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The QCD phase diagram

We are interested in the study of the QCD
phase diagram in the (T , µB) plane.
It is supposed that the zero density crossover
ends up in a second order critical point for
some µB = µcrit

B .
This claim is supported by many
phenomenological models (NJL, random
matrix model)...
...but it has never been experimentally
observed or predicted from ab-initio
calulations. At these energy scales (≈ ΛQCD) the problem

requires the treatment of QCD at non
perturbative level.
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Ultrarelativistic heavy ion collisions
It is possible to investigate the properties of
the strongly interacting medium by means of
ultrarelativistic heavy ion collisions.
The hadrons produced by the collision recall
the hadron distributions at the time of the so
called chemical freeze-out, i.e. the time of last
inelastic scattering.
The detectors are able to measure the relative
abundances of many hadrons produced
(π±, p, p̄,K±,K0

s ,Λ, Λ̄,..)
From the hadron abundances, they can
determine the value of conserved charges
Q,B,S.
The event-by-event analysis also allows to
evaluate their local fluctuations.

If freeze out takes place slight below the critical line some critical behavior in the
conserved charge fluctuations is expected as the second order critical point is ap-
proached.
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Comparison of theory and experiment
It is possible to compare the result on heavy ion collisions with predictions from
theoretical models.
The conserved charge fluctuations are related to the so called generalized
susceptibilities (via the fluctuation-dissipation theorem):

χB,Q,S
i,j,k =

1
VT 4

∂(i+j+k)F(T ,V , µ)
∂µ̂i

B∂µ̂
j
Q∂µ̂

k
S

µ̂i = µi/T and the µi {i = Q,B, S} are the chemical potentials coupled with the
conserved charge operators {N̂Q , N̂B , N̂S}.

Ex: χ1,0,0 = 〈NB〉 χ2,0,0 = σ2B
χ3,0,0
χ1,0,0

= σ3BSB
NB

.

To this purpose we need some estimation of the QCD equation of state (EOS).
The comparison is mainly done using the Hadron Resonances Gas Model .
It fits well the low-T QCD but does not predict any critical behavior .
Needs of calculations using QCD. At present the only fully non-perturbative
approach is given by its lattice formulation.
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Thermodynamic of lattice QCD: Highlights
The starting point is the QCD partition function. It can be written as euclidean
Path-Integral with a compactified temporal direction:

Z = Tr[e−βH ] =
∫

[dA][dψ̄ψ]e−
∫ β
0

dτ
∫

d3xL(eucl.)

Bosonic(fermionic) fields satisfy periodic(antiperiodic) temporal boundary
condition.
Discretization: The Path-Integral is discretized over a space-time lattice
introducing a finite lattice spacing a (xµ → anµ). Fermionic and bosonic fields
take values only on the lattice sites. The functional integral over the gauge fields
Aµ(x) is switched on the link variables Uµ(n) one.

S(eucl.) ⇒ Slat = SG [U] + ψ̄M[U]ψ ; Z = Tr
[
e−βH

]
=
∫

DUe−SG [U] detM[U]

If e−SG [U] detM[U] is real and positive the Path-Integral can be evaluated by
means of Montecarlo algorithms.
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Lattice QCD at finite density
It is possible to add three chemical potentials µi coupled to the quark number
operators N̂i (i = u, d , s) as well as to the three conserved charges {Q,B, S}.

Z(T , µ(u,d,s)) = Tr
[
e−β(H−µi Ni )

]
=
∫

DUe−SG [U] detM
[
U, µ(u,d,s)

]
detM

[
U, µ(u,d,s)

]
acquires a non zero imaginary part (sign problem) ⇒

Montecarlo simulations no longer feasible.

How to have access to the finite density Equation of State?

Taylor method: F (T , µ) = F (T , 0) + VT 4
∑

k
χ2k (T )
2k!

(
µ
T

)(2k) .
χ2k corresponds to the zero density susceptibilities ⇒ no sign problem .
The direct sampling of χ2k (T ) suffers of at least two problems:

Too computationally expensive at higher order (i.e. with increasing k)
Problems with lack-of-self-averaging ⇒ Higher order fluctuations very noisy as the
infinite volume limit is approached

Current state of the art: 8th order susceptibilities for Nf = 2 QCD (Gavai-Gupta)
and 4th order for Nf = 2 + 1 QCD (Fodor et al.).
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Moving to imaginary chemical potential

Main idea

detM[U, iµI ] > 0
The quark number susceptibilities at imaginary chemical potentials can be
expanded as (Nf = 2 + 1 QCD is considered):

χijk (T , µ) =
∑∞

(l=i,m=j,n=k)
χlmn(T )

(l−i)!(m−j)!(n−k)!

(
µu
T

)(l−i) (µd
T

)(m−j) (µs
T

)(n−k)

In this way we can have access to higher order zero density fluctuations through
the measure of a relative small number of χijk (T , µ).

Principal sources of error:

Statistical: the error in a Montecarlo estimate scales like: 1/
√

(sampled config.)
Systematic: ultraviolet (UV) cut-off and finite volume effects, errors from series
truncation.
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Main goals of the work
Determination of the coefficients in
the free energy expansion around the
zero density point in Nf = 2 + 1
QCD.
Comparison of the efficiency of this
method with respect to the direct
calculus.
Freeze-out parameters estimate and
location of the second order critical
point.

