Green-Schwarz superstring on the lattice

Valentina Forini

Humboldt University Berlin

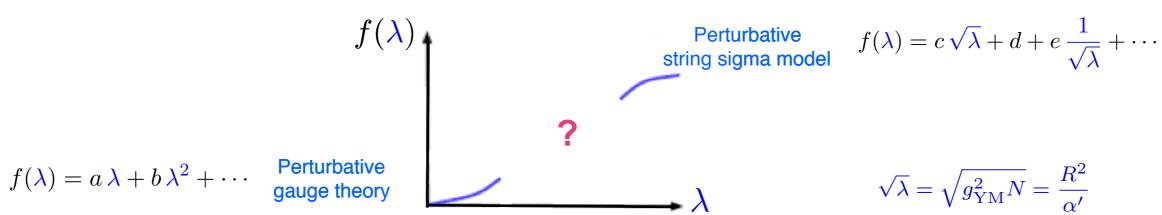
Based on 1601.04670 and 1605.01726 with Lorenzo Bianchi, Marco S. Bianchi, Björn Leder, Edoardo Vescovi

GGI, Firenze, May 2016

Motivation

Beautiful progress in obtaining exact results within AdS/CFT

- from integrability
- from supersymmetric localization

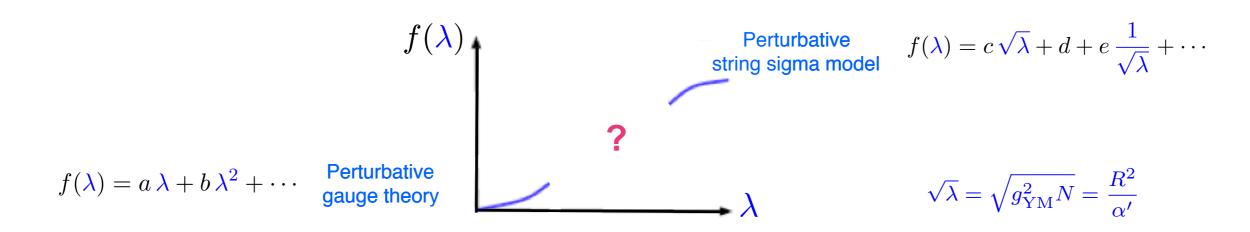


$$\sqrt{\lambda} = \sqrt{g_{\rm YM}^2 N} = \frac{R^2}{\alpha'}$$

Motivation

Beautiful progress in obtaining exact results within AdS/CFT

- from integrability (assumed)
- from supersymmetric localization (BPS observable)



In the world-sheet string theory integrability only classically, localization not formulated.

Superstrings in $AdS_5 \times S^5$ with RR fluxes: complicated interacting 2d field theory

$$S_{\text{IIB}} = \frac{\sqrt{\lambda}}{4\pi} \int d\tau d\sigma \left[\partial_a X \partial^a X + \bar{\theta} \Gamma^a (D + F_5) \theta \, \partial_a X + \bar{\theta} \theta \bar{\theta} \theta \, \partial_a X \partial^a X + \cdots \right]$$

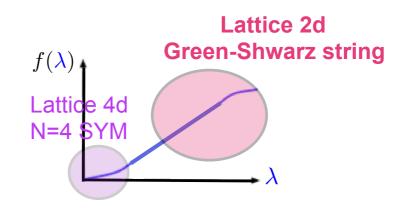
under control perturbatively (and with some caveats).

Is there a genuine 2d QFT way to cover the finite-coupling region?

Motivation

Lattice techniques in AdS/CFT: existing program on 4d gauge theory, good results at weak coupling.

[Catterall et al.]



Lattice for superstring world-sheet in $AdS_5 \times S^5$

[McKeown Roiban, 2013]

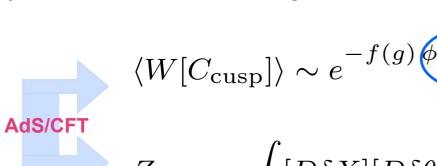
- 2d: computationally cheap
- no world-sheet susy (Green-Schwarz)
- all gauge symmetries are fixed (no formulation à la Wilson), only scalar fields (also anti-commuting)

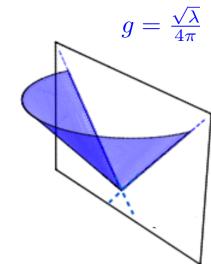
Non-trivial 2d qft with strong coupling analytically known, finite-coupling (numerical) prediction.

