

Alessandro Lapertosa

Prestazioni del b-tagging a 13 TeV con l'esperimento ATLAS ad LHC

IFAE 2016 Genova

- L'esperimento ATLAS ad LHC
- Ruolo b-tagging
- Identificazione dei b-jet
- Nuova variabile di b-tagging per il Run II
- Misure di performance 13 TeV
- <u>Efficienza di b-tagging su c-jet a 13 TeV</u>

L'esperimento ATLAS al Large Hadron Collider

A. Lapertosa

Ruolo del b-tagging nella fisica di ATLAS

Processi con quark beauty nello stato finale:

- Ricerca del Bosone di Higgs
- Fisica del quark top
- Nuova fisica oltre Modello Standard

 $(t \rightarrow Wb)$ B.R. : $\approx 99 \%$

Proprietà dei jet

Quark e gluoni liberi adronizzano (quark top decade prima)

Jet: stretto cono di adroni formato in seguito all'adronizzazione

Jet originati da quark diversi hanno proprietà diverse

	b-jet	c-jet	l-jet
Quark originario	beauty	charm	q. leggeri e gluoni
Massa quark (jet)	≈ 4 GeV	≈ 1 GeV	< 100 MeV
Vita media mesone	1.5 ps	1 ps	10 ⁻²⁰ s
Percorso medio (50 GeV)	5 mm	3 mm	≈ 0 mm
Vertice secondario	Si	Si	No
Molteplicità di traccia	Alta	Media	Bassa

b-tagging: identificazione dei b-jet

Caratteristiche tipiche dei b-jet:

- Vertice secondario di decadimento del mesone B all'interno del jet
- Alti valori dei parametri di impatto (d0, z0) delle tracce provenienti dal vertice secondario

Algoritmi di identificazione dei b-jet:

- Ricostruzione del vertice secondario (SV1)
- Parametri di impatto delle tracce (IP3D)
- Ricostruzione catena decadimenti dei mesoni B e D nel jet (JetFitter)

Estrarre una variabile discriminante con:

 \succ la migliore efficienza di b-tagging (ϵ_b)

 \succ un basso rate di selezione di falsi (ϵ_{I})

MV2c20: variabile di b-tagging per il Run II

Combinazione delle 3 variabili discriminanti con tecniche di analisi multivariata (MVA), per ottenere una variabile più performante

MV2c20:

- Selezione di apposito campione di training (beauty v.s. 20% charm, 80% light)
- > Ulteriori miglioramenti in vista del 2016
- Prevista una migliore reiezione di c-jet e l-jet

4 punti di lavoro (Working Points): 85%, 77%, 70%, 60%

ATL-PHYS-PUB-2015-039

Performance attesa: MV1(c) vs MV2c20

Miglioramenti dovuti a:

ATL-PHYS-PUB-2015-022

- aggiunta dell'IBL (per jet a basso pT)
- algoritmi di tracking e di b-tagging

Migliore reiezione di l-jet (fattore 2-4) e di c-jet (fattore 1.2-2)

Performance: misura dell'efficienza

Misurare l'efficienza sui dati e su MC:

- 1. Isolare un campione puro: jet di un determinato flavour
- 2. Misurare l'efficienza di b-tagging su dati
- 3. Misurare l'efficienza di b-tagging su MC
- 4. Calcolare Scale Factor: rapporto efficienza dati / MC

Efficienza b-jet	Efficienza c-jet	Efficienza l-jet
 Metodo T&P Metodo PDF Metodo p_T^{rel} 	 Metodo D* Metodo W+c 	 Negative tag

Scale Factors sono calcolati per:

- differenti intervalli di jet pT
- differenti Working Points della variabile di b-tagging

Scale Factors usati nelle analisi per scalare MC con i dati

Sono inoltre una delle maggiori fonti di sistematiche

Jet selezionati

Iet totali

Metodo W+c @7/8/13 TeV (ATLAS-CONF-2013-109)

31 Marzo 2016

A. Lapertosa

MV1 vs MV2c20

- Nuovo algoritmo con migliore discriminazione di c-jet
- > Quasi nessun c-jet per alti valori di MV2c20 (0-1)
- > Difficile calcolare l'efficienza per i Working Points 70% e 60%

Efficienza di b-tagging su c-jet

- Buon accordo dati-simulazione
- Migliore reiezione di c-jet rispetto al Run I
- > 85% (fattore ~2) 77% (fattore ~3) 60-70% (fattore ~10)

Conclusioni

- Ruolo del b-tagging e metodologie
- Nuova variabile utilizzata sui dati a 13 TeV
- > Aggiunta di IBL e miglioramenti negli algoritmi
- > Migliore reiezione di c-jet e l-jet
- Misura dell'efficienza di b-tagging su c-jet a 13 TeV
- Primi risultati: promettenti!

