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Free-energy differences in LGTs

In lattice gauge theories the computation of free-energy differences is involved in the
calculation (via Monte Carlo simulations) of a large set of physical quantities, for
example:

the pressure and the phase diagram in QCD/QCD-like theories

interfaces between center domains

the magnetic susceptibility in a strong magnetic field

In many cases the calculation of ∆F is a computationally challenging problem,
especially in brute-force approaches: this motivates the search for new methods and
algorithms.

The purpose of this talk is to present a novel (at least in LGTs) method to calculate the
(exponential of the) free-energy difference. In general it will be applicable to any case in
which we compute the ratio of partition functions of physical systems, i.e. expressed in
terms of well-defined variables and couplings.
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Summary

1 Jarzynski’s relation

2 Benchmark study I: interface free energy in Z2 gauge model

3 Benchmark study II: pressure in SU(2) gauge theory

4 Future applications
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Jarzynski’s equality - I

Jarzynski’s equality12 puts in relation the exponential average of the work done on a
system in a non-equilibrium process with the free energy difference between the initial
and the final state of the system.

This evolution of the system is performed by changing (continuously or discretely) a set λ
of one or more parameters, which can be the couplings or even the temperature of the
system itself.
In each step of the process λ is changed and the system (in general) is brought out of
equilibrium.

1C. Jarzynski, Nonequilibrium Equality for Free Energy Differences, Phys. Rev. Lett. 78 (1997) 2690–2693
2C. Jarzynski, Equilibrium free-energy differences from nonequilibrium measurements: A master-equation

approach, Phys. Rev. E56 (1997) 5018–5035
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Jarzynski’s equality - II

Jarzynski’s equality can be written (for an isothermal transformation) as〈
exp

[
−W (λi , λf )

T

]〉
= exp

(
−∆F

T

)

the left side is the ratio of the partition functions: exp
(
−∆F

T

)
= Z(T ,λf )

Z(T ,λi )
where

∆F = F (λf )− F (λi )

W (λi , λf ) is the work made on the system to change the control parameter from λi

to λf . If the transformation is discrete (like a Markov chain in MC simulations), then

W (λi , λf ) =
N−1∑
n=0

[H(λn+1, φn)− H(λn, φn)]

where φn is the variable configuration at the n-th step of the transformation

the 〈...〉 indicates the average on all possible realizations of the non-equilibrium
transformation
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Parameters

Using Jarzynski’s relation in Monte Carlo simulations we have to deal essentially with two
parameters:

N, the number of steps for each transformation between initial and final value of the
parameter λ

nr , the number of “trials”, i.e. realizations of the non-equilibrium transformation

A systematic error is expected as the change of the λ parameter in each transformation
is not continuous, but discretized on a finite number of steps.
This error can be estimated by looking at discrepancies between the results of the ’direct’
(λi → λf ) and the ’reverse’ (λf → λi ) transformation.
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Benchmark study I: interface free energy in Z2 gauge model



Interfaces in the Z2 gauge model

Why study interfaces?

experimental applications in condensed matter systems

related to flux tubes in confining gauge theories

The Z2 gauge model in 3 dimensions is the simplest lattice gauge theory in which to
study interfaces: it is described by a Wilson action with Z2 variables and possesses a
confining phase for low values of the inverse coupling βg .

Moreover it can be exactly rewritten as the 3-dimensional Ising model on the dual lattice:

H = −β
∑
x,µ

Jx,µ σx σx+aµ̂

with the new parameter

β = −1

2
ln tanhβg
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Interface free energy

To create an interface we induce a frustration on the system, by imposing Jx,µ = −1
only for the couplings in a specific slice of the lattice (and only in one direction) and
setting the remaining ones to 1.

The free energy associated with this interface can be expressed as the ratio between
partition functions of two different configurations:

one in which all couplings are set to Jx,µ = 1 (periodic boundary conditions)

another one in which the couplings between the first and last slice in a specific
direction µ are set to Jx,µ = −1 (antiperiodic boundary conditions)

We can introduce the interface free energy as

Za

Zp
= N0 exp(−F (1))

where N0 is the size of the lattice in the µ direction.
An improved definition can be used to account for multiple interfaces in finite-size
systems.1

1M. Caselle, M. Hasenbusch and M. Panero, The Interface free energy: Comparison of accurate Monte
Carlo results for the 3D Ising model with effective interface models, JHEP 0709 (2007) 117
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Results in the Z2 gauge model

In order to compute the Za/Zp ratio we can apply the Jarzynski’s relation by gradually
varying the Jx,µ parameter of the chosen slice from 1 to -1 (and viceversa):

Jx,µ(n) = 1− 2n

N

where N is the total number of steps between periodic (Jx,µ(0) = 1) and antiperiodic
(Jx,µ(N) = −1) boundary conditions.
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Jx,µ(n) = 1− 2n

N

where N is the total number of steps between periodic (Jx,µ(0) = 1) and antiperiodic
(Jx,µ(N) = −1) boundary conditions.

