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Statistical Aspects of Quantum State Monitoring

Statistics of « quantum trajectories », 
quantum jumps and spikes,… with applications.

(A pinch of quantum mechanics, a drop of probability, ...)
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If the atomic frequency is detuned from the cavity mode by d/2p
with jdj$V0, emission and absorption of photons by the probe
atoms are suppressed owing to the adiabatic variation of V(z) when
the atom crosses the gaussian cavity mode (seeMethods). The atom–
field coupling results in shifts of the atomic and cavity frequencies9.
The atomic shift depends on the field intensity and thus provides
QND information on the photon number n. Following a proposal
made in refs 14 and 15, our aim is to read this information by an
interferometric method and tomonitor the jumps of n between 0 and
1 under the effect of thermal fluctuations and relaxation in the cavity.

Before entering C, the atoms are prepared in a superposition of e
and g by a classical resonant field in the auxiliary cavity R1 (see Fig. 1).
During the atom–cavity interaction, this superposition accumulates
a phase W(n,d). The atomic coherence at the exit of C is probed by
subjecting the atoms to a second classical resonant field in R2, before
detecting them in the state-selective counter D. The combination of
R1, R2 and D is a Ramsey interferometer. The probability of detecting
the atom in g is a sine function of the relative phase of the fields in R1

and R2. This phase is adjusted so that the atom is ideally found in g if
C is empty (n5 0). The detuning d/2p is set at 67 kHz, corresponding
toW(1,d)2W(0,d)5 p. As a result, the atom is found in e if n5 1. As
long as the probability of finding more than one photon remains
negligible, e thus codes for the one-photon state, j1æ, and g for the
vacuum, j0æ. The probability of finding two photons in a thermal
field at T5 0.8 K is only 0.3%, and may be neglected in a first
approximation.

We first monitor the field fluctuations in C. Figure 2a (top trace)
shows a 2.5 s sequence of 2,241 detection events, recording the birth,
life and death of a single photon. At first, atoms are predominantly
detected in g, showing that C is in j0æ. A sudden change from g to e
in the detection sequence at t5 1.054 s reveals a jump of the field
intensity, that is, the creation of a thermal photon, which disappears

at t95 1.530 s. This photon has survived 0.476 s (3.7 cavity lifetimes),
corresponding to a propagation of about 143,000 km between the
cavity mirrors.

The inset in Fig. 2a zooms into the detection sequence between
times t15 0.87 s and t25 1.20 s, and displays more clearly the indi-
vidual detection events. Imperfections reduce the contrast of the
Ramsey fringes to 78%. There is a pgj15 13% probability of detecting
an atom in g if n5 1, and a pej05 9% probability of finding it in e
if n5 0. Such misleading detection events, not correlated to real
photon number jumps, are conspicuous in Fig. 2a and in its inset.
To reduce their influence on the inferred n value, we apply a simple
error correction scheme. For each atom, n is determined by a major-
ity vote involving this atom and the previous seven atoms (see
Methods). The probabilities for erroneous n5 0 (n5 1) photon
number assignments are reduced below 1.43 1023 (2.53 1024)
respectively per detected atom. The average duration of this mea-
surement is 7.83 1023 s, that is, Tc/17. The bottom trace in Fig. 2a
shows the evolution of the reconstructed photon number. Another
field trajectory is presented in Fig. 2b. It displays two single-photon
events separated by a 2.069 s time interval during which C remains in
vacuum. By probing the field non-destructively in real time, we real-
ize a kind of ‘Maxwell demon’, sorting out the time intervals during
which the thermal fluctuations are vanishing.

Analysing 560 trajectories, we find an average photon number
n05 0.0636 0.005, slightly larger thannt5 0.0496 0.004, the thermo-
dynamic value at the cavity mirror temperature, 0.806 0.02 K.
Attributing the excess photon noise entirely to a residual heating of
the field by the atomic beam yields an upper bound to the emission
rate per atom of 1024. This demonstrates the efficient suppression of
atomic emission due to the adiabatic variation of the atom–field
coupling. This suppression is a key feature that makes possible many
repetitions of the QND measurement. Methods based on resonant
phase shifts have much larger emission rates, in the 1021 range per
atom3. Non-resonant methods in which the detector is permanently
coupled to the cavity12 have error rates of the order of V0

2/d 2, and
would require much larger d/V0 ratios to be compatible with the
observation of field quantum jumps.

In a second experiment, we monitor the decay of a single-photon
Fock state prepared at the beginning of each sequence. We initialize
the field in j0æ by first absorbing thermal photons with ,10 atoms
prepared in g and tuned to resonance with the cavity mode (residual
photon number ,0.0036 0.003). We then send into the cavity a
single atom in e, also resonant with C. Its interaction time is adjusted
so that it undergoes half a Rabi oscillation, exits in g and leaves C in
j1æ. The QND probe atoms are then sent across C. Figure 3a shows a
typical single photon trajectory (signal inferred by the majority vote)
and Fig. 3b–d presents the averages of 5, 15 and 904 such trajectories.
The staircase-like feature of single events is progressively smoothed
out into an exponential decay, typical of the evolution of a quantum
average.

We have neglected so far the probability of finding two photons in
C. This is justified, to a good approximation, by the low n0 value. A
precise statistical analysis reveals, however, the small probability of
two-photon events, which vanishes only at 0 K. When C is in j1æ, it
decays towards j0æ with the rate (11 n0)/Tc. This rate combines
spontaneous (1/Tc) and thermally stimulated (n0/Tc) photon
annihilation. Thermal fluctuations can also drive C into the two-
photon state j2æ at the rate 2n0/Tc (the factor of 2 is the square of
the photon creation operator matrix element between j1æ and j2æ).
The total escape rate from j1æ is thus (11 3n0)/Tc, a fraction 2n0/
(11 3n0)< 0.10 of the quantum jumps out of j1æ being actually
jumps towards j2æ.

