39} A. Melchiorri,⁷¹ D. Meloni,⁷² O. Mena,³ G. Mention,²² A. Merle,⁷³ E. Meroni,¹⁷ M. Mezzetto,⁴⁴ G. B. Mills,³⁴ D. Minic,¹⁶ L. Miramonti,¹⁷ D. Mohapatra,¹⁶ R. N. Mohapatra,⁵¹ C. Montanari,⁷⁴ Y. Mori, 75 Th. A. Mueller, 76 H. P. Mumm, 77 V. Muratova, 27 A. E. Nelson, 78 J. S. Nico, 77 E. Noah,¹⁵ J. Nowak,⁷⁹ O. Yu. Smirnov,⁶⁹ M. Obolensky,⁴⁰ S. Pakvasa,⁸⁰ O. Palamara,^{18,52} M. Pallavicini,⁸¹ S. Pascoli,⁸² L. Patrizii,⁸³ Z. Pavlovic,³⁴ O. L. G. Peres,³⁶ H. Pessard,³² F. Pietropaolo,⁴⁴ M. L. Pitt,¹⁶ M. Popovic,⁵ J. Pradler,⁸⁴ G. Ranucci,¹⁷ H. Ray,⁸⁵ S. Razzaque,⁸⁶ B. Rebel,⁵ R. G. H. Robertson,^{87,78} W. Rodejohann^a,⁶² S. D. Rountree,¹⁶ C. Rubbia,^{39,52} O. Ruchayskiy,³⁹ P. R. Sala,¹⁷ K. Scholberg,⁸⁸ T. Schwetz^a,⁶² M. H. Shaevitz,⁵³ M. Shaposhnikov,⁸⁹ R. Shrock,⁹⁰ S. Simone,⁹¹ M. Skorokhvatov,⁹² M. Sorel,³ A. Sousa,⁹³ D. N. Spergel,⁹⁴ J. Spitz,²³ L. Stanco,⁴⁴ I. Stancu,²⁸ A. Suzuki,⁹⁵ T. Takeuchi,¹⁶ I. Tamborra,⁹⁶ J. Tang,^{97,98} G. Testera,⁸¹ X. C. Tian,⁹⁹ A. Tonazzo,⁴⁰ C. D. Tunnell,¹⁰⁰ R. G. Van de Water,³⁴ L. Verde, ¹⁰¹ E. P. Veretenkin, ⁴³ C. Vignoli, ⁵² M. Vivier, ²² R. B. Vogelaar, ¹⁶ M. O. Wascko, ⁶³ J. F. Wilkerson,^{49,102} W. Winter,⁹⁷ Y. Y. Y. Wong^a,²⁵ T. T. Yanagida,⁵⁷ O. Yasuda,¹⁰³ M. Yeh,¹⁰⁴ F. Yermia,²⁴ Z. W. Yokley,¹⁶ G. P. Zeller,⁵ L. Zhan,⁶¹ and H. Zhang⁶²

¹University of California, Irvine

²Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México

³Instituto de Fisica Corpuscular, CSIC and Universidad de Valencia

⁴Northern Illinois University

⁵Fermi National Accelerator Laboratory

⁶University of Basel

^aSection editor ^bEditor and corresponding author (pahuber@vt.edu and jmlink@vt.edu)

Anomalie agli esperimenti short-baseline: una review critica

Le anomalie agli acceleratori SBL (apparizione di v_e in un fascio di v_{μ})

Anomalie dei reattori e del gallio

(sparizione di v_e)

Mention et al. arXiv:1101:2755 [hep-ex]

SAGE coll., PRC 73 (2006) 045805

Entrambe sono discrepanze nel rate totale

Sistematici ignoti potrebbero essere responsabili

Nessuna sparizione SBL di ν_{μ}

Solo limiti superiori (sino ad ora)

È l'ipotesi del neutrino sterile in grado di spiegare simultaneamente tutte le osservazioni effettuate nei tre canali?

