Francesco Brivio Università & INFN Milano-Bicocca

IFAE 2016 - GENOVA

"Ricerca di H→h(125)h(125)→bb $\tau\tau$ e A→Zh(125)→ℓℓ $\tau\tau$ a 8 TeV in CMS"

- Motivazione dell'analisi
- Strategia di analisi
- Risultati
 - Limiti di esclusione "model independent"
 - Interpretazione nei modelli MSSM & 2HDM
- Prospettive future

Motivazione dell'analisi

- 2012: Scoperta del bosone di Higgs a 125 GeV ☺
- Molte domande ancora aperte (*i.e. gerarchia, materia oscura…*) ☺
- Le estensioni più semplici sono date dai modelli 2HDM (i.e. MSSM...)
 - 5 bosoni di Higgs fisici: H+, H-, A, H, h
 - A livello "albero" sono descritti da 2 parametri: m_A , $tan\beta$
- $H \rightarrow hh \& A \rightarrow Zh$ permettono di esplorare le regioni a basso valore di tan β

in un intervallo di massa tra <u>250 e 350 *GeV*.</u>

Francesco Brivio

Strategia di analisi

Francesco Brivio

La massa invariante dei quattro corpi **m_H** è calcolata attraverso l'algoritmo KinematicFit:

- Prende come input i <u>quadri-vettori</u> (2b e 2τ) con le loro incertezze e
 l'<u>Energia Trasversa Mancante</u> (v dal decadimento dei τ).
- Impone dei vincoli cinematici:

 $m(\tau\tau) = m(bb) = m_h = 125 \text{ GeV}$

• Assume l'<u>approssimazione collinare</u> per i prodotti di decadimento del τ .

La massa invariante dei quattro corpi *m_A* è calcolata a partire dall'informazione dei quadri-vettori dei 2 bosoni intermedi:

- Bosone Z ricostruito usando i quadri-vettori dei leptoni
- Bosone h riscostruito attraverso l'algoritmo SVFit

SVFit ricostruisce il bosone che decade nella coppia $\tau\tau$:

- Stimatore *maximum likelihood*
- Prende come input i quadri-momenti dei tau, la MET e le risoluzioni

Distribuzioni di massa invariante (dati a 8 TeV)

Distribuzioni di massa invariante per i processi $H \rightarrow hh$ e $A \rightarrow Zh$

- Le distribuzioni di massa invariante sono fittate con un <u>maximum likelihood fit binnato</u>.
 - Il <u>parametro d'interesse</u> è $\sigma \times BR$ del segnale
 - Incertezze sistematiche trattate come parametri di nuisance
 Differenti origini, le principali sono:
 - Sezioni d'urto
 - Luminosità
 - Leptoni: identificazione & trigger
 - b-tagging: efficienza & mistag
 - Fondi: *shape* & normalizzazione

Risultati: Limiti di Esclusione

Risultati: interpretazione nei modelli MSSM & 2HDM

Escluse ampie regioni a basso $tan\beta$ (per MSSM), ma altre porzioni dello spazio dei parametri rimangono ancora da investigare.

Prospettive future

La naturale continuazione di questa analisi è lo studio dei dati del **Run-II**:

Incremento sezioni d'urto di produzione del segnale rispetto a quelle dei fondi

Non ci resta che aspettare i nuovi dati...!

Francesco Brivio

11

Backup

Comparison with different final states

SVFit Algorithm

Tau pair decay kinematic depend on a different number of parameters, depending on the tau pair decay:

- fully hadronic \rightarrow 4 parameters
- semileptonic \rightarrow 5 parameters
- leptonic \rightarrow 6 parameters

Only 2 observables $(\not\!\!E_x, \not\!\!E_y) \rightarrow$ under constrained problem \rightarrow likelihood approach

The best estimate $M\tau\tau$ for the tau pair mass is the $M^{i}\tau\tau$ which maximizes the probability $P(M^{i}\tau\tau)$. Higgs Production

Francesco Brivio

Higgs Branching Ratios

Systematic Uncertainties

$A \rightarrow Zh \rightarrow \ell \ell \tau \tau$

Systematic uncertainties common to all channels.				
Source		Uncertainty		
Luminosity measurement		2.2-2.6%		
Muon trigger efficiency		1%		
Muon ID/Iso/ES		2%		
Electron trigger efficiency		1%		
Electron ID/Iso/ES		2%		
Tau ID/Iso		6%(12%)		
Tau ES		3%(6%)		
Btag		1%		
PDF for $q\bar{q} \rightarrow ZZ$		5%		
PDF for $gg \rightarrow ZZ$		10%		
QCD scale for $q\bar{q}$		2.6-6.7%		
QCD scale for $gg \rightarrow ZZ$		24-44%		
QCD scale for VHs		2.9%		
Reducible background estimate		15-50%		
σ_{TTZ}		50%		
σ_{WWZ}		50%		
σ_{WZZ}		50%		
σ_{ZZZ}		50%		

