Heavy-Light flavour Physics: D* and B* mesons decay constants in lattice QCD

Aurora Melis RomaTre University

XXXV Convegno Nazionale di Fisica Teorica

17 – 10 May 2016 Galileo Galilei Institute, Firenze

Decay Constants Why are they interesting parameters?

DCs parametrize the matrix element of a weak current between the vacuum and the meson of interest. They characterize a meson as much as its mass.

$$\begin{aligned} \mathcal{Z}_{V} &:= \langle 0 | \overline{c} \gamma_{\mu} \ell | V(p, \lambda) \rangle = M_{V} f_{V} \varepsilon_{\mu}^{\lambda} \\ \mathcal{Z}_{A} &:= \langle 0 | \overline{c} \gamma_{\mu} \gamma_{5} \ell | P(p) \rangle = p_{\mu} f_{P} \end{aligned} \qquad D \qquad Matrix \\ Filements \\ \Gamma(P \to \ell \overline{\nu}_{\ell}) = \underbrace{\frac{G_{F}^{2} |V_{ij}|^{2}}{8\pi} f_{P}}_{SM \text{ parameters:}} \int_{M_{P} m_{\ell}^{2}} \left(1 - \frac{m_{\ell}^{2}}{M_{P}^{2}} \right)^{2} \\ \frac{D^{*}}{5M \text{ parameters:}} \\ \Gamma_{2} D^{+} \pi^{0} (30.7 \pm 0.5)\% \\ \Gamma_{3} D^{+} \gamma (1.6 \pm 0.4)\% \end{aligned}$$

 f_V is **not** directly measurable.

Vector meson decays are dominated by the strong and electromagnetic decays.

Decay Constants Why are they interesting parameters?

Vector DCs are involved in the description of semileptonic form factors and non-leptonic decays of hadrons through *the factorization approximation :*

	-			Europea
Dat	a Ensamble	s Nf =	<u>= 2+1+</u>	Twiste Mass
	β	L³xT	am u∕d	amh Collabora
A.40.24	$1.90~(a^{-1}\sim 2.19~{ m GeV}$)	$24^3 \times 48$	0.0040	$0.01800 \ 0.02200 \ 0.02600$
A.60.24	$a \sim 0.0885 \mathrm{fm}$		0.0060	$0.21256 \ 0.2500 \ 0.29404$
A.80.24			0.0080	$0.34583 \ 0.40675 \ 0.47480$
A.100.24			0.0100	$0.56267 \ 0.66178 \ 0.77836$
A.30.32	-	$32^3 \times 64$	0.0030	0.91546
A.40.32			0.0040	Interpolation
A.50.32			0.0050	
B.85.24	$1.95~(a^{-1}\sim 2.50~{ m GeV})$	$24^3 \times 48$	0.0085	$0.01550 \ 0.01900 \ 0.02250$
B.25.32	$a \sim 0.0815 \mathrm{fm}$	$32^3 \times 64$	0.0025	$0.18705 \ 0.22000 \ 0.25875$
B.35.32			0.0035	$0.30433 \ 0.35794 \ 0.42099$
B.55.32			0.0055	$0.49515 \ 0.58237 \ 0.68495$
B.75.32			0.0075	0.80561
D.15.48	$2.10~(a^{-1} \sim 3.23 \text{ GeV})$	$48^3 \times 96$	0.0015	$0.01230 \ 0.01500 \ 0.01770$
D.20.48	$a \sim 0.0619 {\rm fm}$		0.0020	$0.14454 \ 0.17000 \ 0.19995$
D.30.48			0.0030	$0.23517 \ 0.27659 \ 0.32531$
	. ↓		↓	$0.38262 \ 0.45001 \ 0.52928$
	Continuum	Chiral		0.62252
	CALIAPUIALIUII	Extrapolation		

