Statistical Aspects of Quantum State Monitoring

(A pinch of quantum mechanics, a drop of probability, ...)

Statistics of « quantum trajectories »,
quantum jumps and spikes, ... with applications.

D.B., with M. Bauer and A. Tilloy
Florence, Mai 2016




Two « typical » experiments (from Haroche's group)

Quantum jumps of light recording the birth and death

of a photon in a cavity
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Michel Brune', Jean-Michel Raimond' & Serge Haroche'*
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Figure 2 | Birth, life and death of a photon. a, QND detection of a single

photon. Red and blue bars show the raw signal, a sequence of atoms detected
in e or g, respectively (upper trace). The inset zooms into the region where
the statistics of the detection events suddenly change, revealing the quantum
jump from |0) to |1). The photon number inferred by a majority vote over

Courtesy of LKB-ENS.

Progressive field-state collapse and
1o quantum non-demolition photon counting
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Figure 2 | Progressive collapse of
field into photon number state.
unity). ¢, Photon number
probabilities plotted versus photon
and atom numbers n and N. The
histograms evolve, as N increases
from 0 to 110, from a flat
distribution inton =5and n =7
peaks.
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Questions (hopefully motivating...)

— How to measure photons without destroying them?

— How to record the cavity states?

— How to extract/read the information?

—What does this p.d.f. represent?

- Why/How does it evolve? What about the quantum Zeno effect?
—What does continuous-in-time quantum measurement mean?

— How to use it? How to describe it? What are his characters?

— etc...

« Esquisse d'un plan »:

§ — Quantum non-demolition measurements

' — Quantum state monitoring

— Emergence of quantum jumps

— Beyond quantum jumps: quantum spikes.



Cavity QED « non demolition » experiments.

— Setup: Testing light/photon (the quantum system) with matter (the quantum probes).

System (S) = photons in a cavity.
Probes (P) = Rydberg atoms (two state systems)

Preparation Probe measurement
of the probes apparatus

Photons in a cavity

Courtesy of LKB-ENS.

— Indirect measurements: => Direct (von Neumann) measurements on probes (ancillas)
Displacement of the von Neumann cut.

Entanglement: => partial information on the system.

— In this setting: Effective rotation of the probe effective spins. U = exp [z 0 Nphoton az]
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Indirect measurements and Quantum trajectories.

— Indirect (weak) measurements :

Q-system I Read-out

- o~ Information
®

‘1’
FIE;
\ State up-dating

— K Quan‘rum Trajector'ies » . [Carmichael, Caves-Milburn, Castin-Dalibard-Molner, Zoller,....]

Pr%

Information from probes measurements : (S1,- -+, S,, )

FypF]
()
(also random because of Q.M.) with Fy == (s|Ul)

System state with probability 7 (s) = Tr(F, p F))

up-dating :




Can this help understanding the progressive collapse (I) ?

— Non-demolition measurements:
Suppose that the probe-system interaction preserves
a basis of system states, alias « pointer states »:

U= Z ‘k><k’ ® Uy in’rer'ac‘rioz

pointer states acting on probes

— Evolution of the diagonal matrix elements k) -— Lk
of the system density matrix (in the pointer basis): Qn( ) Pn( ’ )

p(s|k) Qn(k)

Tn(S)

Qn(k) = Qni1(k) = with probability 7, (s) = Zp(s\k) Qn(k)

— Evolution (up-dating) deduced from Q.M. only.
It depends on the readout signal « s ».



Can this help understanding the progressive collapse (IT) ?

— Random evolution of the diagonal matrix elements () (k) := p,, (k, k) — Q,i1(k)
of the system density matrix (in the pointer basis):

- Different evolution for different read-outs.
- Convergence towards a peaked distribution.
- With random target (as expected).

- The sequences @), (k) converge a.s. and in L1 (for any k).
- The limit distribution is peaked: Qoo(k) = lim @n (k) = 0k

o

k
- The target is distributed according to the initial distribution: P[ 0o — ] = Qo (p)

- The convergence to the target is exponentially fast:

Qn(k)/Qn(koo) = exp[—nS(kuo|k)]

with rates equal the relative entropies S(koolk) = — 3=, p(slkoo) log[ Lot

— « Mesoscopic measurement apparatus » & Quantum-to-Classical transition.



Monitoring Quantum systems.. with applications.

— Monitoring: Time continuous indirect (weak) measurements.
— Ubiquitous & key to manipulate and control quantum systems.

