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QCD phase diagram

The QCD phase diagram

T
@ We are interested in the study of the QCD lattice QCD
phase diagram in the (T,ug) plane. [ 7777===< ~<. Quark Gluon Plasma
@ It is supposed that the zero density crossover A

models

ends up in a second order critical point for Hadrons N\ _..coome

some ppg = pg'.
@ This claim is supported by many B (S:S:;)e[;'conductor
phenomenological models (NJL, random ‘\p

\
1 hys.
matrix model)... nucleanphtys. § € > U

@ ...but it has never been experimentally
observed or predicted from ab-initio

calulations. o At these energy scales (= Agcp) the problem

requires the treatment of QCD at non
perturbative level.



QCD phase diagram

Ultrarelativistic heavy ion collisions

It is possible to investigate the properties of
the strongly interacting medium by means of
ultrarelativistic heavy ion collisions. 7 The Phases of QCD

@ The hadrons produced by the collision recall
the hadron distributions at the time of the so
called chemical freeze-out, i.e. the time of last
inelastic scattering.

The detectors are able to measure the relative
abundances of many hadrons produced
(7%, p, p, K=, KO, A A,..)

From the hadron abundances, they can
determine the value of conserved charges
Q,B,S.

The event-by-event analysis also allows to
evaluate their local fluctuations.
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If freeze out takes place slight below the critical line some critical behavior in the
conserved charge fluctuations is expected as the second order critical point is ap-
proached.



QCD phase diagram

Comparison of theory and experiment

o It is possible to compare the result on heavy ion collisions with predictions from
theoretical models.

@ The conserved charge fluctuations are related to the so called generalized
susceptibilities (via the fluctuation-dissipation theorem):
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fi = pi/T and the u; {i = Q, B, S} are the chemical potentials coupled with the
conserved charge operators {IQIQ7 Ng, Ns}.
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Ex: Xx1,0,0 = (NB) X2,0,0 =
@ To this purpose we need some estimation of the QCD equation of state (EOS).

@ The comparison is mainly done using the Hadron Resonances Gas Model .

It fits well the low-T QCD but does not predict any critical behavior .

@ Needs of calculations using QCD. At present the only fully non-perturbative
approach is given by its lattice formulation.



Lattice QCD

Thermodynamic of lattice QCD: Highlights

@ The starting point is the QCD partition function. It can be written as euclidean
Path-Integral with a compactified temporal direction:
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@ Bosonic(fermionic) fields satisfy periodic(antiperiodic) temporal boundary
condition.

o Discretization: The Path-Integral is discretized over a space-time lattice
introducing a finite lattice spacing a (x, — any ). Fermionic and bosonic fields
take values only on the lattice sites. The functional integral over the gauge fields
Apu(x) is switched on the link variables U, (n) one.

® S(euct) = Siar = SclU] + IM[U]Y ; Z = Tr [ePH] = [ DUUe=5cIV] det M[U]

o If e=56lUl det M[U] is real and positive the Path-Integral can be evaluated by
means of Montecarlo algorithms.



Lattice QCD

Lattice QCD at finite density

o It is possible to add three chemical potentials 11 coupled to the quark number
operators N; (i = u,d,s) as well as to the three conserved charges {Q, B, S}.

o Z(T, phu,d,5)) = Tr [ PH=1iN)] = [ Dite=5cIUdet M [U, p1(y,a,5]

o det M [U, M(u,d,s)] acquires a non zero imaginary part (sign problem) =
Montecarlo simulations no longer feasible.

How to have access to the finite density Equation of State?
o Taylor method: F(T,u) = F(T,0)+ vT*3, 2l (4
@ X2k corresponds to the zero density susceptibilities => no sign problem .

@ The direct sampling of xox(T) suffers of at least two problems:

o Too computationally expensive at higher order (i.e. with increasing k)
o Problems with lack-of-self-averaging = Higher order fluctuations very noisy as the
infinite volume limit is approached

o Current state of the art: 8th order susceptibilities for Ny = 2 QCD (Gavai-Gupta)
and 4th order for N =2+ 1 QCD (Fodor et al.).
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Lattice QCD

Moving to imaginary chemical potential

o det M[U,in] >0
@ The quark number susceptibilities at imaginary chemical potentials can be

expanded as (Nf =2+ 1 QCD is considered):

Xk (T, ) = Z?/ii,m:j,n:k) (/—i)!z(r;m—"f')T!()n—k)! (LTH)(,_O (MTg)(m_j) (LTS)(n_k)

@ In this way we can have access to higher order zero density fluctuations through
the measure of a relative small number of X (T, 1).

Principal sources of error:

o Statistical: the error in a Montecarlo estimate scales like: 1/4/(sampled config.)

o Systematic: ultraviolet (UV) cut-off and finite volume effects, errors from series
truncation.



