Decadimenti rari dei mesoni B a LHCb

Marianna Fontana

INFN (Cagliari)

16 Marzo 2016

IFAE 2016, Genova

M. Fontana (INFN)

Sommario

- Introduzione
- $B_s^0 \rightarrow \mu^+ \mu^-$
- $B^0 \to K^* \mu^+ \mu^-$
- $B_s^0 \to \phi \mu^+ \mu^-$
- $B^+ \rightarrow \pi^+ \mu^+ \mu^-$
- Universalità leptonica
- $B^0 \to K^* \chi$
- $B^0_{(s)} \to J/\psi \gamma$
- Conclusioni

Nuova fisica

- La ricerca di nuova fisica (NF) può avvenire in due modi:
 - Misure dirette: produzione di nuove particelle "reali", identificate direttamente attraverso i prodotti di decadimento
 - Misure indirette: produzione di particelle "virtuali", che appaiono in processi a loop, come ad esempio Flavour Changing Neutral Currents (FCNC)
- Le due ricerche vengono effettuate in modo complementare da esperimenti "multipurpose" (ATLAS, CMS) o attraverso esperimenti ad alta precisione (LHCb)
- I risultati di LHCb presentati sono stati ottenuti con il campione di dati del Run 1 (3 fb⁻¹)

Introduzione

Decadimenti rari

 I decadimenti rari del tipo FCNC sono vietati nel Modello Standard a livello albero e possono avvenire solamente attraverso diagrammi a loop

Diagrammi del MS per i processi $b \rightarrow s \mu^+ \mu^-$

• Il contributo di NF può apparire come una correzione al MS attraverso nuove particelle pesanti

 La segnatura avviene tramite un innalzamento dei rapporti di diramazione o una modifica delle distribuzioni angolari

Introduzione

Decadimenti rari nella teoria di campo efficace

L'Hamiltoniana efficace per i processi FCNC può essere scritta come

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i (C_i \mathcal{O}_i + C_i' \mathcal{O}_i')$$

- I possibili effetti di NF vengono descritti come:
 - variazioni nei coefficienti di Wilson C_i
 - nuovi operatori locali O_i

Prima osservazione di $B^0_s o \mu^+ \mu^-$ [Nature 522 (2015) 68-72]

 $B_s^0 \to \mu^+ \mu^-$

- Decadimento puramente leptonico, soppresso per elicità \rightarrow predizione accurata nel MS
- Sensibile agli operatori C₁₀, C_S, C_P

Analisi combinata di LHCb e CMS

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= 2.8^{+0.7}_{-0.6} \cdot 10^{-9} \\ \mathrm{MS:} \left(3.66 \pm 0.23 \right) \cdot 10^{-9} \end{split}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = 3.9^{+1.6}_{-1.4} \cdot 10^{-10}$$

MS: $(1.06 \pm 0.09) \cdot 10^{-10}$

 $6.2 \ \sigma \rightarrow \text{prima osservazione}$ [compatibile col MS a $1.2 \ \sigma$]

 $3.0 \ \sigma \rightarrow \text{prima evidenza}$ [compatibile col MS a $2.2 \ \sigma$]

INFN LHCP

[MS: Bobeth et al. PRL 112 (2014) 101801]

$$B^0 \to K^* \mu^+ \mu^-$$

Analisi angolare di $B^0 o K^* \mu^+ \mu^-$ [JHEP 02 (2016) 104]

Transizione $b \rightarrow s$ con un mesone vettore nello stato finale

Il decadimento può essere completamente descritto attraverso $q^2 = m_{\mu\mu}^2$ e tre angoli di elicità $\overrightarrow{\Omega} = (\theta_l, \theta_K, \phi)$

$$\begin{split} \frac{1}{d(\Gamma+\overline{\Gamma})/dq^2} \frac{d^3(\Gamma+\overline{\Gamma})}{d\overrightarrow{\Omega}} &= \frac{9}{32\pi} [\frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K) + \frac{1}{4}(1-F_L)\sin^2\theta_K\cos^2\theta_l \\ &- F_L\cos^2\theta_K\cos^2\theta_l + S_3\sin^2\theta_K\sin^2\theta_l\cos 2\phi \\ &+ S_4\sin 2\theta_K\sin 2\theta_l\cos\phi + S_5\sin^2\theta_K\sin\theta_l\cos\phi \\ &+ \frac{4}{3}\mathcal{A}_{FB}\sin^2\theta_K\cos\theta_l + S_7\sin 2\theta_K\sin\theta_l\sin\phi \\ &+ S_8\sin 2\theta_K\sin 2\theta_l\sin\phi + S_9\sin^2\theta_K\cos^2\theta_l\sin 2\phi] \end{split}$$