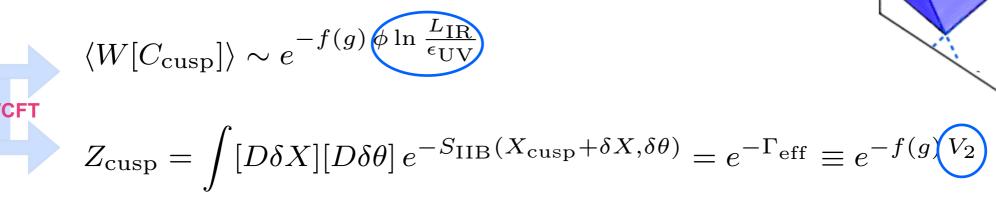
The cusp anomaly of $\mathcal{N}=4$ SYM from string theory

Completely solved via integrability. [Beisert Eden Staudacher 2006]

Expectation value of a light-like cusped Wilson loop



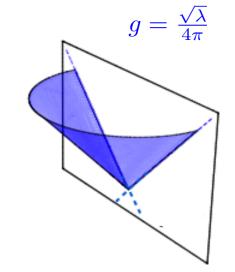




The cusp anomaly of $\mathcal{N}=4$ SYM from string theory

Completely solved via integrability. [Beisert Eden Staudacher 2006]

Expectation value of a light-like cusped Wilson loop



$$\langle W[C_{\rm cusp}] \rangle \sim e^{-f(g)} \phi \ln \frac{L_{\rm IR}}{\epsilon_{\rm UV}}$$

$$\langle W[C_{\rm cusp}] \rangle \sim e^{-f(g)} \phi \ln \frac{L_{\rm IR}}{\epsilon_{\rm UV}}$$

$$Z_{\rm cusp} = \int [D\delta X] [D\delta \theta] \, e^{-S_{\rm IIB}(X_{\rm cusp} + \delta X, \delta \theta)} = e^{-\Gamma_{\rm eff}} \equiv e^{-f(g)V_2}$$

String partition function with "cusp" boundary conditions, evaluated perturbatively

$$\begin{split} f(g)|_{g\to 0} &= 8g^2 \left[1 - \frac{\pi^2}{3} g^2 + \frac{11\,\pi^4}{45} g^4 - \left(\frac{73}{315} + 8\,\zeta_3 \right) g^6 + \ldots \right] \quad \text{[Bern et al. 2006]} \\ f(g)|_{g\to \infty} &= 4g \left[1 - \frac{3\ln 2}{4\pi} \frac{1}{g} - \frac{K}{16\pi^2} \frac{1}{g^2} + \ldots \right] \quad \quad \text{[Giombi et al. 2009]} \end{split}$$

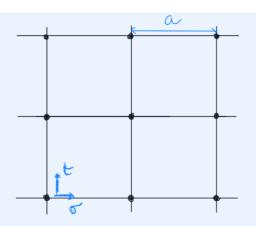
A lattice approach prefers expectation values

$$\langle S_{\text{cusp}} \rangle = \frac{\int [D\delta X][D\delta \Psi] S_{\text{cusp}} e^{-S_{\text{cusp}}}}{\int [D\delta X][D\delta \Psi] e^{-S_{\text{cusp}}}} = -g \frac{d \ln Z_{\text{cusp}}}{dg} \equiv g \frac{V_2}{8} f'(g)$$

Simulations in lattice QFT

Spacetime grid with lattice spacing a, size L=N a, points $\xi=(an_1,an_2)\equiv a$ n and fields $\phi\equiv\phi_n$

- a) natural cutoff for the momenta, $-\frac{\pi}{a} < p_{\mu} \leq \frac{\pi}{a}$
- b) path integral measure $[D\phi] = \prod_n d\phi_n$.