In this experiment, the detection does not distinguish between j2æ
and j0æ. The incremental phase shift W(2,d)2W(1,d) is 0.88p for
d/2p5 67 kHz . The probability of detecting an atom in g when C
is in j2æ is ideally [12 cos(0.88p)]/25 0.96, indistinguishable from 1
within the experimental errors. Since the probability for n. 2 is
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Figure 2 | Birth, life and death of a photon. a, QND detection of a single
photon. Red and blue bars show the raw signal, a sequence of atoms detected
in e or g, respectively (upper trace). The inset zooms into the region where
the statistics of the detection events suddenly change, revealing the quantum
jump from |0æ to | 1æ. The photon number inferred by a majority vote over
eight consecutive atoms is shown in the lower trace, revealing the birth, life
and death of an exceptionally long lived photon. b, Similar signals showing
two successive single photons, separated by a long time interval with cavity
in vacuum.
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Quantum jumps of light recording the birth and death
of a photon in a cavity
Sébastien Gleyzes1, Stefan Kuhr1{, Christine Guerlin1, Julien Bernu1, Samuel Deléglise1, Ulrich Busk Hoff1,
Michel Brune1, Jean-Michel Raimond1 & Serge Haroche1,2

A microscopic quantum system under continuous observation
exhibits at random times sudden jumps between its states. The
detection of this quantum feature requires a quantum non-
demolition (QND) measurement1–3 repeated many times during
the system’s evolution. Whereas quantum jumps of trapped mas-
sive particles (electrons, ions or molecules4–8) have been observed,
this has proved more challenging for light quanta. Standard
photodetectors absorb light and are thus unable to detect the same
photon twice. It is therefore necessary to use a transparent counter
that can ‘see’ photons without destroying them3. Moreover, the
light needs to be stored for durations much longer than the QND
detection time. Here we report an experiment in which we fulfil
these challenging conditions and observe quantum jumps in the
photon number.Microwave photons are stored in a superconduct-
ing cavity for times up to half a second, and are repeatedly probed
by a stream of non-absorbing atoms. An atom interferometer
measures the atomic dipole phase shift induced by the non-
resonant cavity field, so that the final atom state reveals directly
the presence of a single photon in the cavity. Sequences of hun-
dreds of atoms, highly correlated in the same state, are interrupted
by sudden state switchings. These telegraphic signals record the
birth, life and death of individual photons. Applying a similar
QND procedure to mesoscopic fields with tens of photons should
open new perspectives for the exploration of the quantum-to-
classical boundary9,10.

A QND detection1–3 realizes an ideal projective measurement that
leaves the system in an eigenstate of the measured observable. It can
therefore be repeated many times, leading to the same result until the
system jumps into another eigenstate under the effect of an external
perturbation. For a single trapped ion, laser-induced fluorescence
provides an efficient measurement of the ion’s internal state5–7. The
ion scatters many photons while evolving on a transition between a
ground sublevel and an excited one. This fluorescence stops and
reappears abruptly when the ion jumps in and out of a third, meta-
stable level, decoupled from the illumination laser. Quantum jumps
have also been observed between states of individual molecules8 and
between the cyclotron motional states of a single electron in a
Penning trap4. As a common feature, all these experiments use fields
to probe quantum jumps in matter. Our experiment realizes for the
first time the opposite situation, in which the jumps of a field oscil-
lator are revealed via QND measurements performed with matter
particles.

We exploit light shifts resolved at the single-photon level, which
are experienced by an oscillating dipole in the field of a high-quality-
factor (high-Q) cavity. This resolution requires a huge dipole
polarizability, which is achieved only with very special systems, such
as circular Rydberg atoms10 or superconducting qubits11,12 coupled to

microwave photons. In our experiment, the measurement of the
light shift induced by the field on Rydberg atoms is repeated
more than 100 times within the average decay time of individual
photons.

The core of the experiment is a photon box (see Fig. 1), which
is an open cavity C made up of two superconducting niobium
mirrors facing each other (the Fabry–Perot configuration)13. The
cavity is resonant at 51.1 GHz and cooled to 0.8 K. Its damping
time, as measured by the ring-down of a classical injected micro-
wave field, is Tc5 0.1296 0.003 s, corresponding to a light travel
distance of 39,000 km, folded in the 2.7 cm space between the
mirrors. The QND probes are rubidium atoms, prepared in circular
Rydberg states10, travelling along the z direction transverse to the
cavity axis. They cross C one at a time, at a rate of 900 s21 with a
velocity v5 250m s21 (see Methods). The cavity C is nearly res-
onant with the transition between the two circular states e and g
(principal quantum numbers 51 and 50, respectively). The posi-
tion- (z-)dependent atom–field coupling V(z)5V0exp(2z2/w2)
follows the gaussian profile of the cavity mode (waist w5 6mm).
The maximum coupling, V0/2p5 51 kHz, is the rate at which the
field and the atom located at the cavity centre (z5 0) exchange a
quantum of energy, when the initially empty cavity is set at res-
onance with the e–g transition10.

1Laboratoire Kastler Brossel, Département de Physique de l’Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France. 2Collège de France, 11 placeMarcelin Berthelot,
75231 Paris Cedex 05, France. {Present address: Johannes Gutenberg Universität, Institut für Physik, Staudingerweg 7, 55128 Mainz, Germany.
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Figure 1 | Experimental set-up. Samples of circular Rydberg atoms are
prepared in the circular state g in box B, out of a thermal beam of rubidium
atoms, velocity-selected by laser optical pumping. The atoms cross the cavity
C sandwiched between the Ramsey cavities R1 and R2 fed by the classical
microwave source S, before being detected in the state selective field
ionization detector D. The R1–C–R2 interferometric arrangement,
represented here cut by a vertical plane containing the atomic beam, is
enclosed in a box at 0.8 K (not shown) that shields it from thermal radiation
and static magnetic fields.
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If the atomic frequency is detuned from the cavity mode by d/2p
with jdj$V0, emission and absorption of photons by the probe
atoms are suppressed owing to the adiabatic variation of V(z) when
the atom crosses the gaussian cavity mode (seeMethods). The atom–
field coupling results in shifts of the atomic and cavity frequencies9.
The atomic shift depends on the field intensity and thus provides
QND information on the photon number n. Following a proposal
made in refs 14 and 15, our aim is to read this information by an
interferometric method and tomonitor the jumps of n between 0 and
1 under the effect of thermal fluctuations and relaxation in the cavity.