\rightarrow BACKUP \leftarrow

L'apparato sperimentale dell'esperimento ATLAS

Pixel detector (3 layer) + IBL

IBL: Insertable B-Layer 14 barre a circa 3 cm dalle collisioni Regione con alto livello di radiazioni R&D: migliore elettronica, dimensioni ridotte

End-cap disk layers

	Item		Radial Extension	Length	Staves /	Modules	Pixels
			[mm]	[mm]	Sectors		(×10 ⁶)
	Beam p	pipe (today)	29 < R < 36				
RT	Beam p	oipe (with IBL)	25 < R < 29				
ст	IBL	Envelope Sensitive	31.0 < R < 40.0 < R > = 25.7	Z < 332	14	224	6.02
els	Pixel	Envelope	45.5 < R < 241.0	Z < 3092			
BL	B -layer	Sensitive	< R > = 50.5	Z < 400.5	22	286	13.2
	Layer 1	Sensitive	< R > = 88.5	Z < 400.5	38	494	22.8
	Layer 2	Sensitive	< R > = 122.5	Z < 400.5	52	676	31.2
							<u> </u>

31 Marzo 2016

R = 554mm R = 514mm R = 443mm

R = 371mm R = 299mm

R = 122.5mm R = 88.5mm

R = 50.5mm R = 33.25mm R = 0mm

SCT

Pixels

Miglioramenti Run I - Run II (MV1 vs MV2)

Combinazione delle variabili discriminanti con tecniche di analisi multivariata (MVA), per ottenere una variabile più performante:

- Identificare b-jet
- Rigettare c-jet e l-jet

MV1 vs MV2

- Miglioramento dei singoli algoritmi di b-tagging
- Miglioramento degli algoritmi di tracking
- Miglioramento e semplificazione della combinazione (da Rete Neurale a Bosted Decision Tree)
- Aggiunta ulteriore pixel layer interno (IBL) (migliore risoluzione dei parametri d'impatto)

MV2c20:

- Selezione di apposito campione di training (beauty v.s. 20% charm, 80% light)
- Nuovi miglioramenti in vista della presa dati 2016
- Prevista una migliore reiezione di c-jet e l-jet

24 variabili di input per MV2c20

Input	Variable	Description			
Kinematics	$p_T(jet)$	Jet transverse momentum			
	$\eta(jet)$	Jet pseudo-rapidity			
	$\log(P_b/P_{\text{light}})$	Likelihood ratio between the b- and the light jet hypotheses			
IP2D, IP3D	$\log(P_b/P_c)$	Likelihood ratio between the b- and the c-jet hypotheses			
	$\log(P_c/P_{\text{light}})$	Likelihood ratio between the c- and the light jet hypotheses			
	m(SV)	Invariant mass of tracks at the secondary vertex assuming			
		pion masses			
	$f_{\rm E}({\rm SV})$	Fraction of the charged jet energy in the secondary vertex			
SV1	$N_{\text{TrkAtVtx}}(\text{SV})$	Number of tracks used in the secondary vertex			
511	N _{2TrkVtx} (SV)	Number of two track vertices candidates			
	$L_{xy}(SV)$	Transverse distance between the primary and secondary			
	-	vertices			
	$L_{xyz}(SV)$	Distance between the primary and secondary vertices			
	$S_{xyz}(SV)$	Distance between the primary and secondary vertices di-			
		vided by its uncertainty			
	$\Delta R(\text{jet}, \text{SV})$	ΔR between the jet axis and the direction of the secondary			
		vertex relative to the primary vertex			
	m(JF)	Invariant mass of tracks at the secondary vertices assuming			
		pion masses			
	$S_{xyz}(JF)$	Significance of the average distance between the primary			
Jet Fitter		and displaced vertices			
	$f_{\rm E}(\rm JF)$	Fraction of the charged jet energy in the secondary vertices			
	N1-trk vertices	Number of displaced vertices with one track			
	$N_{\geq 2-trk vertices}$	Number of displaced vertices with more than one track			
	N _{TrkAtVtx} (JF)	Number of tracks from displaced vertices with at least two			
		tracks			
	Ntracks	Number of reconstructed secondary vertices			
	$\Delta R(\vec{p}_{jet},\vec{p}_{vtx})$	ΔR between the jet axis and the vectorial sum of the mo-			
		menta of all tracks attached to displaced vertices			

Table 1: The input variables used by the MV2 b-tagging algorithm.

Efficienza attesa per b-jet, c-jet e l-jet

ATL-PHYS-PUB-2015-022

Efficienza calcolata per i 4 punti di lavoro: 85%, 77%, 70%, 60% (efficienza di selezione dei b-jet)

c-jet: dal 30% al 5%

l-jet: dal 4% al 0.04%

Selezione degli eventi W+c

Misura a 13 TeV vs 7 TeV

Selezione più restrittiva (soppresso QCD background)

Meno eventi selezionati, statistica peggiore