Then $\int \prod_n d\phi_n e^{-S_{\text{discr}}}$ can be studied via Monte Carlo methods.

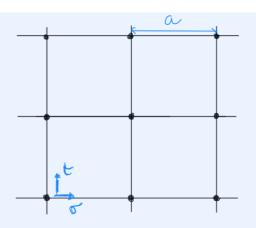
Ensamble of configurations $\{\Phi_1, \ldots, \Phi_K\}$, with $P[\Phi_i] = \frac{e^{-S_E[\Phi_i]}}{Z}$:

Ensemble average
$$\langle A \rangle = \int [D\Phi] \, P[\Phi] \, A[\Phi] = \frac{1}{K} \sum_{i=1}^K \, A[\Phi_i] + \mathcal{O} \left(\frac{1}{\sqrt{K}} \right)$$

Simulations in lattice QFT

Spacetime grid with lattice spacing a, size $L=N\,a$, points $\xi=(an_1,an_2)\equiv a\,n$ and fields $\phi\equiv\phi_n$

- a) natural cutoff for the momenta, $-\frac{\pi}{a} < p_{\mu} \leq \frac{\pi}{a}$
- b) path integral measure $[D\phi] = \prod_n d\phi_n$.



Then $\int \prod_n d\phi_n e^{-S_{\text{discr}}}$ can be studied via Monte Carlo methods.

Ensamble of configurations $\{\Phi_1, \ldots, \Phi_K\}$, with $P[\Phi_i] = \frac{e^{-S_E[\Phi_i]}}{Z}$:

Ensemble average
$$\langle A \rangle = \int [D\Phi] \, P[\Phi] \, A[\Phi] = \frac{1}{K} \sum_{i=1}^K \, A[\Phi_i] + \mathcal{O} \left(\frac{1}{\sqrt{K}} \right)$$

Graßmann-odd fields are formally integrated out: $P[\Phi_i] = \frac{e^{-S_E[\Phi_i]}\det\mathcal{O}_F}{Z}$

action must be quadratic in fermions (linearization via auxiliary fields):

determinant must be definite positive

$$\det O_F \longrightarrow \sqrt{\det(\mathcal{O}_F \, \mathcal{O}_F^{\dagger})} = \int \!\! D\zeta \, D\bar{\zeta} \, e^{-\int d^2\xi \, \bar{\zeta} (\mathcal{O}_F \, \mathcal{O}_F^{\dagger})^{-\frac{1}{4}} \zeta}$$
potential ambiguity!

Green-Schwarz string in the null cusp background

After linearization the Lagrangian reads $(m \sim P_+)$

$$\mathcal{L}_{\text{cusp}} = \left| \partial_t x + \frac{m}{2} x \right|^2 + \frac{1}{z^4} \left| \partial_s x - \frac{m}{2} x \right|^2 + \left(\partial_t z^M + \frac{m}{2} z^M \right)^2 + \frac{1}{z^4} (\partial_s z^M - \frac{m}{2} z^M)^2 + \frac{1}{2} \phi^2 + \frac{1}{2} (\phi_M)^2 + \psi^T O_F \psi ,$$

- ▶ 8 bosonic coordinates: $x, x^*, z^M \ (M = 1, \dots, 6), z = \sqrt{z_M z^M};$
- ▶ 7 auxiliary fields ϕ , ϕ^M ($M = 1, \dots, 6$);
- ▶ 8 fermionic variables, $\psi \equiv (\theta^i, \theta_i, \eta^i, \eta_i)$, and $\theta^i = (\theta_i)^{\dagger}$, $\eta^i = (\eta_i)^{\dagger}$, i = 1, 2, 3, 4