Before entering C, the atoms are prepared in a superposition of e
and g by a classical resonant field in the auxiliary cavity R1 (see Fig. 1).
During the atom–cavity interaction, this superposition accumulates
a phase W(n,d). The atomic coherence at the exit of C is probed by
subjecting the atoms to a second classical resonant field in R2, before
detecting them in the state-selective counter D. The combination of
R1, R2 and D is a Ramsey interferometer. The probability of detecting
the atom in g is a sine function of the relative phase of the fields in R1

and R2. This phase is adjusted so that the atom is ideally found in g if
C is empty (n5 0). The detuning d/2p is set at 67 kHz, corresponding
toW(1,d)2W(0,d)5 p. As a result, the atom is found in e if n5 1. As
long as the probability of finding more than one photon remains
negligible, e thus codes for the one-photon state, j1æ, and g for the
vacuum, j0æ. The probability of finding two photons in a thermal
field at T5 0.8 K is only 0.3%, and may be neglected in a first
approximation.

We first monitor the field fluctuations in C. Figure 2a (top trace)
shows a 2.5 s sequence of 2,241 detection events, recording the birth,
life and death of a single photon. At first, atoms are predominantly
detected in g, showing that C is in j0æ. A sudden change from g to e
in the detection sequence at t5 1.054 s reveals a jump of the field
intensity, that is, the creation of a thermal photon, which disappears

at t95 1.530 s. This photon has survived 0.476 s (3.7 cavity lifetimes),
corresponding to a propagation of about 143,000 km between the
cavity mirrors.

The inset in Fig. 2a zooms into the detection sequence between
times t15 0.87 s and t25 1.20 s, and displays more clearly the indi-
vidual detection events. Imperfections reduce the contrast of the
Ramsey fringes to 78%. There is a pgj15 13% probability of detecting
an atom in g if n5 1, and a pej05 9% probability of finding it in e
if n5 0. Such misleading detection events, not correlated to real
photon number jumps, are conspicuous in Fig. 2a and in its inset.
To reduce their influence on the inferred n value, we apply a simple
error correction scheme. For each atom, n is determined by a major-
ity vote involving this atom and the previous seven atoms (see
Methods). The probabilities for erroneous n5 0 (n5 1) photon
number assignments are reduced below 1.43 1023 (2.53 1024)
respectively per detected atom. The average duration of this mea-
surement is 7.83 1023 s, that is, Tc/17. The bottom trace in Fig. 2a
shows the evolution of the reconstructed photon number. Another
field trajectory is presented in Fig. 2b. It displays two single-photon
events separated by a 2.069 s time interval during which C remains in
vacuum. By probing the field non-destructively in real time, we real-
ize a kind of ‘Maxwell demon’, sorting out the time intervals during
which the thermal fluctuations are vanishing.

Analysing 560 trajectories, we find an average photon number
n05 0.0636 0.005, slightly larger thannt5 0.0496 0.004, the thermo-
dynamic value at the cavity mirror temperature, 0.806 0.02 K.
Attributing the excess photon noise entirely to a residual heating of
the field by the atomic beam yields an upper bound to the emission
rate per atom of 1024. This demonstrates the efficient suppression of
atomic emission due to the adiabatic variation of the atom–field
coupling. This suppression is a key feature that makes possible many
repetitions of the QND measurement. Methods based on resonant
phase shifts have much larger emission rates, in the 1021 range per
atom3. Non-resonant methods in which the detector is permanently
coupled to the cavity12 have error rates of the order of V0

2/d 2, and
would require much larger d/V0 ratios to be compatible with the
observation of field quantum jumps.

In a second experiment, we monitor the decay of a single-photon
Fock state prepared at the beginning of each sequence. We initialize
the field in j0æ by first absorbing thermal photons with ,10 atoms
prepared in g and tuned to resonance with the cavity mode (residual
photon number ,0.0036 0.003). We then send into the cavity a
single atom in e, also resonant with C. Its interaction time is adjusted
so that it undergoes half a Rabi oscillation, exits in g and leaves C in
j1æ. The QND probe atoms are then sent across C. Figure 3a shows a
typical single photon trajectory (signal inferred by the majority vote)
and Fig. 3b–d presents the averages of 5, 15 and 904 such trajectories.
The staircase-like feature of single events is progressively smoothed
out into an exponential decay, typical of the evolution of a quantum
average.

We have neglected so far the probability of finding two photons in
C. This is justified, to a good approximation, by the low n0 value. A
precise statistical analysis reveals, however, the small probability of
two-photon events, which vanishes only at 0 K. When C is in j1æ, it
decays towards j0æ with the rate (11 n0)/Tc. This rate combines
spontaneous (1/Tc) and thermally stimulated (n0/Tc) photon
annihilation. Thermal fluctuations can also drive C into the two-
photon state j2æ at the rate 2n0/Tc (the factor of 2 is the square of
the photon creation operator matrix element between j1æ and j2æ).
The total escape rate from j1æ is thus (11 3n0)/Tc, a fraction 2n0/
(11 3n0)< 0.10 of the quantum jumps out of j1æ being actually
jumps towards j2æ.