Data Ensambles Nf = 2+1+1

				Mg	SS
	β	L³xT	am u/d	amh Sollabo	ratio
A.40.24	$1.90~(a^{-1}\sim 2.19~{ m GeV}~)$	$24^3 \times 48$	0.0040	$0.01800 \ 0.02200 \ 0.02600$	S
A.60.24	$a \sim 0.0885 \mathrm{fm}$		0.0060	$0.21256 \ 0.2500 \ 0.29404$	С
A.80.24			0.0080	$0.34583 \ 0.40675 \ 0.47480$	h
A.100.24			0.0100	$0.56267 \ 0.66178 \ 0.77836$	l
A.30.32	-	$32^3 \times 64$	0.0030	0.91546	
A.40.32			0.0040		-
A.50.32			0.0050		
B.85.24	$1.95~(a^{-1}\sim 2.50~{ m GeV})$	$24^3 \times 48$	0.0085	$0.01550 \ 0.01900 \ 0.02250$	Ī
B.25.32	$a \sim 0.0815 \mathrm{fm}$	$32^3 \times 64$	0.0025	$0.18705 \ 0.22000 \ 0.25875$	
B.35.32			0.0035	$0.30433 \ 0.35794 \ 0.42099$	
B.55.32			0.0055	$0.49515 \ 0.58237 \ 0.68495$	
B.75.32			0.0075	0.80561	
D.15.48	$2.10~(a^{-1}\sim 3.23~{ m GeV})$	$48^3 \times 96$	0.0015	$0.01230 \ 0.01500 \ 0.01770$	
D.20.48	$a \sim 0.0619 {\rm fm}$		0.0020	$0.14454 \ 0.17000 \ 0.19995$	
D.30.48	m a // 1		0.0030	$0.23517 \ 0.27659 \ 0.32531$	
	$m_q a \ll 1$		Heavy quark	$0.38262 \ 0.45001 \ 0.52928$	
	$m_{1}^{phys} = 4.26(9)$ GeV	$V > a^{-1}$	extrapolation	0.62252	
	$m_b = 4.20(3) \text{ GeV}$	- W		/	

European

Twisted

Correlation functions

 f_V and f_P can be extracted from the asyptotic behaviour in time of the vector and axial 2-point correlation functions $C_V(t), C_A(t)$:

Sink Source $C_{i}(x) = \langle 0|T(O_{i}(x)O_{i}^{\dagger}(0))|0\rangle \quad (O_{i} = \overline{c}\gamma^{\mu}\ell, \overline{c}\gamma^{\mu}\gamma_{5}\ell)$ $C_{i}(t) = \frac{1}{2M} \mathcal{Z}_{i}^{2}e^{-Mt} + \sum_{n>1} \frac{1}{2M_{n}} \mathcal{Z}_{n}^{2}e^{-M_{n}t}$ Foundamental Excited states state

For heavy mesons, we can construct **smeared S** operators which have a better superposition with the foundamental state rather than the excited states:

 $\mathcal{Z}^{S} = \langle 0 | O_{i}^{S} | M \rangle \gg \mathcal{Z}_{n} = \langle 0 | O_{i} | M_{n} \rangle$

We have a matrix of correlation functions made up of the possible combinations of **local L** and **smeared S** operators: *LL, LS, SL, SS*.

Effective mass

The meson mass is extracted from a constant fit of the effective mass curve in the **plateau interval [tmin:tMAX]**.

$$C^{LL}(t) \xrightarrow[t\gg0]{} \frac{1}{M} (\mathcal{Z}^L)^2 \mathrm{e}^{-M\frac{T}{2}} \cosh\left[M\left(\frac{T}{2}-t\right)\right]$$

$$C^{LS}(t) \xrightarrow[t \gg 0]{} \frac{1}{M} \mathcal{Z}^L \mathcal{Z}^S \mathrm{e}^{-M\frac{T}{2}} \cosh\left[M\left(\frac{T}{2} - t\right)\right]$$

$$C^{SL}(t) \xrightarrow[t \gg 0]{} \frac{1}{M} \mathcal{Z}^{S} \mathcal{Z}^{L} \mathrm{e}^{-M\frac{T}{2}} \cosh\left[M\left(\frac{T}{2}-t\right)\right]$$

 $C_{1}^{SS}(t) \xrightarrow[t \gg 0]{} \frac{1}{M} (\mathcal{Z}^{S})^{2} \mathrm{e}^{-M\frac{T}{2}} \cosh\left[M\left(\frac{T}{2}-t\right)\right]$

M: are calculated out of SL effective mass curves.

fv and fp

 \mathcal{Z}^{L} : can be calculated from a combination of the SL and SS correlation functions.