With this method (using N = 106 steps and nr = 103 trials) we obtained high-precision
results at fixed β and various interface sizes.

These results can be compared with the analytical prediction of the effective string model
which describes the transverse fluctuations of the interface at low energy.

In particular, choosing the Nambu-Goto action as Seff , one can look at the difference
between numerical results and the NG prediction and examine its dependence on the size
of the interface, in order to understand the nature of the terms that do not arise from the
NG low-energy expansion.
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Benchmark study II: pressure in SU(2) gauge theory



Pressure on the lattice

On an hypercubic lattice of size Nt ×N3
s , the temperature is determined by the inverse of

the temporal extent (with periodic boundary conditions): T = (aNt)−1. In practice, the
temperature can be controlled by the lattice spacing a, i.e. by changing the inverse of the
coupling constant βg = 2Nc

g2 .

The pressure p in the thermodynamic limit equals the opposite of the free energy density

p ' −f =
T

V
logZ(T ,V )

and it is usually estimated on the lattice using the so-called “integral method”1:

p(T ) =
1

a4

1

Nt N3
s

∫ βg (T )

0

dβ′g
∂ logZ

∂β′g

where the integrand is calculated from plaquette expectation values on finite T lattices.
The result is normalized to the value of p(T ) at T = 0 in order to remove the
contribution of the vacuum.

1J. Engels et al., Nonperturbative thermodynamics of SU(Nc ) gauge theories, 1990
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Pressure with Jarzynski’s relation

Jarzynski’s relation gives us a direct method to compute the pressure: now the parameter
βg controls the temperature T and so we can vary it in a non-equilibrium transformation!

In practice the difference of pressure between two temperatures Tf and Ti is given by

p(Tf )

T 4
f

− p(Ti )

T 4
i

=

(
Nt

Ns

)3

ln〈e−A〉

with A being the ’work’ made on the system:

A =
N−1∑
t=0

[
SW (βg (t + 1), Û)− SW (βg (t), Û)

]
;

here SW is the standard Wilson action and Û is a configuration of SU(Nc ) variables on
the links of the lattice.

Several values of this difference have been computed with this algorithm in the proximity
of the deconfining transition (for temperatures T < Tc ), using either N = 1000 or
N = 2000 steps and nr = 30 transformations.
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Preliminary results for the SU(2) model

Finite T simulations performed on 723 × 6 lattices. Temperature range is ∼ [0.9Tc ,Tc ].

Excellent agreement with older data1 using a fraction of CPU time.

1M. Caselle, A. N. and M. Panero, , JHEP 07 (2015) 143
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Some potential applications

In principle there are no obstructions to the derivation of numerical methods based
on Jarzynski’s relation for fermionic algorithms, opening the possibility for many
potential applications in full QCD

One example is the calculation of the free energy density in QCD with a
background magnetic field B, in order to measure the magnetic susceptibility of
the strongly-interacting matter.

Methods based on Jarzynski’s relation can be applied in order to perform
non-equilibrium transformations in which the field B itself is changed gradually.

Another interesting application would be in studies involving the Schrödinger
functional: Jarzynski’s relation could be used to compute changes in the transition
amplitude by a change in the parameters that specify the initial and final states on
the boundaries.
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Conclusions

Jarzynski’s equality allows for new methods to compute free-energy differences in lattice
gauge theories. Methods based on this relation have been tested on the computation of
two different physical quantities:

the free energy of an interface in the Z2 gauge model

the pressure in the confining region of the SU(2) gauge model

In both cases the method proved to be perfectly reliable with a suitable choice of the
parameters (N and nr ); moreover the computational efficiency is at least similar and in
many cases even superior to standard methods.
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Eliminating the vacuum contribution

Using the ’integral method’ the pressure can be rewritten (relative to its T = 0 vacuum
contribution) as

p(T )

T 4
= −Nt

4

∫ β

0

dβ′ [3(Pσ + Pτ )− 6P0]

where Pσ and Pτ are the expectation values of spacelike and timelike plaquettes
respectively and P0 is the expectation value at zero T .

Using Jarzynski’s relation one has to perform another transformation βi → βf but on a
symmetric lattice, i.e. with lattice size N4

s instead of Nt × N3
s . The finite temperature

result is then normalized by removing the T = 0 contribution calculated this way.
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Lattice regularization

For SU(Nc ) pure gauge theories on the lattice the dynamics is described by the standard
Wilson action

SW = − β

Nc

∑
p

ReTrUp

where UP is the product of four Uµ SU(Nc ) variables on the space-like or time-like
plaquette P and β = 2Nc

g2 .

The partition function is

Z =

∫ ∏
x,µ

dUµ(x)e−SW

the expectation value of an observable O

〈O〉 =
1

Z

∫ ∏
n,µ

dUµ(n)O(Uµ(n)) e−SW

Alessandro Nada (UniTo) Jarzynski’s theorem in LGTs 18/05/2016 16 / 14


	Jarzynski's relation
	Benchmark study I: interface free energy in  gauge model
	Benchmark study II: pressure in SU(2) gauge theory
	Future applications

