

RISULTATI RECENTI DI LHC SUL BOSONE DI HIGGS A 13 TEV

ROBERTO COVARELLI (UNIV./INFN TORINO) PER LE COLLABORAZIONI ATLAS E CMS

> INCONTRI DI FISICA DELLE ALTE ENERGIE GENOVA, 1 APRILE 2016

31-Mar-16

ANALISI HIGGS A LHC

- Determinazione precisa della massa vincola input teorici
- Le misure inclusive sono progressivamente sostituite da ricerche nei vari modi di produzione (analisi separate o categorizzazione degli eventi)
 - Selezione di eventi con maggior purezza (necessario per canali ad alto fondo come bb, ττ, invisibile)
 - Misura di accoppiamenti a fermioni/bosoni vettori

STATO DELL'ARTE DOPO RUN1

MASSA DEL BOSONE DI HIGGS

Phys. Rev. Lett. 114, 191803 (2015)

- Canali ZZ* e γγ (risoluzione in massa = 1-2%)
- ATLAS+CMS

- Principali incertezze sistematiche
 - ZZ*: calibrazione dell'impulso dei leptoni
 - $\gamma\gamma$: risposta calorimetrica (non linearità, forma laterale dello sciame, calibrazione con Z \rightarrow ee etc.) e stima materiale antistante il calorimetro
- Buona compatibilità tra canali ed esperimenti
 - Attese del SM per tutte le quantità che entrano nella combinazione calcolate a questo valore di massa

VINCOLI SU ACCOPPIAMENTI (1)

- Si calcolano i ($\sigma \cdot BR$), scalando gli accoppiamenti del bosone di Higgs SM con parametri liberi $\kappa = c/c_{SM}$
 - La maggior parte delle $\sigma \in \Gamma$ dipendono dai corrispondenti κ^2 , ma non tutte, es. interferenza tra i loop di t e W in H $\rightarrow \gamma\gamma$
- Anche negli scenari di Nuova
 Fisica più generali sono comunque richieste ipotesi su Γ_H
 - Somma delle larghezze parziali vincolata al SM ($\Gamma_{\rm H} = \Sigma_{\rm i} \Gamma_{\rm SM,i}$)
 - Decadimenti BSM permessi ($\Gamma_{\rm H} = \Sigma_{\rm i} \Gamma_{\rm SM,i} + \Gamma_{\rm BSM}$) ma $\kappa_{\rm W,} \kappa_{\rm Z} \leq 1$
- Ipotesi valide in quasi tutte le teorie BSM

ATLAS-CONF-2015-044 CMS-PAS-HIG-15-002

VINCOLI SU ACCOPPIAMENTI (2)

R. Covarelli

- Scenari con vincoli più restrittivi dedicati a specifiche classi di teorie BSM. Esempi:
 - uniche correzioni possibili: agli accoppiamenti efficaci nei – processi ad 1 loop (κ_g, κ_γ)
 - Fattori di scala comuni per tutti i fermioni e tutti i bosoni (κ_{v}, κ_{f})
- Risultati indipendenti dal modello («signal strengths», rapporti di sezioni d'urto e BR: osservati / SM)

 $\mu_{glob} = 1.09 \pm 0.11$

SPIN / DISTRIBUZIONI DIFFERENZIALI

- Ipotesi di spin-parità alternative (0⁻, 1, 2⁺_m, 2⁺_h, 2⁻ ecc. ecc.) ampiamente sfavorite da ATLAS e CMS, combinando i canali ZZ*, WW* e γγ
- Accurate analisi della struttura tensoriale degli accoppiamenti HVV (parametri efficaci di Nuova Fisica che indurrebbero componenti pseudoscalari, tensoriali ecc. nell'ampiezza totale)
- Distribuzioni differenziali in accordo con risultati (N)NLL QCD risommati?
 → risultati non conclusivi

CANALI RARI: ttH

- Diversi canali di decadimento (esclusivi o semi-esclusivi)
 - CMS trova un lieve eccesso ($\mu =$ 2.8 ± 1.0) dominato da yields in stati finali con 2 o 3 leptoni
 - ATLAS ha aggiornato recente-• mente aggiungendo tTH, $H \rightarrow b\overline{b}$ completamente adronico
 - alto BR, bassissima purezza \rightarrow complessa stima del fondo multijet derivata dai dati

 $t\bar{t}H(H \rightarrow \gamma\gamma)$

ttH(H → bb)

-2

0

2

4

tTH Combination

 $t\bar{t}H(H \rightarrow WW/\tau\tau/ZZ)$

ATLAS Preliminary

tatistica

 $\mu = 1.2$

μ= 2.1

μ= 1.4

 $\mu = 1.7$

6

+1.4

8

total

CANALI RARI: COPPIE DI HIGGS

t, b

t, b

t.b

t.b

t.b

t, b

- Nel SM non ancora rivelabile
 - σ_{NNLO} ~ 11(38) fb a 8 (13) TeV
- Incrementata in vari modelli BSM sia in forma risonante $(G^*_{KK}, radione, heavy H^0 \rightarrow HH)$ che non-risonante
- Diverse analisi in ATLAS e CMS cercano di sfruttare canali ad alto BR (bbbb, $bb\tau\tau$) o puliti (bb $\gamma\gamma$, WW $\gamma\gamma$) in vari range di massa