In this experiment, the detection does not distinguish between j2æ
and j0æ. The incremental phase shift W(2,d)2W(1,d) is 0.88p for
d/2p5 67 kHz . The probability of detecting an atom in g when C
is in j2æ is ideally [12 cos(0.88p)]/25 0.96, indistinguishable from 1
within the experimental errors. Since the probability for n. 2 is
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Figure 2 | Birth, life and death of a photon. a, QND detection of a single
photon. Red and blue bars show the raw signal, a sequence of atoms detected
in e or g, respectively (upper trace). The inset zooms into the region where
the statistics of the detection events suddenly change, revealing the quantum
jump from |0æ to | 1æ. The photon number inferred by a majority vote over
eight consecutive atoms is shown in the lower trace, revealing the birth, life
and death of an exceptionally long lived photon. b, Similar signals showing
two successive single photons, separated by a long time interval with cavity
in vacuum.
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Progressive field-state collapse and
quantum non-demolition photon counting
Christine Guerlin1, Julien Bernu1, Samuel Deléglise1, Clément Sayrin1, Sébastien Gleyzes1, Stefan Kuhr1{,
Michel Brune1, Jean-Michel Raimond1 & Serge Haroche1,2

The irreversible evolution of a microscopic system under measurement is a central feature of quantum theory. From an
initial state generally exhibiting quantum uncertainty in the measured observable, the system is projected into a state in
which this observable becomes precisely known. Its value is random, with a probability determined by the initial system’s
state. The evolution induced by measurement (known as ‘state collapse’) can be progressive, accumulating the effects of
elementary state changes. Here we report the observation of such a step-by-step collapse by non-destructively measuring
the photon number of a field stored in a cavity. Atoms behaving as microscopic clocks cross the cavity successively. By
measuring the light-induced alterations of the clock rate, information is progressively extracted, until the initially uncertain
photon number converges to an integer. The suppression of the photon number spread is demonstrated by correlations
between repeated measurements. The procedure illustrates all the postulates of quantum measurement (state collapse,
statistical results and repeatability) and should facilitate studies of non-classical fields trapped in cavities.

The projection of a microscopic system into an eigenstate of the
measured observable reflects the change of knowledge produced by
themeasurement. Information is either acquired in a single step, as in
a Stern–Gerlach spin-component measurement1, or in an incremen-
tal way, as in spin-squeezing experiments2,3. A projective measure-
ment is called ‘quantum non-demolition’4–8 (QND) when the
collapsed state is invariant under the system’s free unitary evolution.
Sequences of repeated measurements then yield identical results and
jumps between different outcomes reveal an external perturbation7,8.

Various QND measurements have been realized on massive part-
icles. The motional state of a trapped electron has been measured
through the current induced in the trapping electrodes9. The internal
state of trapped ions has been read out, directly by way of laser-
induced fluorescence10, or indirectly through quantum gate opera-
tions entangling them to an ancillary ion11. Collective spin states of an
atomic ensemble have been QND-detected through its dispersive
interaction with light12.

QND light measurements are especially challenging, as photons
are detected with photosensitive materials that usually absorb them.
Photon demolition is however avoidable13. In non-resonant pro-
cesses, light induces nonlinear dispersive effects14 in a medium, with-
out real transitions. Photons can then be detected without loss.
Dispersive schemes have been applied to detect the fluctuations of
a signal light beam by the phase shifts it induces on a probe beam
interacting with the same medium15,16. Neither these methods, nor
alternative ones based on the noiseless duplication of light by optical
parametric amplifiers17,18, have been able, so far, to pin down photon
numbers.

Single-photon resolution requires an extremely strong light–
matter coupling, optimally achieved by confining radiation inside a
cavity. This is the domain of cavity quantum electrodynamics19–21, in
which experiments attaining single-quantum resolution have been
performed with optical22,23 or microwave photons, the latter being
coupled either to Rydberg atoms24–26 or to superconducting junc-
tions27. In a QND experiment, cavity losses should be negligible

during a sequence of repeated measurements. We have realized a
superconducting cavity with a very long field damping time28, and
used it to detect repeatedly a single photon29. Here, we demonstrate
with this cavity a general QND photon counting method applied to a
microwave field containing several photons. It implements a variant
of a procedure proposed in refs 30 and 31, and illustrates all the
postulates of a projective measurement1.

A stream of atoms crosses the cavity and performs a step-by-step
measurement of the photon number-dependent alteration of the
atomic transition frequency known as the ‘light shift’. We follow
the measurement-induced evolution from a coherent state of light
into a Fock state of well-defined energy, containing up to 7 photons.
Repeating the measurement on the collapsed state yields the same
result, until cavity damping makes the photon number decrease. The
measured field energy then decays by quantum jumps along a stair-
case-like cascade, ending in vacuum.

In this experiment, light is an object of investigation repeatedly
interrogated by atoms. Its evolution under continuous non-
destructivemonitoring is directly accessible tomeasurement,making
real the stochastic trajectories of quantum field Monte Carlo simula-
tions20,32. Repeatedly counting photons in a cavity as marbles in a
box opens novel perspectives for studying non-classical states of
radiation.

An atomic clock to count photons

To explain our QND method, consider the thought experiment
sketched in Fig. 1a. A photon box, similar to the contraption ima-
gined in another context by Einstein and Bohr1, contains a few
photons together with a clock whose rate is affected by the light.
Depending upon the photon number n, the hand of the clock points
in different directions after a given interaction time with the field.
This time is set so that a photon causes a p/q angular shift of the hand
(here q is an integer). There are 2q values (0, 1, …2q21) of the
photon number corresponding to regularly spaced directions of the
hand, spanning 360u (Fig. 1a shows the hand’s positions for q5 4 and

1Laboratoire Kastler Brossel, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, 24 rue Lhomond, 75231 Paris Cedex 05, France. 2Collège de France, 11 place Marcelin
Berthelot, 75231 Paris Cedex 05, France. {Present address: Johannes Gutenberg Universität, Institut für Physik, Staudingerweg 7, 55128 Mainz, Germany.
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Observing the field-state collapse