Numerical Results

Main goals of the work

@ Determination of the coefficients in
the free energy expansion around the Numerical Setup

zero density point in Np =241 X
QCD. @ Runs mostly done on N; = 8 lattice

with aspect ratio Ns/N; fixed to 4.

o Comparison of the efficiency of this
method with respect to the direct o Temperature range(MeV): [135, 350]
calculus. @ Temperature changed according to

_ 1 . .
o Freeze-out parameters estimate and r= e WO @ & line of constant

location of the second order critical physics.
point.
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Numerical results



Numerical Results

Explored region in the complex p plane

o For T < Tc analytic continuation quite safe (no singularity in the Imu region) =

tmax/ T = 0.8.

@ For T > T, it is possible to meet the continuation of the pseudo-critical line
(principal problems slight above T¢) = pmax/T = 0.37.
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@ 2nd order susceptibilities agree very
well with previous determination.

o Quark-Gluon-Plasma limit reasonably
achieved at 350Mev.

o Discrepancy with HRG calculations
even at low T.

o Probably disappears after continuum
limit is taken.
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Numerical Results
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Efficiency test

T/Tc~0.95 X2,0,0 X0,0,2 X1,1,0 X1,0,1
s/ T = 00257 | 0.420(38) 0.2012(65)  -0.057(36) _ -0.05(11)
Im 4 0.4147(39) 0.1881(15) -0.0304(11) -0.0669(30)

o We compare the fitted zero density 2th order susceptibilities with the one
obtained from direct sampling (and with the same sample size n.).

@ To obtain the same statistical accuracy in the direct sampling, 100(900)n. gauge
configurations are required for diagonal(non-diagonal) susceptibilities.

o We used a complex grid of 96 points = Imu method more efficient.



Numerical Results

Finite volume effects and error scaling

Numerical Setup
e Simulations on N; = 6 and Ns = 16, 20, 24 lattices with T /T, = 0.95.
o We determined all the susceptibilities up to 6th order.

N ol 1 e Finite volume effects are less then our
sy 1 statistical accuracy.
. Inf ) . : 1 @ No effects of lacking of self averaging
Toef M i ] = Errors decrease with increasing
053 [ ; B ] volume.
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Numerical Results

Location of the second order critical point



Numerical Results

@ In the g = pus = 0 plane the free energy F can be expanded as:
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be located by estimating the radius of convergence of the power series.

@ In presence of a second order critical point exhibits a singularity which can
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“r o 1 10th order for T = 135,143 Mev and

B L 1 up to 6th order for T = 149Mev .

2 . @ Quite good agreement with HRG

! prediction = no signal of criticality

0 e —— has been found.
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Numerical Results
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Numerical Results

Freeze out parameters

Freeze out setup recostruction

o Ns and ’,:’Tg fixed by the colliding nuclei .

o In Pb— Pb or Au — Au collisions, (Ns) =0 e % =Z/A=~0.4.

o On the lattice we have to tune s, 1@, tg in order to reproduce this condition.
o In general: uq = po(1s) and ps = us(ps).
o To leading order g = qi(T)ug + O(13) and ps = s1(T)ps + O(13).
o Imposing these constraints we obtain (to leading order):
B, S BS. BS BQ. S BS. QS
q 4 (X2 X2 — X11 X11 ) - (X11 X2 — X11 X11 ) s Xﬁs q Xﬁs
1= =2 g — AL
Q.S QS QS BQ. S BS. QS S S
(Xz X2 — Xi11 X11 ) = (Xu X2 — X11 X11 ) X3 X2

e s; # 0 even if (Ns) = 0. Different quark flavours are created, due to gluon
interactions, when a given p; is inserted.

o Ex: Ns(pu(s,q) = 0) = x5y + O(1s3)
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Numerical results
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o For high T, s =
the QGP limit.

o Higher order corrections turn out to
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Extraction of Tf and ;1{3.

Numerical Results

o We need two observables sensitive to a variation in T* and ,ufB.

@ We choose ratios of cumulants of the electric charge Q: Rg m) = 0
5 i

xq
Q

o Independent from the (unknown) value of the freeze-out volume.

Q
Ri1
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To leading order R3(‘?1 independent from pg =
Can be used as thermometer.

Our determination: 143Mev < Tf < 160Mev.
e Star data on Rgl do not show (with the
precision achieved) any variation with the

center of mass energy. Possibility to use
cumulants of net proton number to extract the

curvature (Bazavov et al.).

° RIQ,Z can be used as baryometer.
o Our results:
pe(v/snn = 27)[Mev]
pe(v/snn = 39)[Mev]
1(v/sun = 62.4)[Mev]

79.4(2.7)57(1.5)(exp.) (0-4) stat.)
62.9(2.1)57(0.5)(exp.) (0-7) stat.)
36.6(1.3)57(1-1) (exp.) (0.4) (stat.)
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