PRIMI RISULTATI DI RUN2

$H \to \gamma \gamma$

ATLAS-CONF-2015-060 CMS-PAS-HIG-15-005

- Punti chiave della misura
 - Risoluzione in energia e selezione dei fotoni
 - Analisi a tagli (ATLAS) o multivariata (CMS)
 - Variabili che riflettono la forma e il contenimento atteso degli sciami, isolamento, rigetto di π^0
 - Identificazione del vertice primario
 - CMS: analisi multivariata usando Σp_T^2 e bilanciamento del p_T con le tracce del vertice primario
 - ATLAS: tecnica simile ma sfruttando traiettoria del γ dal calorimetro puntante
 - Fit alla distribuzione di $m_{\gamma\gamma}$ in categorie di segnale

 $H \rightarrow ZZ^* \rightarrow 4l$

ATLAS-CONF-2015-059 CMS-PAS-HIG-15-004

- Punti chiave della misura
 - Selezione di leptoni di alta qualità
 - Recupero di fotoni FSR
 - Stima dei fondi:
 - Irriducibile (ZZ* non risonante): teoria a ordine (N)NLO QCD
 - Riducibile (leptoni «fake»): stima con regioni di controllo
 - Estrazione del segnale
 - ATLAS: m₄₁ dopo fit cinematico con vincolo di massa
 - CMS: m₄₁, discriminante cinematico, 2 categorie di segnale («VBF-tagged», altri eventi)

2.8 fb⁻¹ (13 TeV)

SEZIONI D'URTO HIGGS

Confronti tra osservazione e teoria all'ordine NNLO QCD

- <u>ATLAS</u>: Sezione d'urto totale combinata γγ + ZZ*
- <u>CMS</u>: Sezione d'urto fiduciale per ZZ*

ATLAS-CONF-2015-069 CMS-PAS-HIG-15-004

CMS: NUOVI RISULTATI ttH

• $t\overline{t}H$, $H \rightarrow b\overline{b}a$ 13 TeV ($\sigma_{SM} \times 3.8$)

- Canale molto complesso
 - Fondo dominante tt+jets (soprattutto ttbb, con grosse incertezze teoriche)
 - Limitata risoluzione in massa Higgs
 - Combinatorio dei jet
- Due selezioni principali
 - Dileptonica: $2l, \ge 3$ jet, ≥ 2 b-taggati
 - Semileptonica: 11, \geq 4 jet, \geq 2 b-taggati
- Ulteriore classificazione per numero di jet, di jet b-taggati e ad alto impulso
 - 13 categorie esclusive
 - Selezione tramite boosted decision tree (BDT) in ognuna di esse

R. Covarelli

CMS: NUOVI RISULTATI tTH

CMS-PAS-HIG-15-008

- ttH, multileptonico
 - Include diversi canali possibili dell'Higgs (tt, WW*, ZZ* con successivi decadimenti leptonici)
 - Fondi dominanti: tt+jets con leptoni «fake», ttV
 - Selezione con BDT in categorie

t

- «Fake rates» da regioni di controllo
- $\dagger \dagger H$, $H \rightarrow \gamma \gamma$ incluso nell'analisi inclusiva

 Risultati (signal strengths):

ttH(
$$\gamma\gamma$$
)
 $\hat{\mu}_{obs} = 3.8^{+4.5}_{-3.6}$
tH(multilepton)
 $\hat{\mu}_{obs} = 0.6^{+1.4}_{-1.1}$
ttH(bb)
 $\hat{\mu}_{obs} = -2.0^{+1}_{-1}$

R. Covarelli

DECADIMENTI INVISIBILI E HH

- Ricerca di produzione di coppie HH nei canali bbbb (ATLAS/CMS) e bbγγ (ATLAS)
 - Esclusione di risonanze ad alta massa simile rispetto a Run1 (con bbbb si copre un intervallo di massa più ampio, usando merged jets)
 - Sezione d'urto non-risonante $\sigma_{HH}^{non-res} < 95 (102) \sigma_{HH}^{SM} @ 95\% CL$ in $\overline{D}\overline{D}\overline{D}\overline{D}$ ($\overline{D}\overline{D}\gamma\gamma$) ATLAS-CONF-2016-004 ATLAS-CONF-2016-017
- Ricerca di H → invisibile usando il modo di produzione ZH
 - Stato finale: 2I + ME_T
 - Fondo dominante: $ZZ \rightarrow 2I2v$
 - Per produzione SM, nessun BR escluso (non ancora raggiunta sensibilità di Run1)

CONCLUSIONI

- Ri-scoperta del bosone di Higgs a 13 TeV nei canali ben conosciuti
 - Difetto di eventi (non significativo) osservato in ATLAS non confermato da CMS
 - Limiti su ttH già vicini a Run1 con sola statistica 2015
- Il futuro
 - Osservazione di modi di produzione esclusivi in tutti i canali
 - Raggiungimento di una migliore precisione negli accoppiamenti, specialmente in quelli a fermioni pesanti (ttH, Hbb) ed a 1 loop
 - Distribuzioni differenziali
 - Misure di SM che richiedono altissima precisione (VBS, HH, μ_{offshell} e misura indiretta della larghezza)
 - «Esotici»: Higgs pesanti, risonanze BSM che decadono in bosoni di Higgs etc. → già molti risultati a 13 TeV, alcuni non elencati in questa presentazione

ATLAS: SEZIONI D'URTO SM