Come introdurre un neutrino sterile

Tensione apparizione/sparizione

arXiv:1107.1452

$$\sin^2 2\theta_{e\mu} \simeq \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu} \simeq 4|U_{e4}|^2 |U_{\mu4}|^2$$

Un problema "indecidibile"

Apparizione e sparizione compatibili solo a livello 2σ

Tuttavia, la loro combinazione migliora di ben 6σ il fit rispetto al caso 3-flavor standard

Difficile prendere una decisione sui neutrini sterili !

Solo nuovi e più sensibili esperimenti potranno farlo ...

Figure from Giunti & Zavanin, arXiv:1508:03172

Neutrini sterili e CPV: una nuova sfida per gli esperimenti long-baseline

Matrice di mixing nello schema 3+1

$$U = \tilde{R}_{34} R_{24} \tilde{R}_{14} R_{23} \tilde{R}_{13} R_{12}$$

$$R_{ij} = \begin{bmatrix} c_{ij} & s_{ij} \\ -s_{ij} & c_{ij} \end{bmatrix} \qquad \tilde{R}_{ij} = \begin{bmatrix} c_{ij} & \tilde{s}_{ij} \\ -\tilde{s}_{ij}^* & c_{ij} \end{bmatrix} \qquad \begin{array}{c} s_{ij} = \sin \theta_{ij} \\ c_{ij} = \cos \theta_{ij} \\ \tilde{s}_{ij} = s_{ij} e^{-i\delta_{ij}} \end{array}$$

$$\begin{array}{ccc} 3_{V} & \left\{ \begin{matrix} 3 \text{ angoli di mixing} \\ 1 \text{ fase di Dirac} \\ 2 \text{ fasi di Majorana} \end{matrix} \right. \begin{array}{c} 3+1 \\ 3 \\ \end{matrix} \right. \left\{ \begin{matrix} 6 \\ 3 \\ 3 \end{matrix} \right. \begin{array}{c} 3+N \\ 3 \\ \end{matrix} \right\} \left\{ \begin{matrix} 3+3N \\ 1+2N \\ 2+N \end{matrix} \right\}$$

In generale abbiamo più sorgenti di CPV

Una limitazione intrinseca degli SBL

Agli SBL le oscillazioni atm/sol sono trascurabili

Impossibile osservare fenomeni di interferenza tra la nuova frequenza ($\Delta_{14} \sim 1$) e le frequenze atm/sol

Questo è rilevante perché abbiamo bisogno di osservare tali fenomeni per misurare le nuove fasi di CP indotte dagli stati sterili

Gli esperimenti long-baseline (LBL) ci vengono incontro

Esperimenti LBL: T2K & NOvA

Probabilità di transizione in 3-flavor

(come misuriamo δ)

$$P^{3\nu}_{\nu_{\mu} \to \nu_{e}} = P^{\text{ATM}} + P^{\text{SOL}} + P^{\text{INT}}$$

nel vuoto:

$$P^{\text{ATM}} = 4s_{23}^2 s_{13}^2 \sin^2 \Delta$$

$$P^{\text{SOL}} = 4c_{12}^2 c_{23}^2 s_{12}^2 (\alpha \Delta)^2$$

$$P^{\text{INT}} = 8s_{23}s_{13}c_{12}c_{23}s_{12}(\alpha \Delta) \sin \Delta \cos(\Delta + \delta_{CP}).$$

$$\Delta = \frac{\Delta m_{31}^2 L}{4E}, \qquad \alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \qquad \qquad \Delta \sim \pi/2$$
$$\alpha \sim 0.03$$

PATM leading $\rightarrow \theta_{13} > 0$

PINT subleading \rightarrow dipendenza da δ

P^{SOL} trascurabile

Gli effetti di materia rompono la degenerazione tra NH & IH

Prime indicazioni su CPV & MH

A.P., arXiv: 1509.03148 to appear in PLB

- Lieve preferenza per CPV (90% C.L.)
- IH leggermente sfavorita rispetto a NH (90% C.L.)