$$f_{V}(t) = \frac{1}{Z_{A}} \frac{1}{\sqrt{M_{V}}} \frac{e^{-M_{V} \frac{T}{4}}}{\sqrt{\cosh\left[M_{V}\left(\frac{T}{2}-t\right)\right]}} \frac{C_{V_{i}V_{i}}^{SL}(t)}{\sqrt{C_{V_{i}V_{i}}^{SS}(t)}}$$
$$f_{P}(t) = \frac{(m_{\ell} + m_{c})}{\sqrt{M_{P}}\sinh(M_{P})} \frac{e^{-M_{P} \frac{T}{4}}}{\sqrt{\cosh\left[M_{P}\left(\frac{T}{2}-t\right)\right]}} \frac{C_{PP}^{SL}(t)}{\sqrt{C_{PP}^{SS}(t)}}$$

Ratios fv / fp

7 / 15

Chiral and continuum extrapolation

a . . / a)

*

• Polyn. Fit: $\frac{f_V}{f_P}^{fit(1)} = \mathbf{a}^{(1)} + \mathbf{b}^{(1)}\xi_\ell + \mathbf{c}^{(1)}a^2$ $\xi_\ell = \frac{2B_0m_\ell}{(4\pi f_0)^2}$ $\begin{array}{c} B_0 \simeq 5.25 \text{GeV} \\ f_0 \simeq 0.12 \text{GeV} \end{array}$ $\hat{g} = 0.61$

ref: [arXiv:1403.4504v3 [hep-lat] (ETMC)]

• ChPT fit:
$$\frac{f_V}{f_P}^{fit(2)} = \mathbf{a}^{(2)} \left[1 + \mathbf{b}^{(2)} \xi_\ell + \left(\frac{3(1+3\hat{g}^2)}{4} - \frac{5}{4} \right) \xi_\ell \log(\xi_\ell) \right] + \mathbf{c}^{(2)} a^2$$

fD* and fDs*

 D^* meson decay constants with Nf = 2 + 1 + 1 :

$$\frac{f_{D^*}}{f_D} = 1.088 \pm 0.037 \qquad \qquad f_{D^*} = 232.2 \pm 0.90 \text{ MeV}$$
$$\frac{f_{D^*_s}}{f_{D_s}} = 1.091 \pm 0.018 \qquad \qquad f_{D^*_s} = 273.4 \pm 0.65 \text{ MeV}$$

For fD and fDs see ref: [arXiv:1411.7908 [hep-lat] (ETMC)]

*D** meson masses :

 $\frac{M_{D^*}}{M_D} = 1.0780 \pm 0.0077$ $\frac{M_{D^*_s}}{M_{D_s}} = 1.0751 \pm 0.0056$

 $M_{D^*} = 2012 \pm 14 \text{ MeV}$ $M_{D^{*\pm}}^{exp} = (2010.27 \pm 0.05) \text{MeV}$

$$\begin{split} M_{D^*_s} &= 2117 \pm 11 \, \mathrm{MeV} \\ M^{exp}_{D^{*\pm}_s} &= (2112.1 \pm 0.4) \mathrm{MeV} \end{split}$$

fD* and fDs*

 D^* meson decay constants with Nf = 2 + 1 + 1 :

$$\frac{f_{D^*}}{f_D} = 1.088 \pm (0.030_{stat} \pm 0.020_{tmin} \pm 0.006_{input} \pm 0.005_{fit})$$
$$\frac{f_{D^*_s}}{f_{D_s}} = 1.091 \pm (0.015_{stat} \pm 0.009_{tmin} \pm 0.006_{input})$$

For the input parameters see ref: [arXiv:1403.4504v3 [hep-lat] (ETMC)]

Previous values

• Nf = 2 : $f_{D^*}/f_D = 1.208 \pm 0.027$ ref: [arXiv:1407.1019 [hep-ph] (ETMC)]

 $f_{D_s^*}/f_{D_s} = 1.26 \pm 0.03$ ref: [arXiv:1201.4039 [hep-lat] (ETMC)] • Nf = 2 + 1 :

 $f_{D_s^*}/f_{D_s} = 1.10 \pm 0.02$ ref: [arXiv:1312.5264 [hep-lat] (**HPQCD**)]

ETMC Ratio Method

$$\mathcal{R}_{\ell}(\overline{m}_{h}^{(n)}) = \frac{\mathcal{F}_{\ell}(\overline{m}_{h}^{(n)})}{\mathcal{F}_{\ell}(\overline{m}_{h}^{(n-1)})} \frac{C_{W}(\overline{m}_{h}^{(n-1)}, \mu)}{C_{W}(\overline{m}_{h}^{(n)}, \mu)}$$

where

We can construct ratios that go to 1 in the static limit $(1/mh \rightarrow 0)$:

 $\lim_{m_h\to\infty}\mathcal{R}_\ell(m_h)=1$

•
$$\mathcal{F}_{\ell} = f_V / f_P \text{ or } M_V / M_P$$

• $C_W(m) = 1 - \frac{2}{3} \frac{\alpha_s(m)}{\pi} - \left[-\frac{1}{9} \zeta(3) + \frac{2}{27} \pi^2 \log 2 + \frac{4}{81} \pi^2 + \frac{115}{36} \right] \left(\frac{\alpha_s(m)}{\pi} \right)^2$

ref: [arXiv: hep-ph/0303052v4]

List of reference masses:

ETMC Ratio Method

Chiral and continuum extrapolation

12 / 15

ETMC Ratio Method

Heavy quark extrapolation

$$\mathcal{R}_{\ell}^{(fit)}(m_h) = 1 + \frac{\mathbf{b}_{\ell}^{(1)}}{m_h} + \frac{\mathbf{b}_{\ell}^{(2)}}{m_h^2}$$

The result, corresponding to the b quark mass, is reached multiplying the ${\cal N}=10$ ratios obtained from the fit .

$$\mathcal{F}_{\ell}(m_b^{phys}) = \frac{\mathcal{F}_{\ell}(\overline{m}_h^{(0)})}{C_W(\overline{m}_h^{(0)},\mu)} \prod_{i=1}^N \left[\mathcal{R}_{\ell}^{(fit)}(\overline{m}_h^{(n)}) \right] C_W(\overline{m}_h^{(N)},\mu)$$

fB* and fBs*

Results

 B^* meson decay constants with Nf = 2 + 1 + 1 :

$$\frac{f_{B^*}}{f_B} = 0.945 \pm 0.032$$

$$\frac{f_{B_s^*}}{f_{B_s}} = 0.974 \pm 0.010$$

+ 1 + 1 :
$$f_{B^*} = 183.3 \pm 7.8 \,\mathrm{MeV}$$

$$f_{B_s^*} = 223.1 \pm 6.3 \,\mathrm{MeV}$$

For fB and fBs see ref: [Petros talk]

*B** meson masses :

 $\frac{M_{B^*}}{M_B} = 1.0049 \pm 0.0057$ $\frac{M_{B^*_s}}{M_{B_s}} = 1.0070 \pm 0.0018$

 $M_{B^*} = 5304 \pm 30 \,\mathrm{MeV}$ $M_{B^{*\pm}}^{exp} = (5324.83 \pm 0.32) \,\mathrm{MeV}$

$$\begin{split} M_{B^*_s} &= 5404.0 \pm 9.7 \, \mathrm{MeV} \\ M^{exp}_{B^*_s} &= (5415.4 \pm 1.6) \, \mathrm{MeV} \end{split}$$

fB* and fBs*

Results

 B^* meson decay constants with Nf = 2 + 1 + 1 :

$$\frac{f_{B^*}}{f_B} = 0.945 \pm 0.032$$
$$\frac{f_{B^*_s}}{f_s} = 0.974 \pm 0.010$$

$$t_{B^*} = 183.3 \pm 7.8 \,\mathrm{MeV}$$

1000 + 701

$$f_{B_s^*} = 223.1 \pm 6.3 \,\mathrm{MeV}$$

For fB and fBs see ref: [Petros talk]

Previous values

• Nf = 2 :

 f_{B_s}

 $f_{B^*}/f_B = 1.051 \pm 0.017$ ref: [arXiv:1407.1019 [hep-ph] (**ETMC**)] • Nf = 2 + 1 + 1 : $f_{B^*}/f_B = 0.941 \pm 0.026$ ref: [arXiv:1503.05762 [hep-ph] (HPQCD)]

 $f_{B_s^*}/f_{B_s} = 0.953 \pm 0.023$ ref: [arXiv:1503.05762 [hep-ph] (**HPQCD**)]

Summary

- **fD***(s) ≠ **fD**(s) and **fB***(s) ≠ **fB**(s) : we can observe an heavy quark symmetry breaking effect both in the charm and in the beauty sector.
- **fD*> fD** while **fB*< fB**: the breaking effect has an opposite sign for the charm and beauty sector.

 The entity of this breaking is lower than it was found in the analysis of Nf = 2 correlation functions.
 Quenching effect of the strange quark?