$$O_{F} = \begin{pmatrix} 0 & i\partial_{t} & -\mathrm{i}\rho^{M}\left(\partial_{s} + \frac{m}{2}\right)\frac{z^{M}}{z^{3}} & 0 \\ \mathrm{i}\partial_{t} & 0 & 0 & -\mathrm{i}\rho_{M}^{\dagger}\left(\partial_{s} + \frac{m}{2}\right)\frac{z^{M}}{z^{3}} \\ \mathrm{i}\frac{z^{M}}{z^{3}}\rho^{M}\left(\partial_{s} - \frac{m}{2}\right) & 0 & 2\frac{z^{M}}{z^{4}}\rho^{M}\left(\partial_{s}x - m\frac{x}{2}\right) & i\partial_{t} - A^{T} \\ 0 & \mathrm{i}\frac{z^{M}}{z^{3}}\rho_{M}^{\dagger}\left(\partial_{s} - \frac{m}{2}\right) & \mathrm{i}\partial_{t} + A & -2\frac{z^{M}}{z^{4}}\rho_{M}^{\dagger}\left(\partial_{s}x^{*} - m\frac{x}{2}^{*}\right) \end{pmatrix}$$

$$A = \frac{1}{\sqrt{2}z^2} \phi_M \rho^{MN} z_N - \frac{1}{\sqrt{2}z} \phi + i \frac{z_N}{z^2} \rho^{MN} \partial_t z^M$$

and ρ^M are off-diagonal blocks of SO(6) Dirac matrices $\gamma^M \equiv \begin{pmatrix} 0 & \rho_M^\dagger \\ \rho^M & 0 \end{pmatrix}$. Manifest global symmetry is $SO(6) \times SO(2)$.

Discretization and lattice perturbation theory

A naive discretization $p_{\mu} \to \overset{\circ}{p}_{\mu} \equiv \frac{1}{a} \sin(a \, p_{\mu})$ leads to fermion doublers, i.e. identical propagator at 2^d points: $(0,0), (\frac{\pi}{a},0), (0,\frac{\pi}{a})(\frac{\pi}{a},\frac{\pi}{a})$

$$\det K_F = \left(\frac{\sin^2(p_1 \, a)}{a^2} + \frac{\sin^2(p_2 \, a)}{a^2} + \frac{m^2}{4}\right)^8$$

Discretization and lattice perturbation theory

A naive discretization $p_{\mu} \to \overset{\circ}{p}_{\mu} \equiv \frac{1}{a} \sin(a \, p_{\mu})$ leads to fermion doublers, i.e. identical propagator at 2^d points: $(0,0), (\frac{\pi}{a},0), (0,\frac{\pi}{a})(\frac{\pi}{a},\frac{\pi}{a})$

$$\det K_F = \left(\frac{\sin^2(p_1 \, a)}{a^2} + \frac{\sin^2(p_2 \, a)}{a^2} + \frac{m^2}{4}\right)^8$$

Add to the action a "Wilson term", $K_F + W \equiv K_F^W$ such that

- ► SO(6) invariance is maintained
- No (additional) complex phase is introduced
- For $a \to 0$ continuum perturbation theory is reproduced

Using its determinant in the one-loop effective action $\Gamma^{(1)}_{\mathrm{LAT}} = \ln \frac{\det K_B}{\det K_F^W}$

$$\Gamma_{\text{LAT}}^{(1)} = \frac{V_2}{2 a^2} \int_{-\pi}^{+\pi} \frac{d^2 p}{(2\pi)^2} \ln \left[\frac{4^8 (\sin^2 \frac{p_0}{2} + \sin^2 \frac{p_1}{2})^5 (\sin^2 \frac{p_0}{2} + \sin^2 \frac{p_1}{2} + \frac{M^2}{8})^2 (\sin^2 \frac{p_0}{2} + \sin^2 \frac{p_1}{2} + \frac{M^2}{4})}{\left(\sin^2 p_0 + \sin^2 p_1 + \frac{M^2}{4} + 4\sin^4 \frac{p_0}{2} + 4\sin^4 \frac{p_1}{2}\right)^8} \right]$$

$$\stackrel{a \to 0}{\longrightarrow} - \frac{3 \ln 2}{8\pi} V_2 \, m^2$$
, cusp anomaly at strong coupling $(|r| = 1, M = m \, a.)$

Line of constant physics

In the continuum, "effective" masses undergo a finite renormalization

$$m_x^2(g) = \frac{m^2}{2} \left(1 - \frac{1}{8g} + \mathcal{O}(g^{-2}) \right) \tag{*}$$

The dimensionless physical quantity to keep constant when $a \to 0$ is

$$L^2 \, m_x^2 = {\rm const} \, , \qquad {\rm leading \ to} \qquad (L \, m)^2 \equiv (N M)^2 = {\rm const} \, ,$$

if (\star) is still true on the lattice and g is not (infinitely) renormalized.

