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Standard model : 
spin 0, spin 1/2, spin 1

General Relativity:
spin 2

Supergravity:
spin 3/2 and spin 2

WHY NOT HIGHER SPINS (HS: SPIN S>2)?

Main theories of modern physics can be identified according to the spin of the involved particles:
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Higher spins

Unitary irreps of the Poincaré group (covariantly, via symmetric tensors,              )

Predicted by (super-)strings

Consistent free Lagrangian theories (Fronsdal Lagrangian, [1978]):

L =
1

2

⇢
'F � s(s� 1)

2
'0F 0

�
, F = ⇤'� @@ · '+ @2'

'µ1...µs



(Some) No-Go Theorems

Weinberg theorem (1964): studying soft-particle emission, forbids couplings                 with          .

 Weinberg-Witten-Porrati theorem [1980-2008]: forbids massless higher spins interacting with 
ordinary gravity (                 ).

Coleman-Mandula theorem [1967]: admits at most a susy extension of the Poincaré algebra.                  
(Maldacena-Zhiboedov [2011-2012]: sort of Coleman-Mandula for AdS/CFT)
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Escape? 

High energy regime Non-minimal couplings



Cubic vertices [Bengtsson-Bengtsson-Brink 1983 and several more]

Every no-go theorem rests on (strong) hypothesis that might be relaxed

Interaction vertices: may still be possible if they are subleading at low energy (to address Weinberg’s theorem)

At any rate, knowledge of HS interactions relevant to study mechanisms for HS symmetry breaking

An important result: the Metsaev bound [1997-2006] constrains the overall number of derivatives in a CUBIC vertex

Higher-derivative vertices!

s1 + s2 � s3 #@  s1 + s2 + s3 ,

s3 s2  s1
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Every no-go theorem rests on (strong) hypothesis that might be relaxed

Interaction vertices: may still be possible if they are subleading at low energy (to address Weinberg’s theorem)

At any rate, knowledge of HS interactions relevant to study mechanisms for HS symmetry breaking

An important result: the Metsaev bound [1997-2006] constrains the overall number of derivatives in a CUBIC vertex

s1 + s2 � s3 #@  s1 + s2 + s3 ,

s3 s2  s1

Example: for couplings 
we get                        :    
No Minimal coupling for                  

s� s� 2
#@min = 2(s� 1)

s � 3



Construction of consistent vertices



Noether procedure [Berends-Burgers-Van Dam 1985]

If we want to build up interactions for massless particles, we need to keep gauge invariance

Starting point: free theory (action      and free transformation    )

Perturbative expansion:

S0 �0
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Noether procedure [Berends-Burgers-Van Dam 1985]

If we want to build up interactions for massless particles, we need to keep gauge invariance

Starting point: free theory (action      and free transformation    )

Perturbative expansion:

S0 �0

Cubic Step
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Cubic interactions 

Cubic step:                    

We are looking for a Lagrangian deformation involving arbitrary spins: 

Vcubic = L1('1,'2,'3)
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Cubic interactions 

Cubic step:                    

We are looking for a Lagrangian deformation involving arbitrary spins: 

Off-shell terms: define the 
structure of the vertex

On-shell terms: define the 
structure of the transformation
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The Maxwell-Like case



Maxwell-Like Higher spins [Campoleoni-Francia 2013]

Free Lagrangian: 

Gauge invariance: Differential constraint

L =
1

2
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Maxwell-Like Higher spins [Campoleoni-Francia 2013]

Free Lagrangian: 

Gauge invariance: Differential constraint

New features

Simpler Lagrangian 
w.r.t. Fronsdal

Reducible spectrum:  
spin                               

L =
1

2
'M(') , M(') = ⇤'� @@ · '

�' = @✏ , @ · ✏ = 0

s, s� 2, . . . , 1 or 0



Building Maxwell-like cubic vertices
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Building Maxwell-like cubic vertices

Remaining terms: 

On-shell terms; but it is impossible to extract in a local 
way the equations of motion

Is it impossible to build up a local vertex?

�S0

�'i
�1'i +

�S1

�'i
�0'i = 0

@ · @ · 'j C1('i, ✏k) , j, k 6= i



Modified Noether procedure

Quadratic step: The same double-divergence 
term!
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Modified Noether procedure

Quadratic step: The same double-divergence 
term!

Link with the cubic step: 
Deformation of the constraint:

�S0

�'j
�0'j ⇠

Z
@ · ✏j @ · @ · 'j

@ · ✏j ⇠ C('i, ✏k) , j, k 6= i

Example: 2-2-2 vertex

Constraint of unimodular gravity [e.g. Alvarez-Boas-Garriga-Veldaguer 2006]: 
information about the geometry

@ · ✏ = 0 ! (⌘µ⌫ + hµ⌫)| {z }
gµ⌫

@µ✏⌫ = 0



The general result

L1 = LTT + LD + LDD + LDDD

LTT =
X

ni

Kni

Z
d

D
µ T (n1, n2, n3|Q12, Q23, Q31)'1(a, x1)'2(b, x2)'3(c, x3)

LD =
X

ni

Kni

Z

d

D
µ

n

s1n1

2
T (n1 � 1, n2, n3|Qij)D1(a, x1)'2(b, x2)'3(c, x3)+

s2n2

2
T (n1, n2 � 1, n3|Qij)'1(a, x1)D2(b, x2)'3(c, x3)+

s3n3

2
T (n1, n2, n3 � 1|Qij)'1(a, x1)'2(b, x2)D3(c, x3)

o

LDD =
X

ni

Kni

Z

d

D
µ

n

s1s2n1n2

2
T (n1 � 1, n2 � 1, n3|Qij)D1(a, x1)D2(b, x2)'3(c, x3)+

s2s3n2n3

2
T (n1, n2 � 1, n3 � 1|Qij)'1(a, x1)D2(b, x2)D3(c, x3)+

s3s1n3n1

2
T (n1 � 1, n2, n3 � 1|Qij)D1(a, x1)'2(b, x2)D3(c, x3)

o

LDDD =
X

ni

Kni

Z
d

D
µ

s1s2s3n1n2n3

2
T (nk � 1|Qij)D1(a, x1)D2(b, x2)D3(c, x3)

The vertex:



The general result

The deformed transformation:

�'1(a, x1) =
X

ni

ks1!

2Q23!

n
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Deformation of the constraint:
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Vertices and spectrum

Two possibilities

   Possibility to truncate to the 
irreducible case: '0 = 0 , ✏0 = 0

Diagonalization of the spectrum:

Simultaneous study of more vertices: 
fixes the relative coefficients

Relation to Fronsdal and 
its algebraic constraint
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Conclusions

Maxwell-like HS alternative (simpler?) to Fronsdal: propagate a reducible spectrum. Possibility to truncate 
and get a single propagating particle

The construction of consistent vertices needs a modified Noether procedure: the fundamental feature is 
the deformation of the differential constraint. It may help to unconver the underlying geometry

The reducible spectrum allows to deal simultaneously with more vertices, with fixed relative coefficients

The spectrum of the would-be full theory would not obviously match with that of known Vasiliev’s 
theories

As an exercise,  why not investigating deformations of Fronsdal’a algebraic constraints?



Thank you for your kind attention 