We have applied this procedure to a coherent microwave field at
51.1GHz stored in an ultrahigh-Q Fabry–Pérot cavity made of
niobium-coated superconducting mirrors28. Our set-up is described
in ref. 29. The cavity has a very long damping time Tc5 0.130 s. It is
cooled to 0.8 K (average thermal photon number nt5 0.05). The field
is prepared by coupling a short microwave pulse into C (by way of
diffraction on the mirrors’ edges28). Its photon number distribution
and average photon number, n05 3.826 0.04, are inferred from the
experimental data (see below). Our single-photon-sensitive spin-
clocks are circular Rydberg atoms of rubidium. They cross C succes-
sively, separated on average by 2.333 1024 s. Parameters are adjusted
to realize a,p/4 clock shift per photon (Methods), corresponding to
eight positions of the spin on the Bloch sphere (Fig. 1b). This con-
figuration is adapted to count photon numbers between 0 and 7. For
n05 3.82, the probability for n$ 8 is 3.5%.

Four phases wi (i5 a, b, c, d), corresponding to directions pointing
approximately along the spin states associated with n5 6, 7, 0, 1, are
used, in random order, for successive atoms (Methods). A sequence
of j values can be decoded only when combined with the correspond-
ing phase choices, in analogy with the detection basis reconciliation
of quantum key distribution protocols36. Figure 2a shows the data
from the first 50 detected atoms, presented as (j, i) doublets, for two
independent detection sequences performed on the same initial field.

From these real data, we compute the products of functions
PN(n)5P(k5 1…N) [A1Bcos(nW2wi(k)1 j(k)p)]. The A, B, W
and wi values are given by Ramsey interferometer calibration

(Methods). The evolutions of PN(n), displayed as functions of n
treated as a continuous variable, are shown in Fig. 2b forN increasing
from 1 to 50. The PN(n) functions converge into narrow distribu-
tions whose widths decrease as more information is acquired. These
functions are determined uniquely by the experimental data. Their
evolution is independent of any a priori knowledge of the initial
photon distribution. The data sequence itself, however, depends of
the unknown state of the field, which the measurement reveals.

InsertingPN(n) into equation (2) and extending the procedure to
N5 110, we obtain the evolution of the photon number histograms
for these two realizations (Fig. 2c). These histograms show how our
knowledge of the field state evolves in a singlemeasuring sequence, as
inferred from baysian logic. The initial distributions (P0(n)5 1/8)
are flat because the only knowledge assumed at the beginning of each
sequence is the maximum photon number nmax. Data are analysed
after the experiment, but PN(n) could also be obtained in real time.
The progressive collapse of the field into a Fock state (here jn5 5æ or
jn5 7æ) is clearly visible. Information extracted from the first 20 to 30
atoms leaves an ambiguity between two competing Fock states. After
,50 atoms (detected within,0.012 s), each distribution has turned
into a main peak with a small satellite, which becomes totally neg-
ligible at the end of the two sequences.

Reconstructing photon number statistics

Repeatedly preparing the field in the same coherent state, we have
analysed 2,000 independent sequences, eachmade of 110 (j, i) doublets
recorded within Tm< 0.026 s. This measuring time is a compromise.
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Figure 2 | Progressive collapse of
field into photon number state.
a, Sequences of (j, i) data (first 50
atoms) produced by two
independent measurements.
b, Evolution of PN(n) for the two
sequences displayed in a, when N
increases from 1 to 50, n being
treated as a continuous variable
(integral of PN(n) normalized to
unity). c, Photon number
probabilities plotted versus photon
and atom numbers n and N. The
histograms evolve, as N increases
from 0 to 110, from a flat
distribution into n5 5 and n5 7
peaks.
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Observing the field-state collapse

We have applied this procedure to a coherent microwave field at
51.1GHz stored in an ultrahigh-Q Fabry–Pérot cavity made of
niobium-coated superconducting mirrors28. Our set-up is described
in ref. 29. The cavity has a very long damping time Tc5 0.130 s. It is
cooled to 0.8 K (average thermal photon number nt5 0.05). The field
is prepared by coupling a short microwave pulse into C (by way of
diffraction on the mirrors’ edges28). Its photon number distribution
and average photon number, n05 3.826 0.04, are inferred from the
experimental data (see below). Our single-photon-sensitive spin-
clocks are circular Rydberg atoms of rubidium. They cross C succes-
sively, separated on average by 2.333 1024 s. Parameters are adjusted
to realize a,p/4 clock shift per photon (Methods), corresponding to
eight positions of the spin on the Bloch sphere (Fig. 1b). This con-
figuration is adapted to count photon numbers between 0 and 7. For
n05 3.82, the probability for n$ 8 is 3.5%.

Four phases wi (i5 a, b, c, d), corresponding to directions pointing
approximately along the spin states associated with n5 6, 7, 0, 1, are
used, in random order, for successive atoms (Methods). A sequence
of j values can be decoded only when combined with the correspond-
ing phase choices, in analogy with the detection basis reconciliation
of quantum key distribution protocols36. Figure 2a shows the data
from the first 50 detected atoms, presented as (j, i) doublets, for two
independent detection sequences performed on the same initial field.

From these real data, we compute the products of functions
PN(n)5P(k5 1…N) [A1Bcos(nW2wi(k)1 j(k)p)]. The A, B, W
and wi values are given by Ramsey interferometer calibration

(Methods). The evolutions of PN(n), displayed as functions of n
treated as a continuous variable, are shown in Fig. 2b forN increasing
from 1 to 50. The PN(n) functions converge into narrow distribu-
tions whose widths decrease as more information is acquired. These
functions are determined uniquely by the experimental data. Their
evolution is independent of any a priori knowledge of the initial
photon distribution. The data sequence itself, however, depends of
the unknown state of the field, which the measurement reveals.