Continuum limit $a \to 0$

We assume that, on the lattice, no further scale but a is present.

A generic observable

$$F_{\text{LAT}} = F_{\text{LAT}}(g, N, M) = F(g) + \mathcal{O}\left(\frac{1}{N}\right) + \mathcal{O}\left(e^{-MN}\right)$$

where

$$g = \frac{\sqrt{\lambda}}{4\pi}$$
, $N = \frac{L}{a}$, $M = a m$.

Recipe:

- $\blacktriangleright fix g$
- ightharpoonup fix MN, large enough so to to keep small finite volume effects
- evaluate $F_{\rm LAT}$ for $N = 6, 8, 10, 12, 16, \cdots$
- ▶ obtain F(g) extrapolating to $N \to \infty$.

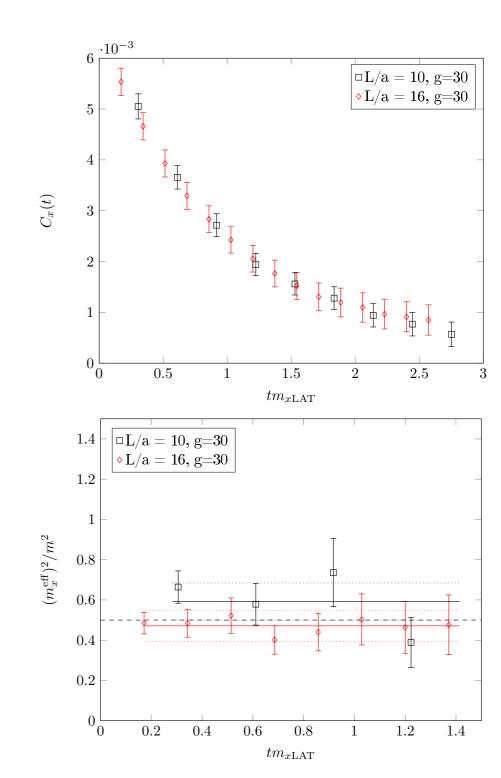
Measure I: mass of x boson

From the correlator of the x fields

$$C_x(t) = \sum_{s_1, s_2} \langle x(t, s_1) x^*(0, s_2) \rangle$$
$$= c_0 e^{-t m_{xLAT}} + \dots$$

extract the
$$x$$
-mass
$$m_{x \perp AT} = \lim_{T, t \to \infty} m^{\text{leff}_x}$$