Numerical Setup
Runs mostly done on Nt = 8 lattice
with aspect ratio Ns/Nt fixed to 4.
Temperature range(MeV): [135, 350]
Temperature changed according to
T = 1

Nt a moving on a line of constant
physics.
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Numerical results
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Explored region in the complex µ plane

For T < Tc analytic continuation quite safe (no singularity in the Imµ region) ⇒
µmax/T = 0.8π.
For T > Tc it is possible to meet the continuation of the pseudo-critical line
(principal problems slight above Tc) ⇒ µmax/T = 0.3π.

χX2 = 1
VT3 〈N2

X〉
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2nd order susceptibilities agree very
well with previous determination.
Quark-Gluon-Plasma limit reasonably
achieved at 350Mev.

Discrepancy with HRG calculations
even at low T .
Probably disappears after continuum
limit is taken.
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Diagonal 4th order susceptibilities
reach their asymptotic value .

Efficiency test

T/Tc ≈ 0.95 χ2,0,0 χ0,0,2 χ1,1,0 χ1,0,1
µu/T = 0.025π 0.420(38) 0.2012(65) -0.057(36) -0.05(11)

Im µ 0.4147(39) 0.1881(15) -0.0304(11) -0.0669(30)

We compare the fitted zero density 2th order susceptibilities with the one
obtained from direct sampling (and with the same sample size nc).
To obtain the same statistical accuracy in the direct sampling, 100(900)nc gauge
configurations are required for diagonal(non-diagonal) susceptibilities.
We used a complex grid of 96 points ⇒ Imµ method more efficient.
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Finite volume effects and error scaling

Numerical Setup

Simulations on Nt = 6 and Ns = 16, 20, 24 lattices with T/Tc ≈ 0.95.
We determined all the susceptibilities up to 6th order.
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Finite volume effects are less then our
statistical accuracy.
No effects of lacking of self averaging
⇒ Errors decrease with increasing
volume.
Furthermore, we controlled that no
finite volume effects arise at higher
temperature (spatial volume decreases
according to 1

T
Ns
Nt

) .
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Location of the second order critical point
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In the µQ = µS = 0 plane the free energy F can be expanded as:

F(T ,V , µB) = F(T ,V , µB = 0) + VT 4
∑

n

χB
2n

(2n)!

(
µB
T

)2n

In presence of a second order critical point ∂
2F
∂µ2B

exhibits a singularity which can
be located by estimating the radius of convergence of the power series.
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To evaluate the radii of convergence,
we used all the susceptibilities up to
10th order for T = 135, 143 Mev and
up to 6th order for T = 149Mev .
Quite good agreement with HRG
prediction ⇒ no signal of criticality
has been found.
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Freeze out parameters

Freeze out setup recostruction

NS and NQ
NB

fixed by the colliding nuclei .

In Pb − Pb or Au − Au collisions, 〈NS〉 = 0 e 〈NQ〉
〈NB〉

= Z/A ≈ 0.4.

On the lattice we have to tune µS , µQ , µB in order to reproduce this condition.
In general: µQ = µQ(µB) and µS = µS (µB).
To leading order µQ = q1(T )µB + O(µ3B) and µS = s1(T )µB + O(µ3B).
Imposing these constraints we obtain (to leading order):

q1 =
r
(
χB
2 χ

S
2 − χ

BS
11 χ

BS
11
)
−
(
χBQ
11 χ

S
2 − χ

BS
11 χ

QS
11
)(

χQ
2 χ

S
2 − χ

QS
11 χ

QS
11
)
− r
(
χBQ
11 χ

S
2 − χ

BS
11 χ

QS
11
) s1 = −

χQS
11
χS
2

q1 −
χBS
11
χS
2

s1 6= 0 even if 〈NS〉 = 0. Different quark flavours are created, due to gluon
interactions, when a given µi is inserted.
Ex: Ns (µ(s,d) = 0) = χus

2 µu + O(µ3u)
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Numerical results
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Extraction of Tf and µfB.

We need two observables sensitive to a variation in T f and µf
B .

We choose ratios of cumulants of the electric charge Q: RQ
(n,m) = χQn

χQm
.

Independent from the (unknown) value of the freeze-out volume.
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To leading order RQ
3,1 independent from µB ⇒

Can be used as thermometer.
Our determination: 143Mev < Tf < 160Mev.
Star data on RQ

3,1 do not show (with the
precision achieved) any variation with the
center of mass energy. Possibility to use
cumulants of net proton number to extract the
curvature (Bazavov et al.).

RQ
1,2 can be used as baryometer.

Our results:

µB(√sNN = 27)[Mev] = 79.4(2.7)δT (1.5)(exp.)(0.4)(stat.)

µB(√sNN = 39)[Mev] = 62.9(2.1)δT (0.5)(exp.)(0.7)(stat.)

µB(√sNN = 62.4)[Mev] = 36.6(1.3)δT (1.1)(exp.)(0.4)(stat.)
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