- F_L : frazione della polarizzazione longitudinale del K^* \mathcal{A}_{FB} : asimmetria forward-backward del sistema dei due μ
- Le osservabili dipendono da C_7 , C_9 , C_{10} e dai fattori di forma adronici

Decadimenti rari

$B^0 \to K^* \mu^+ \mu^-$

Analisi angolare di $B^0 o K^* \mu^+ \mu^-$ [JHEP 02 (2016) 104]

- Campione dopo la selezione con $N_{K^*\mu\mu} = 2398 \pm 57$ eventi
- Fit simultaneo della massa e delle osservabili angolari in bin di q^2
- Fit in due dimensioni di $m_{K\pi\mu\mu}$ e $m_{K\pi}$ per considerare il fondo in onda S

$B^0 \to K^* \mu^+ \mu^-$

Analisi angolare di $B^0 o K^* \mu^+ \mu^-$ [JHEP 02 (2016) 104]

* Risultati delle osservabili in bin di q^2

- Generale accordo con il MS
- Piccole tensioni in \mathcal{A}_{FB}
- Qualche tensione in S₅

$$B^0 \to K^* \mu^+ \mu^-$$

Analisi angolare di $B^0 o K^* \mu^+ \mu^-$ [JHEP 02 (2016) 104]

È possibile costruire delle osservabili indipendenti dai fattori di forma

- Nei bin di q^2 [4.0, 6.0] e [6.0, 8.0] GeV $^2/c^4$ deviazioni locali di $2.8~\sigma$ e $3.0~\sigma$
- Risultati compatibili con l'analisi del 2011 [PRL 111 (2013) 191801]
- Globalmente l'analisi devia dal MS di $3.4~\sigma$
- Se le anomalie osservate sono reali allora ci si aspetta di osservarle in altri decadimenti b
 ightarrow s

$B_s^0 \to \phi \mu^+ \mu^-$

Il decadimento $B^0_s o \phi(K^+K^-)\mu^+\mu^-$ [JHEP 09 (2015) 179]

- Analogo al $B^0 \to K^* \mu^+ \mu^-$ nel caso del mesone B^0_s
- Le distribuzioni angolari (F_L , $S_{3,4,7}$ e $A_{5,6,8,9}$) sono in accordo col MS
- La frazione di decadimento differenziale nel bin $1 < q^2 < 6~{\rm GeV}^2/c^4$ è al di sotto di circa 3 σ rispetto al MS
- Lo stesso comportamento è presente in altri canali $b \to s \mu^+ \mu^-$ studiati a LHCb [JHEP 08 (2013) 131] [JHEP 06 (2014) 133]

$$B^+ \to \pi^+ \mu^+ \mu^-$$

Il decadimento $B^+ o \pi^+ \mu^+ \mu^-$ [JHEP 10 (2015) 034]

- I processi $b \rightarrow d\mu\mu$ sono soppressi rispetto a $b \rightarrow s\mu\mu$ poichè $|\frac{V_{td}}{V_{ts}}|^2 \sim \frac{1}{25}$
- * $\mathcal{B}(q^2)$ è in accordo ma un po' al di sotto del MS
- $\mathcal{B} = (1.83 \pm 0.24 \pm 0.05) \times 10^{-8}$
- $\mathcal{A}_{CP} = -0.11 \pm 0.12 \pm 0.01$
- $\frac{V_{td}}{V_{ts}} = 0.24^{+0.05}_{-0.04}$

[PRD 89 (2014) 094021] [PRD 92 (2015) 074020] [PRL 115 (2015) 152002]