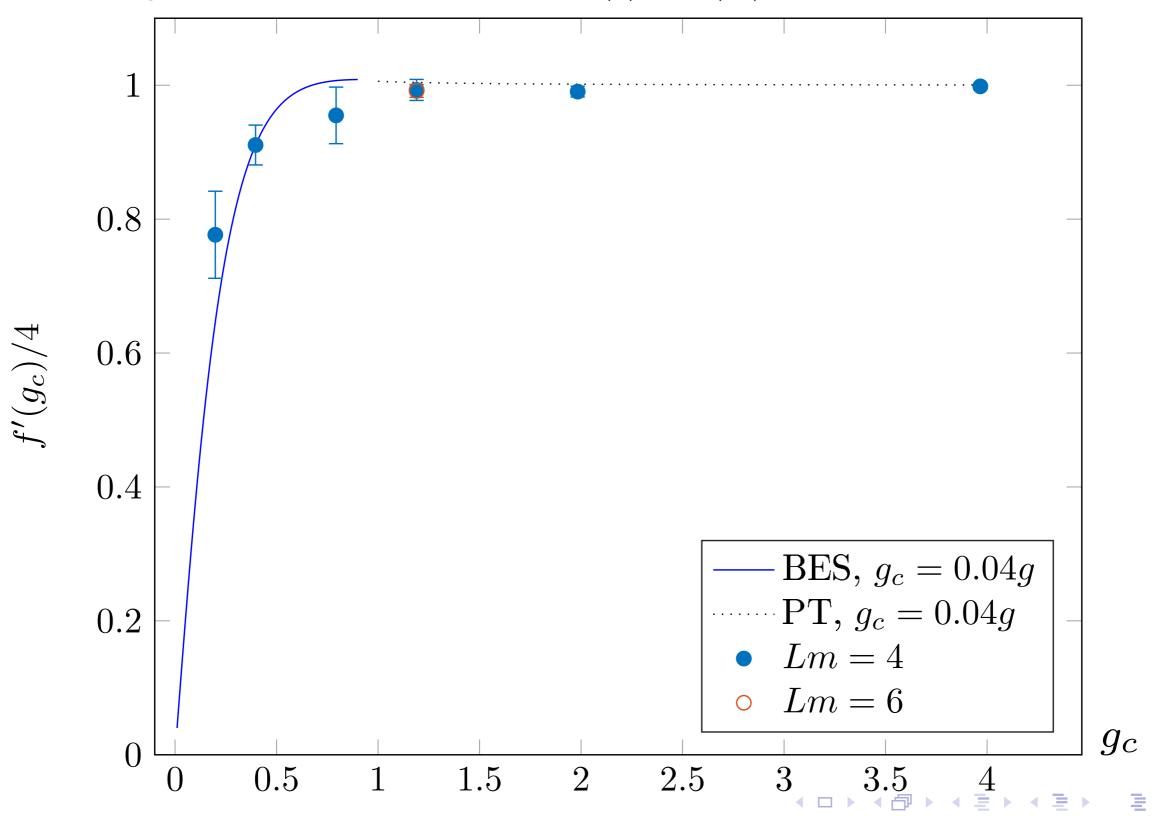
$$\equiv \lim_{T, t \to \infty} \frac{1}{a} \log \frac{C_x(t; 0)}{C_x(t; 1)}$$



No infinite renormalization occurring, no need of tuning m to adjust for it. This corroborates our choice of line of constant physics.

Measure II: (derivative of the) cusp anomaly

Having subtracted quadratic divergences in $\langle S_{\rm LAT} \rangle \sim f'(g)_{\rm LAT} + c(g) N^2$ (set to zero in dim. reg.), assume $g = \alpha g_c$: then from $f'(g) = f'(g_c)_c$ is $g_c = 0.04g$.



The phase

After linearization $\mathcal{L}_F = \psi^T \mathcal{O}_F \psi$, integrating fermions leads to a complex Pfaffian $\operatorname{Pf} O_F = |(\det O_F)^{\frac{1}{2}}| e^{i\theta}$.

The phase is encoded in the linearization

$$e^{-\int (i\,\eta\rho\eta)^2} \sim e^{-\frac{b^2}{4\,a}} = \int dx \, e^{-a\,x^2 + i\,b\,x}$$

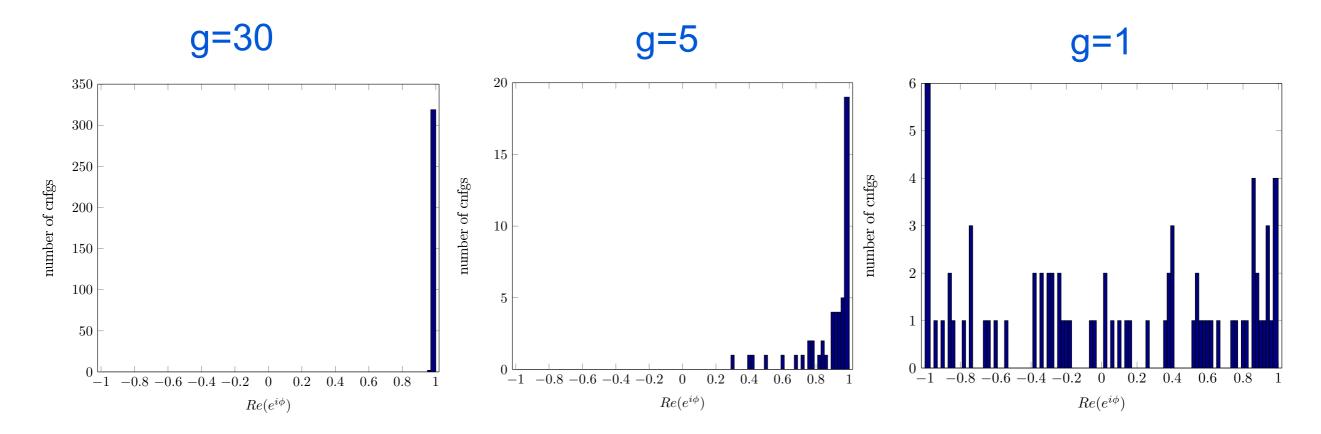
and can be treated via reweighting: incorporate the non positive part of the Boltzmann weight into the observable