InsertingPN(n) into equation (2) and extending the procedure to
N5 110, we obtain the evolution of the photon number histograms
for these two realizations (Fig. 2c). These histograms show how our
knowledge of the field state evolves in a singlemeasuring sequence, as
inferred from baysian logic. The initial distributions (P0(n)5 1/8)
are flat because the only knowledge assumed at the beginning of each
sequence is the maximum photon number nmax. Data are analysed
after the experiment, but PN(n) could also be obtained in real time.
The progressive collapse of the field into a Fock state (here jn5 5æ or
jn5 7æ) is clearly visible. Information extracted from the first 20 to 30
atoms leaves an ambiguity between two competing Fock states. After
,50 atoms (detected within,0.012 s), each distribution has turned
into a main peak with a small satellite, which becomes totally neg-
ligible at the end of the two sequences.

Reconstructing photon number statistics

Repeatedly preparing the field in the same coherent state, we have
analysed 2,000 independent sequences, eachmade of 110 (j, i) doublets
recorded within Tm< 0.026 s. This measuring time is a compromise.
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field into photon number state.
a, Sequences of (j, i) data (first 50
atoms) produced by two
independent measurements.
b, Evolution of PN(n) for the two
sequences displayed in a, when N
increases from 1 to 50, n being
treated as a continuous variable
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unity). c, Photon number
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and atom numbers n and N. The
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Two « typical » experiments (from Haroche’s group)



-- How to measure photons without destroying them?
-- How to record the cavity states?
-- How to extract/read the information?
-- What does this p.d.f. represent?
-- Why/How does it evolve? What about the quantum Zeno effect?
-- What does continuous-in-time quantum measurement mean?
-- How to use it? How to describe it? What are his characters?
-- etc…

— Quantum non-demolition measurements 
— Quantum state monitoring 
— Emergence of quantum jumps 
— Beyond quantum jumps: quantum spikes.

« Esquisse d’un plan »:

Questions (hopefully motivating…)



4

Cavity QED « non demolition » experiments.

Photons in a cavity

Probe measurement 
apparatus

Preparation 
of the probes

Courtesy of  LKB-ENS.

— Setup: Testing light/photon (the quantum system) with matter (the quantum probes).

System (S) = photons in a cavity. 
Probes (P) = Rydberg atoms (two state systems)

— In this setting: Effective rotation of the probe effective spins. U = exp

⇥
i ✓ N

photon

�z
⇤

— Indirect measurements: => Direct (von Neumann) measurements on probes (ancillas)

Entanglement: => partial information on the system.
Displacement of the von Neumann cut.



— Indirect (weak) measurements :

Probes

Q-system Read-out 
Information

State up-dating

— « Quantum trajectories » : 

Indirect measurements and Quantum trajectories.

Information from probes measurements : (s1, · · · , sn, · · · )

[Carmichael, Caves-Milburn, Castin-Dalibard-Molner, Zoller,….]

System state  
  up-dating :

 (also random because of Q.M.) 

⇢ ! Fs ⇢F †
s

⇡(s)
with probability ⇡(s) = Tr(Fs ⇢F

†
s )



— Non-demolition measurements: 
    Suppose that the probe-system interaction preserves 
     a basis of system states, alias « pointer states »: 

— Evolution of the diagonal matrix elements 
    of the system density matrix (in the pointer basis):

acting on probespointer states

Can this help understanding the progressive collapse (I) ?

Qn(k) := ⇢n(k, k)

U =
X

k

|kihk|⌦ Uk

with probabilityQn(k) ! Qn+1(k) =
p(s|k)Qn(k)

⇡n(s)

— Evolution (up-dating) deduced from Q.M. only. 
    It depends on the readout signal « s ».

interaction

⇡n(s) =
X

k

p(s|k)Qn(k)



Can this help understanding the progressive collapse (II) ?

— Random evolution of the diagonal matrix elements 
    of the system density matrix (in the pointer basis):

— « Convergence/Progressive collapse »:

— « Mesoscopic measurement apparatus » & Quantum-to-Classical transition.

[Bauer-Bernard]

- The sequences            converge a.s. and in L1 (for any k).

- The limit distribution is peaked: Q1(k) = lim
n!1

Qn(k) = �k=k1

- The target is distributed according to the initial distribution: P[k1 = p] = Q0(p)
- The convergence to the target is exponentially fast:

Qn(k)/Qn(k1) ' exp[�nS(k1|k)]

with rates equal the relative entropies S(k1|k) = �
P

s p(s|k1) log[

p(s|k)
p(s|k1) ]

Qn(k)

- Different evolution for different read-outs. 
- Convergence towards a peaked distribution. 
- With random target (as expected).

Qn(k) := ⇢n(k, k) ! Qn+1(k)



— Monitoring: 

    — In quantum dots circuit:

J. Appl. Phys 113, 136507 (2013)

— In cavity QED (see above):

Monitoring Quantum systems… with applications.
Time continuous indirect  (weak) measurements.

— Ubiquitous & key to manipulate and control quantum systems.

— In circuit QED :

of corresponding level transitions in the detector signal dur-
ing a time s. In our case, we choose the barrier GC and count
the number of transitions L! R minus the number of transi-
tions R! L. If s is large compared to the typical dwell time
of an electron inside the DQD, the electron passing the cen-
ter barrier will typically reach one of the leads where it equi-
librates with the thermal bath at temperature T. Then each n
categorizes a set of system trajectories with equal energy dis-
sipation neVDQD which can be positive or negative depend-
ing on the direction of the charge flow with respect to the
direction of the source–drain voltage VDQD.
Correspondingly, the entropy production is given by DS ¼
neVDQD=T and the FT for our system18,21,33 reads

PsðnÞ
Psð$nÞ

¼ eneVDQD=kBT : (2)

III. TEMPERATURE DEPENDENCE

In Fig. 2(c), we show an experimentally determined his-
togram PsðnÞ as it is appearing in Eq. (2). The histogram is
based on the counting analysis of 3000 GQPC time segments
each with length s ¼ 2 s and was measured at an electronic
temperature of T ¼ 330 mK. The choice of s is such to mini-
mize the combined error originating from the imperfect
long-time limit13,18,21,33 (favoring large s) and from statistics
(favoring small s). The histogram was obtained at a source–
drain bias of VDQD ¼ 20 lV and features a nonzero mean
value hni % m1 corresponding to a nonzero average DQD
current IDQD ¼ em1=s. Here, we have introduced the notion

mk for the k-th moment of PsðnÞ. The variance m2 $ m2
1 of

the histogram is proportional to the noise in IDQD—we will
come back to this point in the discussion of the fluctuation
relations. Despite the positive average m1, for some of the
time segments, charge flow is against the applied bias (n < 0),
which results in a temporary decrease of the system entropy.