Interpretazioni dei risultati

- Includendo i risultati da 6 esperimenti (88 misure) si effettua un fit globale ai coefficienti di Wilson
- Il miglior fit induce una deviazione negativa di C_9 con una significanza di $3\text{--}4~\sigma$
- Interpretazione:
 - Nuova Fisica: Z', Leptoquarks
 - MS: contributi adronici non del tutto compresi

Una comprensione completa richiede più dati e del lavoro teorico

Universalità leptonica

Test di universalità leptonica

- Nel MS i leptoni si accoppiano a W^{\pm} e Z^0
- Questo può essere testato nel rapporto di decadimenti semileptonici
- Le incertezze adroniche si semplificano nel rapporto

muoni/elettroni

$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}$$
$$= 0.745^{+0.090}_{-0.074} \pm 0.036$$

Compatibile col MS a $2.6~\sigma$

Vedi talk di F. Lionetto nella sessione dottorandi

tau/muoni

$$R_{D^*} = \frac{\mathcal{B}(B^0 \to D^{*+}\tau^-\bar{\nu})}{\mathcal{B}(B^0 \to D^{*+}\tau^-\bar{\nu})} = 0.336 \pm 0.027 \pm 0.030$$

La combinazione si discosta di $3.9~\sigma$ dal MS

Decadimenti rari

M. Fontana (INFN)

$B^0 \to K^* \chi$

Ricerca di materia oscura in $B^0 \to K^*(K^+\pi^-)\chi(\mu^+\mu^-)$

- La materia oscura (DM) dovrebbe interagire debolmente con le particelle conosciute
- Gli accoppiamenti potrebbero emergere da un mixing tra DM e particelle del MS neutre (Z, H , $\gamma,\,\nu)$
- Molte teorie predicono che DM nella scala del TeV interagisca con bosoni nella scala del GeV

- $m(\chi)$ nell'intervallo [214, 4350] MeV
- Ricerca del vertice di χ prompt o secondari
- Veto su ω , J/ψ , $\psi(2S) \in \psi(3770)$
- Nessun eccesso osservato \rightarrow upper limit al 95%

$B^0_{(s)} \to J/\psi\gamma$

Ricerca del decadimento $B^0_{(s)} o J/\psi\gamma$ [PRD 92 (2015) 112002]

• Test per diverse predizioni teoriche in QCD [$2 \cdot 10^{-7} - 5 \cdot 10^{-6}$]

• Il decadimento $B^0 \to K^* \gamma$ è utilizzato per validare la selezione e studiare le sistematiche

$$\begin{split} \mathcal{B}(B^0_s \to J\psi\gamma) < 7.3~(8.7) \cdot 10^{-6} ~\mathrm{at}~90\%~(95\%)~\mathsf{CL} \\ \mathcal{B}(B^0 \to J\psi\gamma) < 1.5~(2.0) \cdot 10^{-6} ~\mathrm{at}~90\%~(95\%)~\mathsf{CL} \end{split}$$

- Il limite del B⁰ è in accordo con i risultati di BaBar [PRD 70 (2004) 091104]
- Il limite del B_s^0 è determinato per la prima volta

M. Fontana (INFN)

Conclusioni

- I decadimenti rari costituiscono un eccellente palscoscenico per cercare fisica oltre il Modello Standard
- Molte delle misure presentate sono in buon accordo col MS e pongono dei limiti ai modelli di NF
- Le discrepanze osservate in alcune osservabili richiedono necessariamente una maggiore statistica ed una riduzione degli errori teorici
- Il Run 2 di LHC è appena iniziato...

...restate sintonizzati!!