$$\langle \mathcal{O} \rangle_{\text{reweight}} = \frac{\langle \mathcal{O} e^{i\theta} \rangle_{\theta=0}}{\langle e^{i\theta} \rangle_{\theta=0}}$$

It gives meaningful results as long as the phase does not average to zero.

The phase

In the interesting (g = 1) region the phase has a flat distribution.



Alternative algorithms: active field of study, no general proof of convergence.

Alternative linearization: in progress.

Conclusions

Solving a non-trivial 4d QFT is hard reduce the problem via AdS/CFT:

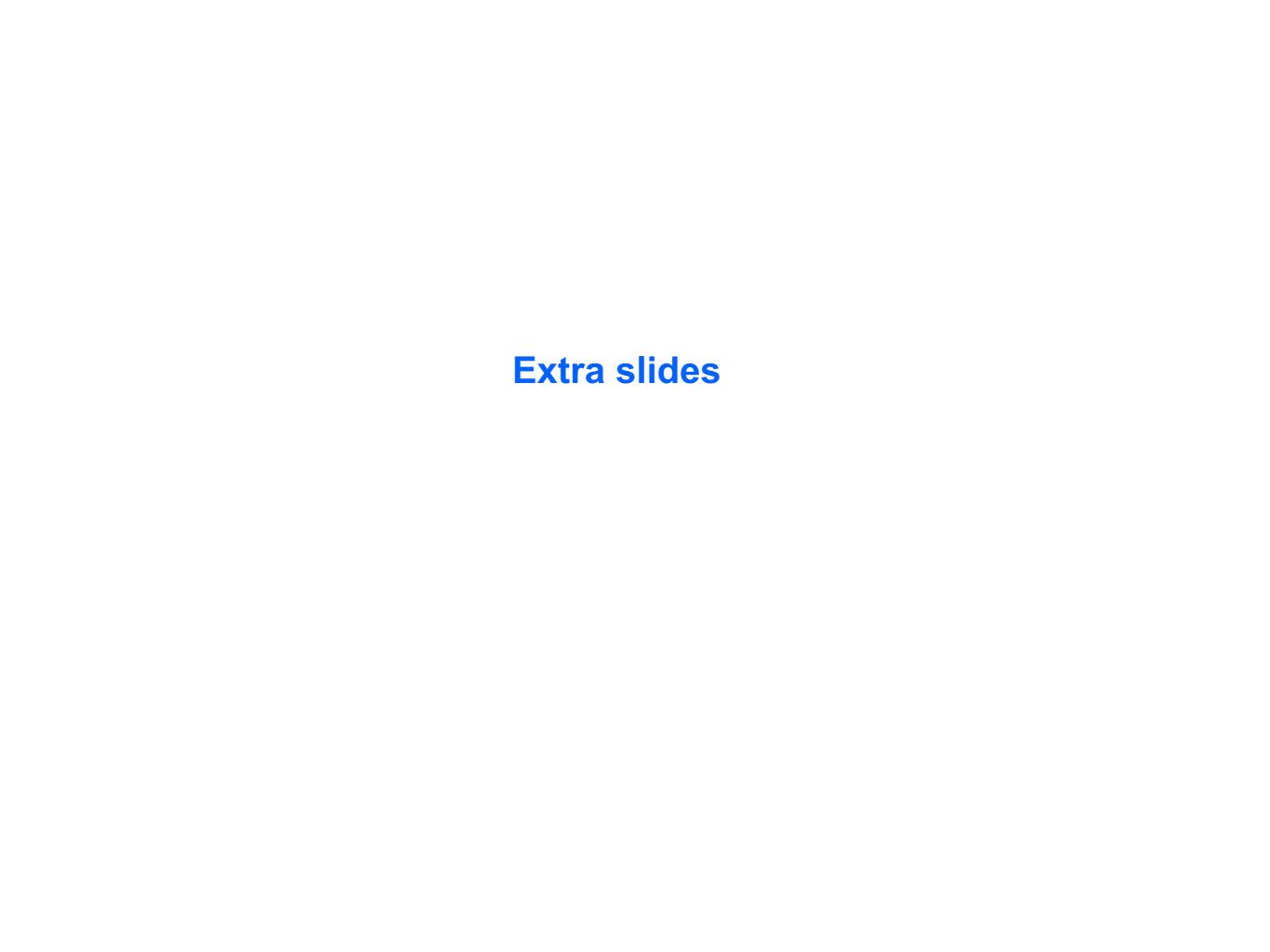
solve a non-trivial 2d QFT.