$H \rightarrow hh \rightarrow bb\tau\tau$

		Event yield uncertainty		
		by event category		
Experimental uncertainties	Uncertainty	2jet–0tag	2jet–1tag	2jet–2tag
Integrated luminosity 8 TeV	2.6%	2.6%	2.6%	2.6%
Jet energy scale	shape	shape	shape	shape
₽ _T	1-10%	1-7%	1–5%	1-10%
Electron identification and trigger	2%	2%	2%	2%
Muon identification and trigger	2–3%	2–3%	2–3%	2–3%
Tau-lepton identification and trigger	8%	8–19%	8-19%	8-19%
b-tagging efficiency	1–70%	1-8%	1–5%	$1-70^{1}\%$
b-mistag rate	1–5%	1%	1-4%	1-5%
Normalization, Z production	3.3%	3.3%	3.3%	3.3%
$Z \rightarrow \tau \tau$: category selection	5%	5%	5%	6%
Normalization, tt	10%	10%	10%	10%
Normalization, di-boson	15%	15%	15%	15%
Normalization, QCD Multijet	10-100%	10%	40%	60-100%
Normalization, W+jets	10-100%	10%	40%	100%
Normalization, $Z \rightarrow ee$: e misidentified as τ_h	20-40%	20%	20%	40%
Normalization, $Z \rightarrow \mu\mu$: μ misidentified as τ_h	30-60%	30%	60%	60%
Normalization, Z+jets : jet misidentified as τ_h	20-90%	20%	20-25%	70-90%
Tau-lepton energy scale	shape	shape	shape	shape

Background Estimation

Objects selection $(H \rightarrow hh \rightarrow bb\tau\tau)$

$\mu au_{ m h}$	ch	ani	nel

- μ: p_T > 20 GeV
 |η|<2.1
- τ_h: p_T > 20 GeV
 |η|<2.3

<u>eth</u> channel

- e: p_T > 24 GeV
 |η|<2.1
- τ_h: p_T > 20 GeV
 |η|<2.3

$\underline{\tau_{h}\tau_{h}}$ channel

- τ_h(1): p_T > 45 GeV ; |η|<2.1
- τ_h(2): p_T > 45 GeV ; |η|<2.1

- $charge(\tau_1) = charge(\tau_2)$

+

- $charge(e/\mu) = charge(\tau)$
- loose isolation criteria
- $m_T = \sqrt{2p_T MET(1 \cos \Delta \phi)} < 30 \text{ GeV}$

+ 2 jets per event:

- p_T > 20 GeV
- |η|<2.4

Objects selection $(A \rightarrow Zh \rightarrow \ell \ell \tau \tau)$

<u>Z→µµ</u>

- μ_1 : pT > 20 GeV ; $|\eta| < 2.4$
- μ₂: pT > 10 GeV ; |η|<2.4

<u>Z→ee</u>

- e₁: pT > 20 GeV ; $|\eta| < 2.5$
- e₂: pT > 10 GeV ; |η|<2.5

- 60 GeV < m(ee/ $\mu\mu$) < 120 GeV
- + ambiguity $\rightarrow m(ee/\mu\mu)$ closest to m_Z

$\underline{h \rightarrow \tau \tau} (\rightarrow e \mu / e \tau_h / \mu \tau_h / \tau_h \tau_h)$

- μ : pT > 10 GeV ; $|\eta| < 2.4$
- e: pT > 10 GeV; $|\eta| < 2.5$
- τ_h: pT > 21 GeV ; |η|<2.3

CLs method

$$\mathcal{L} = \prod_{i} Poisson(n_i; \nu_i, \theta) \cdot \prod_{j} Constraint(\theta_j; \tilde{\theta_j})$$

$$q_{\mu} = -2 \ln \frac{\mathcal{L}(data|s+b)}{\mathcal{L}(data|b)}$$

$$p_{\mu} = P(q_{\mu} \le q_{\mu}{}^{obs} | \mu \cdot s + b) = \int_{q_{\mu}{}^{obs}}^{\infty} f(q_{\mu} | \mu, \hat{\theta}_{\mu}{}^{obs}) dq_{\mu}$$
$$1 - p_{b} = P(q_{\mu} \le q_{\mu}{}^{obs} | b - only) = \int_{q_{0}{}^{obs}}^{\infty} f(q_{\mu} | 0, \hat{\theta}_{0}{}^{obs}) dq_{\mu}$$

$$CL_S(\mu) = \frac{p_\mu}{1 - p_b}$$

Hhh mass distributions : $\mu \tau_h$ channel

Francesco Brivio

Hhh mass distributions : eth channel

Francesco Brivio

31/03/2016

24

Hhh mass distributions : ThTh channel

Francesco Brivio

Azh mass distributions : $Z \rightarrow \mu\mu$ channel

Azh mass distributions : Z→ee channel

Francesco Brivio

Preliminary result with 13 TeV data

Preliminary exclusion limit observed with CMS data at 13 TeV for the $H\rightarrow hh\rightarrow bb\tau\tau$ decay. Presented at Moriond. Pre-approved (HIG-16-013)

"Model independent search for Higgs boson pair production in the $bb\tau^+\tau^-$ final state."

- High mass region
- Only the fully hadronic tau decay