Backup

Backup

Estrapolazioni

Туре	Observable	Current precision	LHCb 2018	Upgrade (50 fb ⁻¹)	Theory uncertainty
B_s^0 mixing	$\begin{array}{l} 2\beta_s(B^0_s\to J/\psi\phi)\\ 2\beta_s(B^0_s\to J/\psif_0(980))\\ a^s_{\rm sl} \end{array}$	0.10 [139] 0.17 [219] 6.4 × 10 ⁻³ [44]	0.025 0.045 0.6×10^{-3}	$\begin{matrix} 0.008 \\ 0.014 \\ 0.2 \times 10^{-3} \end{matrix}$	~ 0.003 ~ 0.01 0.03×10^{-3}
Gluonic penguins	$\begin{array}{l} 2\beta_{s}^{\mathrm{eff}}(B_{s}^{0}\rightarrow\phi\phi)\\ 2\beta_{s}^{\mathrm{eff}}(B_{s}^{0}\rightarrow K^{*0}\overline{K}^{*0})\\ 2\beta^{\mathrm{eff}}(B^{0}\rightarrow\phi K_{S}^{0}) \end{array}$	- - 0.17 [44]	0.17 0.13 0.30	0.03 0.02 0.05	0.02 < 0.02 0.02
Right-handed currents	$\begin{array}{l} 2\beta_s^{\rm eff}(B^0_s \to \phi \gamma) \\ \tau^{\rm eff}(B^0_s \to \phi \gamma) / \tau_{B^0_s} \end{array}$	-	0.09 5 %	0.02 1 %	<0.01 0.2 %
Electroweak penguins	$\begin{split} S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \mathrm{GeV}^2/c^4) \\ s_0 A_{\mathrm{FB}}(B^0 \to K^{*0} \mu^+ \mu^-) \\ A_1(K \mu^+ \mu^-; 1 < q^2 < 6 \mathrm{GeV}^2/c^4) \\ \mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)/\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) \end{split}$	0.08 [68] 25 % [68] 0.25 [77] 25 % [86]	0.025 6 % 0.08 8 %	0.008 2 % 0.025 2.5 %	0.02 7 % ~0.02 ~10 %
Higgs penguins	$ \begin{split} \mathcal{B}(B^0_s \rightarrow \mu^+ \mu^-) \\ \mathcal{B}(B^0 \rightarrow \mu^+ \mu^-) / \mathcal{B}(B^0_s \rightarrow \mu^+ \mu^-) \end{split} $	1.5 × 10 ⁻⁹ [13] -	$\begin{array}{c} 0.5 \times 10^{-9} \\ \sim 100 \ \% \end{array}$		0.3×10^{-9} ~5 %
Unitarity triangle angles	$\begin{split} &\gamma(B \to D^{(*)}K^{(*)}) \\ &\gamma(B_s^0 \to D_s K) \\ &\beta(B^0 \to J/\psi K_{\rm S}^0) \end{split}$	~10–12° [252, 266] – 0.8° [44]	4° 11° 0.6°	0.9° 2.0° 0.2°	negligible negligible negligible
Charm CP violation	A_{Γ} $\Delta \mathcal{A}_{CP}$	2.3×10^{-3} [44] 2.1×10^{-3} [18]	$\begin{array}{c} 0.40 \times 10^{-3} \\ 0.65 \times 10^{-3} \end{array}$	$\begin{array}{c} 0.07 \times 10^{-3} \\ 0.12 \times 10^{-3} \end{array}$	_

Eur. Phys. J. C (2013) 73:2373

$B^0_s ightarrow \mu^+ \mu^-$ ad ATLAS (Moriond)

(ATLAS) numerical results

For B⁰ :

- BR($B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$) = 0.9 ^{+1.1}_{-0.8} × 10⁻⁹
 - < 3.0 × 10⁻⁹ at 95% CL (from CL_s)
- The limit is lower that the SM prediction (BR(B⁰_s)_{SM}=(3.65+-0.23)×10⁻⁹)
- The result is lower than the central value of the CMS & LHCb combination, but the difference to the central value is smaller $(BR(B^0_{s)CMS \& LHCb} = (2.8^{+0.7}_{-0.6}) \times 10^{-9})$

For B⁰:

- BR(B⁰ -> μ⁺μ⁻) < 4.2 × 10⁻¹⁰ at 95% CL (from CL_s)
- The limit is above the SM prediction
- and reaches the central value of the CMS & LHCb combination $BR(B^0)_{\text{CMS&LHCB}}$ = (3.9^{+1.6}_{-1.4}) \times 10^{-10}.

The compatibility with the SM, for the simultaneous fit, is 2.0 σ