Measurements like the one in Fig. 2(c) were carried out
at temperatures 500 mK and 700 mK to test the temperature
dependence of Eq. (2). In addition to these measurements
at VDQD ¼ 20 lV, measurements at VDQD ¼ 0 lV served to
check the behavior of the system in equilibrium. This set of
data is shown in Figs. 3(a)–3(c), where the data points are
the natural logarithm of the left-hand side of Eq. (2) meas-
ured at VDQD ¼ 0 lV and VDQD ¼ 20 lV, respectively. The
expression ln½PsðnÞ=Psð$nÞ' follows the expected linear
behavior close to the theoretical curve neVDQD=kBT (solid
lines).

IV. FINITE-BANDWIDTH CORRECTION

In the non-zero bias case, there is a systematic deviation
of 20%–30% in the slope. This can be understood by taking
into account the limited bandwidth of the charge detection.
A charge switching event in the DQD is detected in the QPC
only after a reaction time of 1=Cdet, which in our case is
determined both by the bandwidth of the measurement elec-
tronics and by the details of the analysis algorithm. If the
charge state switches back too fast, the event is missed.
Following ideas of Ref. 35, Utsumi et al.30 calculated the

FIG. 2. (a) GQPC time trace recorded at a positive DQD source–drain volt-
age. The three discrete levels are assigned to the DQD charge states L, R,
and 0. (b) Diagram of the DQD states and transitions. To count the number n
of electrons that pass the center DQD barrier, we count the number of transi-
tions L! R minus R! L. (c) Histogram of the electron number n obtained
from the analysis of 3000 time segments of length s ¼ 2 s. The histogram
was measured at finite DQD source–drain voltage VDQD ¼ 20 lV and has a
nonzero mean value hni which converts into a nonzero DQD current IDQD.
The variance of the histogram, m2 $ m2

1, determines the zero-frequency cur-
rent noise spectral density SI of the DQD. Fig. 2(a) reprinted with permis-
sion from K€ung et al., Phys. Rev. X 2, 011001 (2012). Copyright (2012) by
the American Physical Society.

FIG. 3. (a)–(c) Comparison of experimental data with theory for three differ-
ent bath temperatures. The data points correspond to the left-hand side of
Eq. (2) and describe the probability ratio of forward (þn, entropy-produc-
ing) and backward ($n, entropy-consuming) processes for a given n. The
solid lines mark the expected exponential behavior expðneVDQD=kBTÞ for
the two source–drain voltages 0 lV (dark blue) and 20 lV (red). If the finite
bandwidth of the detector is taken into account30,35 (dashed lines), experi-
ment and theory agree within the statistical uncertainty of the data (error
bars: estimated standard deviation). Reprinted with permission from K€ung
et al., Phys. Rev. X 2, 011001 (2012). Copyright (2012) by the American
Physical Society.

136507-3 K€ung et al. J. Appl. Phys. 113, 136507 (2013)
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conductance measurement:

B. Huard’s group @ ENS:

Control of 
QuantumTrajectories  
on the Bloch sphere

— In circuit QED :

I. Siddiqi’s group @Berkeley

Q-bit QuantumTrajectories 

M. Devoret’s group @ Yale; etc.



[Belavkin, Barchielli, Diosi, Milburn-Wiseman,…..]

— Deterministic system evolution plus random evolution due to quantum measurement.

- The first term is a deterministic, unitary or dissipative, system evolution. 
- The second is the random evolution (SDEs) due to the measurement back-action. 
Their forms are explicitly known (no mystery).

How to model continuous quantum measurements?

— Continuous version of discrete repeated weak measurements  
      (with short time interval).

— Same equation, but with different interpretation (!), as `objective collapse models’ 
of GRW-type.

d⇢ = (d⇢)sys + (d⇢)meas, during time dt

random (from Q.M.).deterministic

Say: (d⇢)meas = Lmeas(⇢) dt+Mmeas(⇢) dBt

[Ghirardi-Rimini-Weber, Bassi,…]

(Brownian motion)



Continuous measurement & emergence of quantum jumps.

— First observed  in atomic fluorescence in 1986 
    but any mesoscopic experiment since then.

— Quantum jumps: known to the father of quantum mechanics (e.g. N. Bohr) but…

E. Shroedinger: « If we are going to stick to this damned quantum-jumping, then I 
regret I ever had anything to do with quantum theory ». 
N. Bohr’s answer: «  We are glad you did! ».

— In continuous measurement:  
    They emerge from the competition between the deterministic system evolution  

and the random evolution due to weak quantum measurement.

d⇢ = (d⇢)sys + (d⇢)meas, -> They are generic.

They emerge… (from a diffusive behavior, they are not built in)… because we have moved 
the von Neumann cut… and they have a finer structure.



Emergence of quantum jumps (I).

— Monitoring of a coherent Q-bit (a two-state system) : 
     Monitoring an observable not commuting with the hamiltonian of a two-state system.

The system state stays pure… but jumps.                             

