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intro physical conditions
QCD in the presence of strong magnetic fields eB ' m2

π is relevant in
many physical conditions (106T' 0.1GeV2)
• Non-central heavy ion collisions with eB ∼ 1015T [Skokov et al. ’09]

• Possible production in early universe eB ∼ 1016T [Vachaspati ’91]

in heavy ion collisions:
- expected eB ' 0.3 GeV2 at
LHC in Pb+Pb at √sNN=4.5TeV
and b=4fm
- timescales depend on thermal
medium properties (most
pessimistic case: 0.1-0.5 fm/c)

but spatial distribution of
the field and lifetime are still
debated!
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intro QCD on the lattice
QCD +

path integral +
euclidean +

discretization +
finite volume =

———————
Lattice QCD

Lattice QCD is a useful
approach to investigate

non-perturbative properties of
the strong interacting matter

Quark fields ψ(n) and gluon links Uµ(n)
(SU(3) parallel transports) discretized in
a N3×Nt lattice with spacing a and
temperature T = 1/(aNt)

Monte-Carlo algorithms are used: physical
observables are computed integrating
over system configurations distributed as
exp(−SQCD[U, ψ, ψ̄])
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intro turning on the B field
an external magnetic field
B on the lattice can be
introduced through abelian
parallel transports uµ(n) into
the covariant derivative

• New abelian phases

Uµ(n)→ Uµ(n)uµ(n)

• External field is fixed
(non-propagating fields, no
kinetic term)

• Periodic boundary conditions
lead to the quantization

|qmin|B =
2πb

a2NxNy
b ∈ Z

possibility to investigate the effects
of a B field on the lattice
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intro static potential
in the confining phase at low temperatures, the QQ̄ interaction is well
described by the Cornell potential:

VC(r) = −αr + σr σ ' (420MeV)2 α ∼ 0.4

on the lattice the static potential has been largely investigated and is
extracted from ground state / free energy of a QQ̄ pair at distance R
• T=0: from Wilson loops

aV(R) = − lim
T→∞

log
(

W(R,T + 1)
W(R,T)

)
with W (R,T) a rectangular
R × T loop made up by link
variables Uµ(n)

• T>0: from Polyakov correlators

F(R,T) ' − 1
β
log〈TrL†(R + x)TrL(x)〉

where L(R) is a loop winding in
the compact imaginary time
direction.
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potential parameters at B=0
preliminary results for the
continuum limit O(a) = O + Ca2:

√
σ=436(11)MeV
α=0.431(14)

r0=0.495(13)fm

where the scale r0 is the Sommer
parameter [Sommer ’94]

some details: Nf=2+1 theory at T=0 and spacing from a'0.1fm to a' 0.2fm for physical mq
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potential effects of eB
for non-vanishing eB the
rotation symmetry is broken:
SO(3)→ SO(2)

⇓
two indipendent Wilson
loops exist

results at T=0: the potential
is weaker in the direction
of the external field and
stronger in the orthogonal
plane

[Bonati et al. ’14] Results from lattice 404 with
Nf=2+1 at a=0.1249fm and B‖z

the interaction becomes anisotropic with eB > 0
what about the parameters σ and α?
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potential effects of eB
a parametrization for the ratios of α and σ in the continuum

Od(eB)

Od(0)
= 1 + AOd (|e|B)DOd Od = αXY ,Z , σXY ,Z

[preliminary results] Nf=2+1 theory at T=0 on lattices with spacing from a∼ 0.1fm to 0.2fm; B‖z
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potential eB anisotropy
parameters acquire dependence on the magnetic field

(both direction and strength)

[preliminary results]
Nf=2+1 at T=0 with a∼0.15fm and a∼0.1fm

respectively for lattices 324 and 484

ansatz: the parametrization

σ(eB, θ)

σ(0)
= εσ1

√
1 + εσ2 sin

2 θ

α(eB, θ)

α(0)
=

1

εα1

√
1 + εα2 sin2 θ

where θ is the angle with respect
to the eB field and εOi = εOi (eB)
carry the dependence to the field
strength [Bonati et al. ’15]
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potential high temperatures
what about the anisotropy for T>0?

behaviour of the string
tension at (not so) high
temperatures:
• decreases near the

deconfining transition at
TC ∼ 150MeV

• anisotropy?
• decreases when magnetic

field increases

possible explanation: the
magnetic field slightly reduces
TC [Bruckmann et al. ’13]

[preliminary results] lattice results from Nf=2+1
theory at a=0.0988fm, with eB‖z at non zero

temperatures
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potential heavy flavours
anisotropic potential: effects on HF spectrum?

in the heavy ions collisions
quarkonium formation takes
place after tf ∼ 0.5fm/c

HF mesons are produced
during initial stage
• low-momentum: strong
interaction with the hot
medium
• high-momentum: only low
interaction with the hot
medium

the latter can be used to probe
the initial magnetic field

the description of HF bound
states may be carried out in a
non-relativistic framework
• using a (static) potential
model
• turning on a magnetic field
(also coupled to spins)
• tuning parameters to
reproduce lattice and
experimental data

extract informations about the
influence of B on cc̄ and bb̄
spectra
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potential heavy flavours
the magnetic field affects the
spectrum in several ways [Alford and
Strickland ’13, Bonati et al. ’15]

• mass variations ∆m/m ∼ 10%
for cc̄ and ∼ 1% for bb̄ at
eB ∼ 0.3GeV2

• spin state splittings and mixing
• possible experimental

signature in dilepton decay
channel contamination in 1S
states [Alford and Strickland ’13]

with the anisotropy greater mass
variatios but no modifications on the
mixings [Bonati et al. ’15]