Probabilità di transizione nello schema 3+1

- Δ_{14} >> 1 : oscillazioni veloci sono mediate
- Informazione su Δm_{14}^2 persa (differentemente dagli SBL)
- Differentemente da SBL, interferenza di Δ_{14} & Δ_{13} osservabile

$$P_{\mu e}^{4\nu} \simeq P^{\text{ATM}} + P_{\text{I}}^{\text{INT}} + P_{\text{II}}^{\text{INT}}$$

$$\begin{cases} \mathbf{S}_{13} \sim \mathbf{S}_{14} \sim \mathbf{S}_{24} \sim 0.15 \sim \varepsilon \\ \alpha = \delta \mathbf{m}^2 / \Delta \mathbf{m}^2 \sim 0.03 \sim \varepsilon^2 \end{cases}$$

$$\begin{cases} P^{\text{ATM}} \simeq 4s_{23}^2 s_{13}^2 \sin^2 \Delta & \mathbf{O}(\varepsilon^2) \\ P_{\text{I}}^{\text{INT}} \simeq 8s_{13} s_{23} c_{23} s_{12} c_{12}(\alpha \Delta) \sin \Delta \cos(\Delta + \delta_{13}) & \mathbf{O}(\varepsilon^3) \\ P_{\text{II}}^{\text{INT}} \simeq 4s_{14} s_{24} s_{13} s_{23} \sin \Delta \sin(\Delta + \delta_{13} - \delta_{14}) & \mathbf{O}(\varepsilon^3) \end{cases}$$

Sensibilità alla nuova fase di CP δ_{14}

Un nuovo termine di interferenza nello schema 3+1

 3ν limit

Impatto sul numero di eventi attesi

Figura da Agarwalla, Chatterjee, Dasgupta, A.P., JHEP 02 (2016) 111

- Per $\delta_{14} = \frac{1}{\pi}/2$ perfetto accordo tra LBL & Reattori
- Quindi la preferenza per NH svanisce nello schema 3+1
- Neutrini sterili -> fragilità dei LBL nella ricerca della MH? ...

T2K+NOvA: Potenziale di scoperta della MH

Sostanziale deterioramento nello schema 3+1

DUNE: Potenziale di scoperta della MH

Agarwalla, Chatterjee, A.P., arXiv: 1603.03759

Deterioramento ma sensibilità a livello di 4 σ preservata

Fasi di CP: stato presente (dati esistenti)

- Simile sensibilità a $\delta_{13} e \, \delta_{14}$
- Valori di best fit: $\delta_{13} \sim \delta_{14} \sim -\pi/2$
- Questa informazione non può essere estratta dagli SBL!

Quale potrebbe essere lo stato futuro?

Agarwalla, Chatterjee, A.P., arXiv: 1603.03759

T2K+NOVA: CPV discovery potential

Sostanziale deterioramento nello schema 3+1

DUNE: CPV discovery potential

- Sensibilità alla CPV δ_{13} -indotta ridotta nello schema 3+1
- Potenziale sensibilità anche alle nuove fasi $\delta_{14} e \delta_{34}$
- Gerarchia nelle sensibilità: δ_{13} > δ_{14} > δ_{34} per θ_{14} = θ_{24} = θ_{34} = θ_{34} = θ_{90}

Conclusioni

- Diverse anomalie osservate agli esperimenti SBL suggeriscono l'esistenza di neutrini sterili leggeri
- L'interpretazione delle anomalie non è chiara
- Nuovi esperimenti SBL sono necessari. Essi daranno presto nuove preziose informazioni
- I neutrini sterili sono sorgenti addizionali di CPV
- Gli esperimenti LBL (presenti e futuri) offrono l'opportunità di studiare le nuove fasi di CPV

Stiamo all'erta in vista di nuove scoperte!

Gianini & Luzzati, Omaggio a Rossini, L'italiana in Algeri (1968)

31/03/16

Back up slides

New-generation detectors confirm deficit

Daya Bay @ Neutrino 2014 & ICHEP 2014

Definitive results appeared 3 weeks ago on arXiv:1508.04233

However, the same detectors give us a warning...

Understanding of rea. spectrum is incomplete

Shoulder at 4-6 MeV observed in all the three experiments Identical at Near & Far sites: not imputable to new osc. physics θ_{13} extraction is unaffected (based on near/far comparison)

Discrepancy under active investigation

- Systematics in reactor spectra not entirely under control
- Dissimilar results with two different nuclear databases
- Normalization & spectral issues not necessarily related
- New SBL experiments needed to shed light on both issues

Other potential windows onto sterile vs

What solar exp. have to say on vss?