Qt := h+|z ⇢t |+iz

Two time scales: ⌧meas := ��2

⌧
evol

:= ⌦�1

Hamiltonian: Observable:H =
⌦

2
�y O = �z

Two processes are in competition: unitary evolution and measurement

(Information rate)

(Rabi frequency)

— Evolution of Q with increasing information rate:

— Evolution equation:

⌧
flip

= ⌧2
evol

/⌧
meas

= (�/⌦)2 (Zeno freezing)

Let

d⇢t = �i
⌦

2
[�y, ⇢t]dt�

�2

2
[�z[�z, ⇢t]]dt+ �(�z⇢t + ⇢t�z � 2tr(�z⇢t)) dBt (Brownian motion)

[… as gamma increases….]



Emergence of quantum jumps (II).

 - Jump rates are computable form the microscopic data 

- If dissipative dynamics: jump rate is independent on the measurement strength. 
- If unitary dynamics: jump rate is dependent on measurement strength (via Zeno freezing).

— At strong measurement, these processes converge (weakly) to Markov chains:

- The strong measurement limit is a strong noise limit. 

Q = population in lowest energy state.

⌧
flip

= ⌧
thermal relax

(no Zeno effect)

dQt = � (peq �Qt) dt+ �Qt(1�Qt) dBt

- All N-point functions converge to that of a specified Markov chain on the pointer states.
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[… as gamma increases….]

— A Qu-bit, in contact with a thermal bath, with its energy continuously monitored.



13

A finer structure: quantum spikes 

— Let us look again at the quantum trajectories

A finer structure survives, 
besides the jumps: the spikes.

- Spikes of height bigger a than a cutoff are countable.  
- They have infinitesimal time duration, of order gamma^{-2}

For a thermal Qu-bit:For a coherent Qu-bit:

— They have to be taken into account say when controlling Q-bits 
  (as otherwise the `controller’ may trigger to often).



— Spike fluctuations in the monitoring survive at infinite information rate:  
Jumps are always dressed with spikes.

In the large information rate limit,  
- Quantum jumps have a scale invariant statistics; 
- They form a Point Poisson Process with 

d⌫ = �̃
dQ

Q2
dt

Quantum spikes survive… 

This is not in contradiction with the fact that all finite distributions of Qt   
converge to those of the jump Markov chain.

[Bauer-Bernard-Tilloy]— Claim: 



Internal structure of the spikes?…
— Spikes are (almost) instantaneous (time scale of order          )��2

—> Instead of the `natural’ time parametrization used a `effective’ time  
only sensible to state variation. Say:

⌧ :=

X

n

Tr[(�⇢n)
2
] or ⌧ :=

X

n

Tr[(�⇢n)
2
diag]

with natural time parametrization parametrized by the quadratic variation

Claim:  
For a monitored Q-bit, quantum trajectories at strong measurement parametrized by 
their quadratic variation are reflected Brownian samples.

— Can this be experimentally observed/verified ?……

[Bauer-Bernard-Tilloy]



Thank you.
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Application to control: a mesoscopic Maxwell deamon

— Possible control of quantum system based on the fact that dissipative and hamiltonian 
    channels don’t react the same to the Zeno effect: 
-> adaptive measurement used to close hamiltonian channels but not dissipative ones.

— Application to generate quantum flux in a double quantum dot geometry.

 <— a DQD, 
 its idealisation —>

hamiltonian

dissipative dissipative

Observation

DQD occupation measurement  
via QPC conductivity.

— By changing the intensity of the observation depending on the information 
   on the electron position one has, we may control the electron flux. 
For instance, we may measure more strongly when it is « known » that the electron is on the 
right dot and lightly when it is « believed » to be on the left —> net flux from left to right.

— Opening/closing the tunnel channel similarly as in Maxwell daemon experiments.



A Classical Toy Model: ‘Bayesian’ measurements
— Imagine a ‘classical’ particle in a box, with a probability to hope from left to right and back. 

One ‘observes’ the system by taking blurry photos  
and ‘estimates’ the particle position from the photos.

the estimated 
   position Q

the photo’s 
     datathe real 

particle 
position

Left: R=1 
Right: R=0

— Bad photos => some probability to have ‘(un)-correct’ information on the particle position:

— Estimated position (at time n given the past photo’s data): 
Qn := P(particle on the left at time n

��
pictures before n)

P(� = 1|particle on the left) =

1 + ✏

2

, P(� = 1|particle on the right) =

1� ✏

2

Epsilon codes how the value of delta is correlated to that of true position R.



How to code the jumps and spikes statistics? (II)

— But, asymptotically, the spike statistics is « geometrical and universal »:

— The jumps and spike statistics can be computed from the SDE of the quantum trajectories, 
and these are not universal  d⇢t =

�
i[H, ⇢t] + LN (⇢t)

�
dt + DN (⇢t) dBt,

Claim: Let Q be the diagonal component of the density matrix. 
The maximum (minima) of Q on a quantum trajectory (at strong measurement) 
form a point Poisson process with intensity 

d⌫ = � dt [�(1�Q) dQ+ dQ
Q2 ]

Reconstructed by 
using the Poisson 
point process

Reconstructed by 
solving the SDE

— For spikes emerging from Q=0. 



Discrete: 
system evolution + weak 
measurement at high frequency.

Continuous: 
system evolution + continuous  
monitoring at high rate.

⌧ :=

X

n

Tr[(�⇢n)
2
] or ⌧ :=

X

n

Tr[(�⇢n)
2
diag]

A finer structure: quantum spikes 



Internal structure of the spikes?…

— A geometrical construction:

A Brownian sample, reflected at 0 and 1, 
parametrized with its natural time.

The same example but parametrized by 
its local time spend at 0 and 1.

— Claim:

— Hint for a proof:

Change time (quadratic variation):

Yield a new SDE              : 

Matters only at Z=0-> reflection

Z has to be a Brownian motion reflected a zero —> dZ⌧ = dL(0)
⌧ + dW⌧

Local time at 0

[Tanaka formula]

By identification: 

(          )
a (new) Brownian motion 

Look again at the linear equation (close to Q=0):