Lattice simulation of gauge-fixed Green-Schwarz string, two discretizations and Rational Hybrid Monte Carlo:

- Observables measured are in good agreement with expectation at large g;
- ightharpoonup At small g, complex phase and related sign problem.

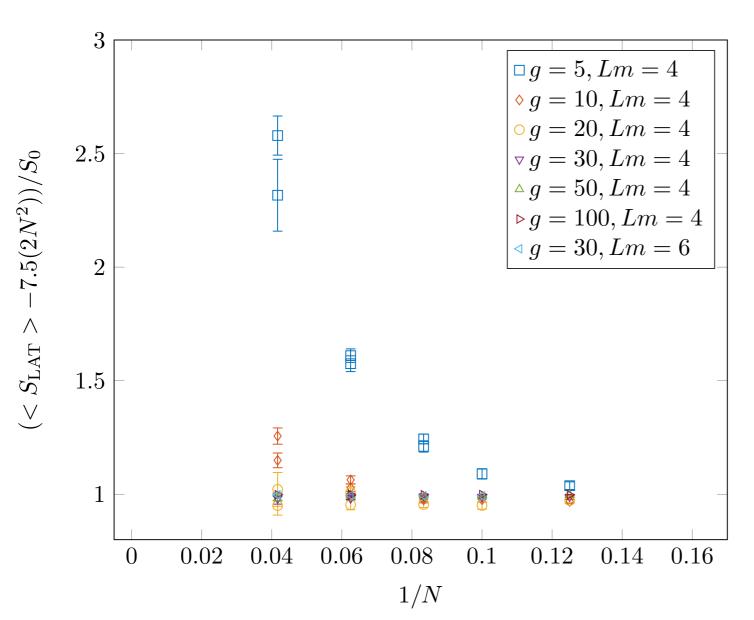
Next

- Alternative linearization, phase-free
- Further observables, different backgrounds (AdS₄/CFT₃)
- Correlators of string vertex operators (gauge theory 3-point functions)



Simulation: the cusp action

In measuring $\langle S_{\text{cusp}} \rangle \equiv g \, \frac{V_2 \, m^2}{8} \, f'(g)$ quadratic divergences appear.



$$\langle S_{\text{LAT}} \rangle = S_0 \frac{f'(g)_{\text{LAT}}}{4} + \frac{c(g)}{2} (2N^2)$$

 $S_0 = g N^2 M^2$

In continuum perturbation theory dim. reg. set them to zero. Here, expected mixing of the Lagrangian with lower dimension operator

$$\mathcal{O}(\phi(s))_r = \sum_{\alpha: [O_{\alpha}] < D} Z_{\alpha} \, \mathcal{O}_{\alpha}(\phi(x)) \,, \qquad Z_{\alpha} \sim \Lambda^{(D - [\mathcal{O}_{\alpha}])} \sim a^{-(D - [\mathcal{O}_{\alpha}])}$$

Roiban McKeown 2013