• Solar + θ_{13} reactors:

 $\sin^2 \theta_{14} < 0.04 \quad (90\% \text{ C.L.})$

- Bound indep. of reactor fluxes (KamLAND only shape)
- It constitutes the only robust information on $|U_{e4}|^2$

Information from atmospheric v in IceCube

Smoking gun: Dip at E ~ TeV due to MSW resonance

Nunokawa, Peres, Zuchanovich-Funchal PLB 562, 279 (2003) $\Delta m^2_{41} = 1 \ {
m eV}^2$

Figures from Esmaili & Smirnov JHEP 1312, 014 (2013)

Impact of a light sterile neutrino in β -decay

$$m_{\beta\beta} = \left| \sum U_{ei}^2 m_i \right| = \left| c_{12}^2 c_{13}^2 c_{14}^2 m_1 + s_{12}^2 c_{13}^2 c_{14}^2 m_2 e^{i\alpha} + s_{13}^2 c_{14}^2 m_3 e^{i\beta} + s_{14}^2 m_4 e^{i\gamma} \right|$$

What cosmology tells us?

Planck (2015)

Small room for extra relativistic content

- A "standard" eV sterile neutrino fully thermalizes ($\Delta N_{eff} = 1$)
- $\Delta N_{eff} = 0$ requires a mechanism that prevents thermalization
- Several possibilities (lepton asymmetry, self-interactions, ...)

The 3-flavor scheme

Fitting the reactor anomaly with sterile vs

Mention et al., PRD 83 073006 (2011)

$$\Delta_{ij} = \frac{\Delta m^{2}_{ij} L}{4E} \begin{bmatrix} A_{\alpha\beta}^{CP} \equiv P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}) \\ A_{\alpha\beta}^{CP} = -16J_{\alpha\beta}^{12} \sin \Delta_{21} \sin \Delta_{13} \sin \Delta_{32} \end{bmatrix}$$

$$J_{\alpha\beta}^{ij} \equiv \operatorname{Im} \left[U_{\alpha i} U_{\beta j} U_{\alpha j}^* U_{\beta i}^* \right] \equiv J \sum_{\gamma = e, \mu, \tau} \epsilon_{\alpha\beta\gamma} \sum_{k=1,2,3} \epsilon_{ijk}$$

J is parameterization independent (Jarlskog invariant)

In the standard parameterization:

 $J = \frac{1}{8}\sin 2\theta_{12}\sin 2\theta_{23}\sin 2\theta_{13}\cos \theta_{13}\sin \delta$

Conditions for CPV:
- No degenerate
$$(v_i, v_j)$$
 /
- No $\theta_{ij} = (0, \pi/2)$ /
- $\delta \neq (0, \pi)$?

$$A_{\alpha\beta}^{\rm CP} \equiv P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

$$\begin{split} A^{\rm CP}_{\alpha\beta} &= -16J^{12}_{\alpha\beta}\sin\Delta_{21}\sin\Delta_{13}\sin\Delta_{32} \\ \text{if} \quad \Delta \equiv \Delta_{13} \simeq \Delta_{23} \gg 1 \\ \text{Osc. averaged out by finite E resol.} \quad \rightarrow \quad \langle \sin^2 \Delta \rangle = 1/2 \\ \text{It can be:} \quad A^{\rm CP}_{\alpha\beta} \neq 0 \quad \text{(if sin } \delta \neq \text{o}) \end{split}$$

The bottom line is that if one of the three v_i is ∞ far from the other two ones this does not erase CPV (relevant for the 4v case)

Numerical examples of 4v probability

The fast oscillations get averaged out due to the finite energy resolution Different line styles \Leftrightarrow Different values of δ_{14}

The modifications induced by δ_{14} are as large as those induced by the standard CP-phase δ_{13} Pure Conversion Probability : NH, $s_{14}^2 = s_{24}^2 = 0.025$ the standard CP-phase δ_{13} Pure Conversion Probability analog and conclusions for NOvA Antonio Palazzo, UNIBA & INFN $\delta_{15} = \pi$ $\delta_{15} = -\frac{\pi}{2}$

- LBL combination more stable than T2K alone