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•  Landauer principle: information is physical 
    àinformation theory 
    àthermodynamics (second law) 

•  Relevant for the engineering of devices used to process information: 
     Landauer principle= fundamental bound on energy dissipation ⇒ 
     energy consumption of a device is: 
     Landauer bound + how good we are in engineering devices 
 
     Landauer bound + how good we are in engineering devices? 
																													     
    (at least in principle) 

Landauer’s Principle



Szilard engine
•  One-par(cle	gas	in	a	par((oned	box			(	Szilard	1929)	

The demon performs a measure to determine 
the position of the particle  (no heat production): 
information is gained 

Initial probability ½ of the atom being on either 
side of the barrier  

The piston is moved to one side or the other:   
extract work W= kT ln 2 that can be used to lift a 
weight 

Apparent violation of the II law  



Resolution of the puzzle:  
             forgetting is costly ! 
  (Landauer 1961) 

•  Szilard engine: the Demon has a single memory 
register (0,1), initially 0; after measure it represents 
the location of the particle, 0 or 1 

•  To complete the cycle the memory of the Demon must be erased 
(information lost)	

•  Landauer principle: erasure of information requires a minimun 
heat production:  ⟨Q⟩ ≥ ⟨QLandauer>= kT  ln2  per bit ⇒ 

    the conversion of kTln2 work into heat compensates the work 
    extracted!  

•  Information is physical  
	



•  information is physical ⇒ system with i= 1…..M possible states  

     initial state: systems can be in any one of the possible states with 

    probability pi:  SS  = - ∑i∈M  pi  ln pi 

    final state: system is in a specific state with probability 1, SS =0  

    variation of Shannon entropy  

   ∆SS  = ∑i∈M  pi  ln pi  ≣ Boltzmann (thermodynamic ) entropy (k=1) 

    since information can only be processed by physical systems 

     (computers) 

•  -∆S ≥ k ln2  per bit  for perfect erasure, what happens if we admit 
errors? 

     p = error probability   0 ≤ p ≤ ½ 
    Landauer bound:  -∆S/k ≥ ln2 + p lnp + (1-p) ln (1-p) 

      -∆S/k = ln2 + p lnp + (1-p) ln (1-p)   if the erasure is efficient 
     for p=0 -∆S ≥ k ln2 ; for p= ½  -∆S ≥ 0 



dimensionless probability density p(x) cannot be defined by 
dimensionful physical degrees of freedom without an appropriate 
regularisation 

Landauer principle for analog computing  systems: 

    we want to show that the continuous generalization 

    ∆SS  = ∫x∈M p(x) ln p(x) ≣ Boltzmann (thermodynamic ) entropy   generated  

    when the erasure is realized in a physical system   
	

•  define a density (note: not probability density) that regularizes  
    the entropy (Jaynes) 



Idea:  continuous phase transitions with order parameter m ≡ 
information erasure by resetting to standard value ⇒ entropy 
change must satisfy Landauer bound  

 0≤ m ≤ 1 plays the role of an error probability p 

Landauer’s principle and phase 
transitions

•  SSB: degenerate vacua, the system “chooses” a state ≣ reset  
•  T= 0 ⟹ m =1 perfectly ordered phase ≣ reset with no errors  
•  0 <T < TC  ⟹ 0 < m < 1 partially ordered phase ≣ reset with errors 
•  T = TC  ⟹ m = 0  (disordering procedure efficient)  →  
     ➝Landauer bound saturated 
•  phase transition at T=TC   



How do we prove this conjecture for classical systems? 

•  associative memory: (Hopfield model) bits are stochastic 
neurons si = ± 1, mean field 

•  phase transition from a disordered phase to an ordered 
phase with  order parameter increasing from the value 0 at 
T= TC to 1 at T=0 
P= ½ (1-m)   ;		

•  Z2 ,    easy generalization to    Z(2n +1)   n=1/2, 1,3/2,…….. 

(C.A. Trugenberger, MCD PhysRevE.89 (2014) 052138) 



Continuous Symmetries

•  O(3)➝ O(2), Heisenberg  ferromagnet  S2 =1  

infinite many possible orientation 

discrete ➝ continuous symmetry  
digital ➝analog 

•  mean field: classical limit of the discrete case 



•  What happen when T➝0 ? 

classical systems e.g. system of N classical harmonic  
oscillator:    

•  why the entropy is negative and diverges?   

•  L(x) = coth x – 1/x  Langevin function,  
    L(x)➝1 x➝∞; L(x) ➝0 x=0 

•     T= TC  m  ➝ 0  ⟹  S(TC ) /kN = ln 4π  = volume of the 
       phase space  ≡ area of the 2-sphere  



•  Spin s,  (2s +1) components  ≣ representation of O(3); 
    s➝∞ classical spin on the unit sphere 

•  discrete case (quantum): entropy not divergent,  
    can we use this to regularize the entropy for the  
    continuous  symmetry?   

(Millard and Leff, J. Math Phys 12 (1971), 1000; 
 Lieb, Commun. Math Phys 31 (1973) 327) 

		•  classical limit: s→ s/smax    ∆(2smax+1) → 4Π for smax → ∞, ∆ → 0  

Sclas  = 1 

•  Heisenberg principle: 



•  S(T= TC ) /kN = ln 4Π  for smax →∞  
•  S(T→ 0 ) /kN = ln [4Π  /(2smax +1)]= ln ½ ħ2 smax = ln ½ ħ 

•  Analog Landauer bound: entropy production during erasure 
process = available configuration volume measured in units 
of the minimum quantum of configuration volume ⇒ 
regularization 

•  even if we start with continuous, analog information, only 
a finite countably amount of information can be encoded 
in a physical  system (Shannon, Bekenstein) 

•  ∆ S/ kN =( S(TC ) – S(T=0)) /k N = ln (8Π  / ħ ) 




