

European Research Council

CALDER: lettori di luce criogenici ad alta sensibilità

Nicola Casali - IFAE2016, Genova 30/03/16 -1/04/16

Perché lettori di luce ad alta sensibilità

 La prossima generazione di esperimenti per la ricerca di eventi rari vuole aumentare la sensibilità aumentando la sue capacità di reiezione del fondo: Decadimento doppio beta senza neutrini e/o interazioni di materia oscura.

- L'esperimento CUORE ricerca il decadimento doppio beta del ¹³⁰Te usando dei bolometri di TeO₂.
- II segnale atteso sono due elettroni con un una energia cinetica totale di ~ 2.5 MeV.
- Il fondo dominate è costituito da particelle α.
- Queste possono essere rimosse rivelando la luce Cherenkov emessa solamente dalle interazioni β/γ (le uniche sopra soglia).

Perché lettori di luce ad alta sensibilità

 La prossima generazione di esperimenti per la ricerca di eventi rari vuole aumentare la sensibilità aumentando la sue capacità di reiezione del fondo: Decadimento doppio beta senza neutrini e/o interazioni di materia oscura.

3

- I bolometri scintillanti di ZnSe oltre che essere utilizzati nella ricerca del decadimento doppio beta del ⁸²Se (LUCIFER/CUPID0), possono essere utilizzati per rivelare l'interazione della materia oscura.
- A basse energie (~10 keV) occorre un elevata sensibilità per discriminare le interazioni β/γ dai rinculi nucleari prodotti dalla materia oscura.
- Studiare **simultaneamente** doppio decadimento beta senza neutrini e interazioni di materia oscura

Interazioni di materia oscura in bolometri scintillanti di ZnSe

Requisiti necessari

I rivelatori di luce per la prossima generazione di esperimenti bolometrici devono soddisfare i seguenti requisiti:

- Risoluzione energetica < 20 eV
- Area efficace di ~25 cm²
- Facilmente scalabili e riproducibili (~ 1000 rivelatori)
- Elevati standard di radio-purezza dei materiali
- Esteso intervallo di funzionamento (5 - 30 mK)

Molti gruppi interessati a dimostrare le potenzialità delle proprie tecnologie...

1) L.Pattavina et al., Journal of Low Temp Phys 1-6 (2015) -> Ge Naganov-Luke with NTD

- 2) M. Biassoni et al., Eur.Phys.J. C75 (2015) 10, 480 -> Si Naganov-Luke with NTD
- 3) K.Schaeffner et. al, Astropart.Phys. 69 (2015) 30-36 -> W-TES on SOS
- 4) M. Willers et al., JINST 10 P03003 (2015) -> Si Naganov-Luke + TES

5) CALDER -> KID -> QUESTO TALK

Ma nessuno ancora soddisfa (o ha dimostrato di soddisfare) tutti i requisiti necessari

KID (Kinetic Inductance Detector)

- In un superconduttore R è \sim 0 se I = DC
- Se I = AC con ω~GHz l'energia cinetica immagazzinata delle coppie di Cooper genera un ritardo tra I applicata e quella che circola nel superconduttore -> si genera una induttanza (L) detta appunto induttanza cinetica.

KID (Kinetic Inductance Detector)

- In un superconduttore R è ~ 0 se I = DC
- Se I = AC con ω~GHz l'energia cinetica immagazzinata delle coppie di Cooper genera un ritardo tra I applicata e quella che circola nel superconduttore -> si genera una induttanza (L) detta appunto induttanza cinetica.
- Accoppiando una capacità (C) si realizza un circuito LC che risuona ad una determinata frequenza f₀

6

KID (Kinetic Inductance Detector)

7

- In un superconduttore R è ~ 0 se I = DC
- Se I = AC con ω~GHz l'energia cinetica immagazzinata delle coppie di Cooper genera un ritardo tra I applicata e quella che circola nel superconduttore -> si genera una induttanza (L) detta appunto induttanza cinetica.
- Accoppiando una capacità (C) si realizza un circuito LC che risuona ad una determinata frequenza f₀
- Quando una particella interagisce con il superconduttore rompe coppie di Copper producendo una variazione di L misurabile attraverso la variazione della risonanza (fase ed ampiezza)

