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Motivation

Beautiful progress in obtaining exact results within AAS/CFT

» from integrability
» from supersymmetric localization
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Motivation

Beautiful progress in obtaining exact results within AAS/CFT

» from integrability (assumed)
» from supersymmetric localization (BPS observable)
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In the world-sheet string theory integrability only classically, localization not formulated.

Superstrings in AdSs x S° with RR fluxes: complicated interacting 2d field theory

A _ _
S1IB = 4£ drdo [(%XE?CLX +O0T(D+ F5)00,X + 00000, X0“X + - ]

T
under control perturbatively (and with some caveats).

Is there a genuine 2d QF T way
to cover the finite-coupling region?



Motivation

Lattice 2d
FO Green-Shwarz string
Lattice techniques in AdS/CFT: existing program Cattic 44
on 4d gauge theory, good results at weak coupling. N=4 §YM
[Catterall et al.] )\

Lattice for superstring world-sheet in AdSs x S°

[McKeown Roiban, 2013]
» 2d: computationally cheap

» no world-sheet susy (Green-Schwarz)

» all gauge symmetries are fixed (no formulation a la Wilson),
only scalar fields (also anti-commuting)

Non-trivial 2d qgft with strong coupling analytically known,
finite-coupling (numerical) prediction.


https://inspirehep.net/author/profile/McKeown%2C%20R.W.?recid=1250335&ln=en

The cusp anomaly of A/ = 4 SYM from string theory

Completely solved via integrability. [Beisert Eden Staudacher 2006]

Expectation value of a light-like cusped Wilson loop

<W[Ccusp]> ~ e_f(g)
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The cusp anomaly of A/ = 4 SYM from string theory

Completely solved via integrability. [Beisert Eden Staudacher 2006]

Expectation value of a light-like cusped Wilson loop

<W[Ccusp]> ~ e_f(g)

Zcusp — /[D5X [D59] _SIIB (XCUSP+5X 59) eff — e_f(g@

AdS/CFT

String partition function with “cusp” boundary conditions, evaluated perturbatively

2 1174 73
F(9)]g—0 = 8¢° [1 -~ §g2 + = gt — (E + 8@“3) g%+ .. } [Bern et al. 2006]
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f(9)]lg—o0 = 4g [1 — [Giombi et al. 2009]

A lattice approach prefers expectation values

[[DSX][D3W] Scusp e~ “cusp dIn Zeusp Vo
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Simulations in lattice QFT

Spacetime grid with lattice spacing a, size L = N a,

points £ = (an1,ans) = an and fields ¢ = ¢,
a) natural cutoff for the momenta, — = <p, < =

t
b) path integral measure [D¢| =[], don. L@

Then [T, d¢, e~ >diser can be studied via Monte Carlo methods.
e SE [CI)’L] .
Z

Ensamble of configurations {®1,..., Px}, with P[®;] =

Ensemble average (A) = [[D®] P[®] A[®] = & >°5 | A[®;] + O(

N




Simulations in lattice QFT

Spacetime grid with lattice spacing a, size L = N a,
points £ = (an1,ans) = an and fields ¢ = ¢,

a) natural cutoff for the momenta, — = <p, < =~

— a b
b) path integral measure [D¢| =[], don. L;«

Then [ [],, dén e~ diser can be studied via Monte Carlo methods.
e SE [CI)’L] .

Ensamble of configurations {®1,..., Px}, with P[®;] = =

Ensemble average (A) = [[D®] P[®] A[®] = = >°F | A[®;] + O(\/%)

e SE®ildet O
Z

» action must be quadratic in fermions (linearization via auxiliary fields):

GralBmann-odd fields are formally integrated out: P|[®;] =

» determinant must be definite positive

- _1
det Op — \/det(oFo;):/DCDg [ 2eq0p0l) i

potential
ambiguity!



Green-Schwarz string in the null cusp background

After linearization the Lagrangian reads (m ~ P4)

Leusp = |ft$+ Elm\ + Z—4|88$—5ﬂ3| + (3tzM+EzM)2 + Zj(aszM—?zM)Q
+ §¢2 + §(<Z5M)2 + T Opy |
» 8 bosonic coordinates: z, z*, zM (M =1,---,6), z= /2y 2M;

» 7 auxiliary fields ¢, o™ (M =1,---,6));
» 8 fermionic variables, v = (0%,0;,71%,n;), and 8* = (0;)T, n* = (n;)7,4=1,2,3,4

( 0 i0; —ipM (8 + ) 25 0 )
o | Miﬁt 0 0 —1,0}:4. (05 + ) Z5
1Z3p (85 — %) 0 22—4,0M (8856 — m%) i0p — AT
K 0 12—]\;,0}[\4 (0s — &) i0y + A —22—?,0}[\4 (Dsz* — mE™) )
A= ! darp™MN 2y — ! 1) iz—NpMN OpzM
222 V2% 22

T
and p™ are off-diagonal blocks of SO(6) Dirac matrices v = ( 0 Py )
Manifest global symmetry is SO(6) x SO(2).