— In cavity QED (see above): — In quantum dots circuit:
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How to model continuous quantum measurements?

detector

200 1920039

— Continuous version of discrete repeated weak measurements o 1t 141
(with short time interval). @D 1 L

[Belavkin, Barchielli, Diosi, Milburn-Wiseman,.....]

i

— Deterministic system evolution plus random evolution due to quantum measurement.
dp = (dp)sys + (dp)meas, during time dt
deterministic random (from Q.M.).

- The first term is a deterministic, unitary or dissipative, system evolution.
- The second is the random evolution (SDEs) due to the measurement back-action.
Their forms are explicitly known (no mystery).

SC(Y: (dp)meas — Lmeas (P) dt + Mmeas (,0) dBt

(Brownian motion)

— Same equation, but with different interpretation (!), as “objective collapse models’
of GRW-type. [Ghirardi-Rimini-Weber, Bassi,...]



Continuous measurement & emergence of quantum jumps.

— Quantum jumps: known to the father of quantum mechanics (e.g. N. Bohr) but...

E. Shroedinger: « If we are going to stick to this damned quantum-jumping, then I
regret I ever had anything to do with quantum theory »,
N. Bohr's answer: « We are glad you did! »,

PHYSICAL REVIEW LETTERS

— First observed in atomic fluorescence in 1986
but any mesoscopic experiment since then.

— In continuous measurement:
They emerge from the competition between the deterministic system evolution
and the random evolution due to weak quantum measurement.

dp = (dp)sys + (dp)meas,  -> They are generic.

They emerge... (from a diffusive behavior, they are not built in)... because we have moved
the von Neumann cut... and they have a finer structure.



Emergence of quantum jumps (I).

— Monitoring of a coherent Q-bit (a two-state system) :

Monitoring an observable not commuting with the hamiltonian of a two-state system.

Q

Hamiltonian: H=—o, Observable:

2

O =0,

Two processes are in competition: unitary evolution and measurement

2

Two time scales: (Information rate)

¢ Tmeas +— v

. Tevol 1= 01 (Rabi frequency)

— Evolution of Q with increasing information rate:
Let Qt ‘= <‘|“z Pt H‘>z

The system state stays pure... but jumps.

Tip = e2vol/7_meas — (7/9)2 (Zeno freezing)

— Evolution equation:
2

0
dpr = —i5 |oy, pe]dt — %[Uz 02, pi]ldt + (0 spt + pro. — 2tr(o.pt)) dBy

Q,

0}

0

J— W W

. .

0

[... as gamma increases....]

(Brownian motion)



Emergence of quantum jumps (IT).

— A Qu-bit, in contact with a thermal bath, with its energy continuously monitored.

1.0

v =0.01

Y dQt = X (Peq — Q) dt + v Q¢(1 — Q) dBy

S 05}

Q = population in lowest energy state.
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[... as gamma iricreases....]

— At strong measurement, these processes converge (weakly) to Markov chains:

- All N-point functions converge to that of a specified Markov chain on the pointer states.

- The strong measurement limit is a strong noise limit.

- Jump rates are computable form the microscopic data

- If dissipative dynamics: jump rate is independent on the measurement strength.
- If unitary dynamics: jump rate is dependent on measurement strength (via Zeno freezing).



A finer structure: quantum spikes

— Let us look again at the quantum trajectories

For a coherent Qu-bit: For a thermal Qu-bit:
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A finer structure survives,
besides the jumps: the spikes.

- Spikes of height bigger a than a cutoff are countable.
- They have infinitesimal time duration, of order gamma”{-2}

— They have to be taken into account say when controlling Q-bits
(as otherwise the " controller’ may trigger to often).
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Quantum spikes survive...

— Spike fluctuations in the monitoring survive at infinite information rate:
Jumps are always dressed with spikes.

— Claim: [Bauer-Bernard-Tilloy]

- Inthelarge information rate limit,
- - Quantum jumps have a scale invariant statistics;
. - They form a Point Poisson Process with

. _
M ‘ M~ = 100

~ dQ)

> dv=)\—dl
. Q2
0l n.d|.|lul Mm

0 10§

This is not in contradiction with the fact that all finite distributions of Qt
converge to those of the jump Markov chain.



Internal structure of the spikes?...

—2

)

—> Instead of the " natural’ fime parametrization used a " effective' time
only sensible o state variation. Say:
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with natural time parametrization parametrized by the quadratic variation

— Spikes are (almost) instantaneous (time scale of order 7

Claim: [Bauer-Bernard-Tilloy]
- For a monitored Q-bit, quantum trajectories at strong measurement parametrized by
. their quadratic variation are reflected Brownian samples.