Pro e Contro

Pro

- Nati per essere multiplexabili nel dominio delle frequenze: generando un pettine di frequenze ognuna tunata sulla frequenza di risonanza del risonatore (~100 risonatori con una sola feed line)
- Elevata risoluzione energetica (~eV)
- Stabilità di funzionamento se T << T_c

Contro

• Area attiva pochi mm²

I fononi come mediatore

- Si deposita il materiale superconduttore su un isolante (substrato di Si) che media l'interazione delle particelle producendo fononi
- Questi, se assorbiti dal KID, causano la rottura delle coppie di Cooper e quindi una variazione di L
- In questo modo è possibile avere grandi superfici sensibili (~cm2) usando pochi KIDs (problema di efficienza di raccolta dei fononi)
- Questo è l'approccio usato da CALDER

CALDER

Cryogenic Wide-Area Light Detector with Excellent Resolution finanziato da ERC Starting Grant, dal marzo del 2014

3 fasi principali

- Ottimizzazione della geometria del rivelatore, e dell'analisi dati usando KIDs di AI (80 eV RMS)
- 2. Passare a superconduttori più sensibili (TiAl, TiN,) (< 20 eV)
- 3. Testare i lettori di luce finali (5x5 cm²) su 4 bolometri di TeO₂ ai Laboratori Nazionali del Gran Sasso

• Sviluppo degli strumenti di analisi dati per ricavare i parametri fondamentali della risonanza ed il modello di risposta del rivelatore

• Ottimizzare la geometria del rivelatore per massimizzare il **segnale** raccolto e quindi la risoluzione

I rivelatori sono testati con segnali ottici (LED da 400 nm + fibra ottica) con E da1.3 a 30 keV, ma anche con sorgenti a raggi-X di ⁵⁵Fe/⁵⁷Co (cross-check)

> Variando spessore (s) e area attiva (A), l'efficienza ε scala come (sA) 1. Pixel s: 25 nm, A: 2.4 mm² $\rightarrow \varepsilon \sim 2\%$ 2. Pixel s: 40 nm, A: 2.4 mm² $\rightarrow \varepsilon \sim 7\%$

3. Pixel s: 40 nm, A: $4.0 \text{ mm}^2 \rightarrow \varepsilon \sim 11\%$

• Ottimizzare la geometria del rivelatore per massimizzare il **segnale** raccolto e quindi la risoluzione

Nel caso (ideale) in cui siamo dominati dal rumore dell'amplificatore criogenico

• Ottimizzare la geometria del rivelatore per massimizzare il **segnale** raccolto e quindi la risoluzione

Nel caso (ideale) in cui siamo dominati dal rumore dell'amplificatore criogenico

Variando V, α , Q e ε del KID la risoluzione varia tra 160 e 90 eV.

- Il segnale in fase è affetto da un rumore a bassa frequenza che limita la risoluzione
 - La sua origine è in fase di studio...
- Nonostante questo il target di 80 eV RMS può essere considerato raggiunto

• Testare risonatori realizzati con superconduttori più sensibili

$$\Delta E \propto \frac{T_C}{\epsilon \sqrt{QL}}$$

	AI	TiAl	Ti+TiN	TiN sub- stec.
Tc [K]	1,2	0.6-0.9	0.5-0.8	0,5
L [pH/ square]	0,5	1	6	up to 50

Primo materiale testato dopo l'Al sarà il TiAl (prodotto dal CSNSM & Grenoble)

Risultati preliminari utilizzando impulsi ottici con energia di 3.1 keV

- La prossima generazione di esperimenti bolometrici necessita di rivelatori di luce con elevata sensibilità
- CALDER intende dimostrare che questi lettori di luce possono essere sviluppati usando i rivelatori ad induttanza cinetica (KID)
- L'ottimizzazione di risonatori di AI è terminata ed è stata raggiunta la risoluzione di 90 eV RMS
- È stato identificato un eccesso di noise in fase a bassa frequenza la cui natura è in fase di studio
- Sono iniziati i test su superconduttori più sensibili ed i risultati sono molto incoraggianti: 50 eV RMS usando TiAl (preliminare)