Discretization and lattice perturbation theory

1
a

A naive discretization p,, — p, = L sin(ap,) leads to fermion doublers,

i.e. identical propagator at 2¢ points: (0,0), (%,0),(0, =)(*, =)

a’ a
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sin2 a sin2 a m2



Discretization and lattice perturbation theory

A naive discretization p,, — p, = L sin(ap,) leads to fermion doublers,
7T 7T

i.e. identical propagator at 2¢ points: (0,0), (%,0),(0, =)(*, =)

a’ a

: 2 .. 2
detKF _ (Sln 651291 a) + sin 651292 a) X mTQ)S

Add to the action a “Wilson term”, K + W = K} such that

» SO(6) invariance is maintained
» No (additional) complex phase is introduced
» For a — 0 continuum perturbation theory is reproduced

: i : : : : (1) _ det Kp
Using its determinant in the one-loop effective action I'; (.- = In Jot K1
oo 2
F(1) . Vo d“p In |:48 (Sin2 pTO—|—Sin2 %)5(sin2 p70—|—sin2 p71+MT)2(sin2 p70—|—sin2 p71—|——
E7et 2 a2 (27‘(’)2 (sin2 po-+sin? p1+MT2-|—4 sin4 p70_|_4 sin4 %)8

— 7T

i Vo m?, cusp anomaly at strong coupling (|r| =1, M =ma.)

ST



Line of constant physics

In the continuum, “effective” masses undergo a finite renormalization

m2

mite) =5 (1= = +06™) (9

The dimensionless physical quantity to keep constant when a — 0 is
L? m?2 = const, leading to (Lm)? = (NM)? = const,

if (x) is still true on the lattice and g is not (infinitely) renormalized.



Continuum limit ¢ — 0

We assume that, on the lattice, no further scale but a is present.

A generic observable

Frar = Frar(g, N, M) :F(9)+O(%) + O (e_MN>

where /3
A
g=—", N = —, M =am
47 a
Recipe:
» fix g

» fix M N, large enough so to to keep small finite volume effects
» evaluate Fy o for N =6,8,10,12,16, - - -
» obtain F(g) extrapolatingto N — oo.



Measure |: mass of £ boson
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No infinite renormalization occurring, no need of tuning m to adjust for it.

This corroborates our choice of line of constant physics.



Measure ll: (derivative of the) cusp anomaly

Having subtracted quadratic divergences in (Spat) ~ f/(¢)1.aT + c(g) N? (set to zero
in dim. reg.), assume g = « g.: then from f'(g) = f'(gec)c is gc = 0.04g.
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The phase

After linearization Lz = ¥ Op 4, integrating fermions leads to a complex Pfaffian
PfOp = |(det Op)2 | ™.

The phase is encoded in the linearization

e [Gnpn)? 6—% _ /dxe—an

and can be treated via reweighting: incorporate the non positive part of the
Boltzmann weight into the observable

(O €w>9:0

<€w>9:0

It gives meaningful results as long as the phase does not average to zero.

<O>reweight —



The phase

In the interesting (¢ = 1) region the phase has a flat distribution.
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Alternative algorithms: active field of study, no general proof of convergence.

Alternative linearization: in progress.



Conclusions

Solving a non-trivial 4d QFT is hard » reduce the problem via AdS/CFT:

solve a non-trivial 2d QFT.

Lattice simulation of gauge-fixed Green-Schwarz string,
two discretizations and Rational Hybrid Monte Carlo:

» QObservables measured are in good agreement with expectation at large g;
» At small g, complex phase and related sign problem .

Next

» Alternative linearization, phase-free
» Further observables, different backgrounds (AdS4/CFTs)
» Correlators of string vertex operators (gauge theory 3-point functions)



Extra slides
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Simulation: the cusp action

2

In measuring (Scusp) = g V?é""’ f'(g) quadratic divergences appear.
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In continuum perturbation theory dim. reg. set them to zero.
Here, expected mixing of the Lagrangian with lower dimension operator

O(¢(s))r = Z Zo Oun(o(x)), 7.~ AP[OD) = (P=[O0])

a:[Oq]|<D



Roiban McKeown 2013
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