— Can this be experimentally observed/verified ?......
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Application to control: a mesoscopic Maxwell deamon

— Possible control of quantum system based on the fact that dissipative and hamiltonian
channels don't react the same to the Zeno effect:
-> adaptive measurement used to close hamiltonian channels but not dissipative ones.

— Application to generate quantum flux in a double quantum dot geometry.

Observation
hamiltoriion

<— a DQD,
its idealisation —>

Issipative dissipative

DQD occupation measurement
via QPC conductivity.

— By changing the intensity of the observation depending on the information

on the electron position one has, we may control the electron flux.
For instance, we may measure more strongly when it is « known » that the electron is on the
right dot and lightly when it is « believed » to be on the left —> net flux from left to right.

— Opening/closing the tunnel channel similarly as in Maxwell daemon experiments.
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A Classical Toy Model: ‘Bayesian’ measurements

— Imagine a ‘classical’ particle in a box, with a probability to hope from left to right and back.
One ‘observes’' the system by taking blurry photos
and 'estimates’ the particle position from the photos.

the photo's

_ data
the r.'eal Vs
particle
position [ 3 = L k=l b=

the estimated
position Q

R, Q

Left: R=1 ‘ ) FI !
Right: R=0 l )

— Bad photos => some probability o have ‘(un)-correct’ information on the particle position:

1 1 —
il E, P(0 = 1|particle on the right) = 5 :

Epsilon codes how the value of delta is correlated to that of true position R.

P(6 = 1|particle on the left) =

— Estimated position (at time n given the past photo's data):

Q) := P(particle on the left at time n|pictures before n)



How to code the jumps and spikes statistics? (1)

— The jumps and spike statistics can be computed from the SDE of the quantum trajectories,
and these are not universal dpy = (i[H, pt] + Ln(pt))dt + Dy (pt) dBy,

— But, asymptotically, the spike statistics is « geometrical and universal »:

Claim: Let Q be the diagonal component of the density matrix.
The maximum (minima) of Q on a quantum trajectory (at strong measurement)
form a point Poisson process with intensity

[ dv = Adt [5( ) d() —|— ] j — For spikes emerging from Q=0.
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A finer structure: quantum spikes

Discrete:
system evolution + weak
measurement at high frequency.
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FIG. 1. Discrete quantum trajectories in real and effective
time. Top: The evolution of the ground state probability Q in
real time s shows sharp jumps and spikes. Center: The evo-
lution of Q in effective time t allows to resolve what happens
outside the boundaries 0 and 1, the details are unfolded. Bot-
tom: Effective time as a function of the real time. The plots
are shown for the same realisation with € = 0.3, As = 107%,
p=05and A= 1.

= > Te((3pn)?] on

Continuous:
system evolution + continuous
monitoring at high rate.
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FIG. 2. Continuous quantum trajectories in real and effec-
tive time. Top: The evolution of the ground state probability
Q in real time s shows sharp jumps and spikes. Center: The
evolution of Q in effective time t looks like a reflected Broun-
ian motion without sharp transitions. Bottom: Effective time
as a function of the real time. The plots are shoun for the
same realisation with v = 200 (which looks like v — +00),
p=05and A =1.
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Internal structure of the spikes?..

— A geometrical cons'rr'uc'rion‘
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A Brownian sample, reflected at O and 1, The same example but parametrized by
parametrized with its natural time. its local time spend at O and 1.
— Claim:

The quantum trajectories Q. for a Qu-bit in contact with a thermal bath. are equivalent in law to a
1 t {

Brownian motion W, reflected at 0 and 1 but parametrized by its local times via the relation

= Loy !

— LY,
Ap T AM1—=p) 7

with ( ) and L ) the local times at 0 and 1 e spectively.

— Hint for a proof: Look again at the linear equation (close to Q=0):  dX, = \pdt + vX,dB;.

Change time (quadratic variation): new ‘time’ 7 by dr = y2X2dt = (dX;)?
- Ap i .
Yield a new SDE (z. = x,) dz, = A,QIZQ dr + dW, = A\pdt; + dW;
e Lo ¥~ a (new) Brownian motion

Matters only at Z=0-> reflection
. . 0
Z has to be a Brownian motion reflected a zero —> Az, = dLS ) + dW.  [Tanaka formula]

By identification: ALy = Apdt "N Local time at 0