[Bonati et al. ’15] Mass spectrum and
mixing percentage in 1S cc̄ states
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conclusions
summary
• continuum extrapolations confirm the presence of an anisotropy

in the static potential at eB > 0
• angular dependence of the parameters agrees with the simplest

anisotropic description of the medium
• effects also at finite temperatures (T < TC) but no evidence of

anisotropy

still working and future studies
• improve the study of the potential at T>0
• investigation of the deconfined phase: effects of magnetic field

on the chromo-electric and -magnetic screening masses

12 of 12



THANK YOU
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backup anisotropy in VC
from electromagnetism: potential in a medium with anisotropic
dielectric constant

e
r →

e√
εxx2 + εyy2 + εzz2

then the ansatz
α

r →
α√

εαxy(x2 + y2) + εαz z2
σr → σ

√
εσxy(x2 + y2) + εσz z2

Can be reformulated as

VC → VC = −α(eB, θ)

r + σ(eB, θ)r

σ(eB, θ)

σ(0)
= εσ1

√
1 + εσ2 sin

2 θ
α(eB, θ)

α(0)
=

1

εα1

√
1 + εα2 sin2 θ

with θ azimutal angle and εO1 =
√
εOz , εO2 = εOxy/ε

O
z − 1
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backup NR bound-state model
a QQ̄ bound state can be described by the Hamiltonian

H =
2∑

i=1

1
2m

[
~pi − q~A(~xi)

]2
+ V(~x1, ~x2)− (~µ1 + ~µ2) · ~B

where −(~µ1 + ~µ2) · ~B = −(gq/4m)(~σ1 − ~σ2) · ~B acts mixing singlet and
triplet states.

with an external field the rotational symmetry is broken and neither
the kinetic nor the canonical momentums are conserved. In COM
coordinates, symmetric gauge and definining the pseudomomentum
~K the model is recasted in the form

Ĥ =
~K 2

2M −
q
M (~K × ~B) ·~r − ∇

2

2µ +
q2

2µ (~B ×~r)2 + V(~r)− (~µ1 + ~µ2) · ~B

M = 2mq µ =
mq
2

~r = ~x1 − ~x2 K̂ =
2∑

i=1

(
~̂pi +

1
2qi~B × ~xi

)
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backup solving NR model
numerical approach [Bonati et al. ’15]
• physical system enclosed in a
Euclidean discretized volume
• eigenstates from evolution of test
wavefunctions ψT (~r, τ) through(

∂

∂τ
+ Ĥ

)
ψt(~r, τ) = 0

ψt(~r, τ) =
∑

a
caΦae−Eaτ

• spin part taken into account by
costructing the H matrix
• observables obtained by
diagonalizing the hamiltonian

the procedure is repeated for
various spatial spacings
• physical results obtained
through a continuum limit
• physical volume V ∼(6 fm)3
• spacings from 0.250 GeV−1
to 0.625 GeV−1
• simulations performed both
in the presence and absence
of the magnetic anisotropy in
the static potential
• additional spin-spin term that
takes into account observed 1S
splitting at B=0 [Kawanai et al. ’12]
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backup screening mass(es)
above Tc strong matter deconfines and color screening melts quarks
bound states→ chromo-electric and -magnetic screening masses
some previous studies on the lattice: [Maezawa et al. ’10, Borsany et al. ’15]

• choose a suitable gauge invariant correlator function: the
Polyakov loop correlator CLL†(R)

• use symmetries to separate magnetic (T -even) and electric
(T -odd) contributions

CM+ = + 1
2Re (CLL + CLL†)− |TrL|2

CE− = − 1
2Re (CLL − CLL†)

where ± are C eigenvalues and CM− = CE+ = 0

• extraction at large r according to [Nadkarni ’86, Braaten et al. ’95]

CE−,M+(r,T)
∣∣
r→∞ '

e−mE,M (T)r

r
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backup screening mass(es)
separation of the Polyakov loop Lmagnetic and electric contributions
through euclidean time reflection T and charge conjugation C. Using

A4(t, x)
T→ A4(−t, x) Ai(t, x)

T→ Ai(t, x) Aµ(t, x)
C→ A∗µ(t, x)

then one can define the combinations with defined symmetries

LM =
1
2 (L+L†) LE =

1
2 (L−L†) LM± =

1
2 (LM±L†M) LE± =

1
2 (LE±L†E)

because TrLE+ = TrLM− = 0 one finds

CM+ = +
1
2Re (CLL + CLL†)− |TrL|2 CE− = −1

2Re (CLL − CLL†)

such that
CLL† − CLL†

∣∣
r→∞ = CE− + CM+
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backup screening mass(es)
expected results at eB=0:
mE > mM and mE,M ∝ T
[Nadkarni ’86, Braaten et al. ’95, Borsanyi et al. ’15]

as in the case of the static
potential we separated the
contributions over the xy plane
and B‖z direction
• masses increase with eB
• anisotropy in the mM?
• magnetic corrections decrease

with T
good agreement of mE and mM
values at B = 0 with previous works
[Borsanyi et al. ’15]

[preliminary results] Nf=2+1, a=0.0989fm
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backup screening mass(es)
Ansatz on the functional dependence of the masses mE,M(eB,T):

md
E,M(eB,T)

T = AE,M

(
1 + CE,M

eB
T3 atan

eB
λ

)
with A,C constant parameters and λ a given scale. Why this form?
• no magnetic effects in the high temperature limit
• quadratic behaviour near the origin eB→ 0
• linear shape from eB & λ (∼0.1-0.3 GeV from our data)

[preliminary results] Nf=2+1 theory with a=0.0989fm;
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