Spin degeneracy of Hadronic molecules in the heavy quark region

Yasuhiro Yamaguchi¹

¹INFN Genova, Italy

New Frontiers in Theoretical Physics at Galileo Galilei Institute 17-22 May 2016, Firenze

Outline

Hadronic systems containing a Heavy Quark

- Introduction
 - Hadronic molecule
 - Heavy Quark Spin Symmetry and one pion exchange potential
- Meson-Nucleon molecules: DN and BN
- 3 Heavy quark mass limit $(m_Q o \infty)$
- Summary

2-body system

Hadrons in the heavy quark region

- Hadron: Composite particle of Quarks and Gluons
- Constituent quark model (Baryon(qqq) and Meson $q\bar{q}$) has been successfully applied to the hadron spectra!

Exotic hadrons in the heavy quark region

Observation of the Exotic Hadron in the heavy quark (c, b) sectors!

Exotic hadrons in the heavy quark region Introduction

- Observation of the Exotic Hadron in the heavy quark (c, b) sectors!
- e.g. Spectra of Charmonia

Charmonium cc

- N. Brambilla, et al. Eur. Phys. J.C 71(2011)1534
- S. Godfrey and N. Isgur, PRD**32**(1985)189

Exotic hadrons in the heavy quark region Introduction

- Observation of the Exotic Hadron in the heavy quark (c, b) sectors!
- e.g. Spectra of Charmonia

Charmonium $c\bar{c}$ and Exotic hadrons $(\neq c\bar{c})$ (X, Y, Z)

N. Brambilla, et al. Eur. Phys. J. C 71(2011)1534
 S. Godfrey and N. Isgur, PRD32(1985)189

- What is the structure of exotic hadrons?
- ▶ Why are many exotic hadrons found in the heavy quark region?

Mass degeneracy of heavy hadrons

Introduction

Mass difference between vector and pseudoscalar mesons.

$$(Q\bar{q}, q=u,d)$$

- \triangleright $\triangle m$ decreases when the quark mass increases.
- ▶ Masses of $\{B, B^*\}$ $(\{D, D^*\})$ are almost degenerate.

Mass degeneracy of heavy hadrons

Introduction

Mass difference between vector and pseudoscalar mesons.

$$(Q\bar{q}, q=u,d)$$

- \triangleright $\triangle m$ decreases when the quark mass increases.
- ▶ Masses of $\{B, B^*\}$ $(\{D, D^*\})$ are almost degenerate.
 - → Heavy Quark Spin Symmetry!

Heavy Quark Spin Symmetry and Mass degeneracy

Heavy Quark Spin Symmetry (HQS) N.Isgur, M.B.Wise, PLB232(1989)113

- Suppression of Spin-spin force in $m_Q \to \infty$.
- \Rightarrow Decomposition of **Heavy quark spin** and **Light components** $\vec{J} = \vec{L} + \vec{S} = \vec{S}_0 + \vec{j}$

- ⇒ Mass degeneracy of hadrons with the different spins.
- Mass degeneracy of $\{D, D^*\}(Q\bar{q})$, $\{\eta_c, J/\psi\}(Q\bar{Q})$, $\{\Sigma_c, \Sigma_c^*\}(Qqq)$ (baryons)...

HQS and Interactions

Introduction

- ullet Interaction between K (light meson) and N
 - \Rightarrow Short range force (ρ , ω exchanges...) dominates.

HQS and Interactions

Introduction

• Interaction between K (light meson) and N \Rightarrow Short range force (ρ , ω exchanges...) dominates.

- In the heavy (c,b) sector, the Heavy Quark Spin Symmetry induces the $\bar{D}-\bar{D}^*$ mixing. $m_{K^*}-m_K\sim 400~{\rm MeV}\Leftrightarrow m_{D^*}-m_D\sim 140~{\rm MeV}$
- The mixing enhances the one π exchange potential (OPEP).

π exchange potential (OPEP) and Mass degeneracy Introduction

- ▶ OPEP is important to bind atomic nuclei.
- ▶ **Tensor force** of the OPEP generates a strong attraction.

Tensor force
$$\Rightarrow$$
 ${}^3S_1 - {}^3D_1$

$$PN(^2S_{1/2}) - P^*N(^4D_{1/2})$$

π exchange potential (OPEP) and Mass degeneracy Introduction

- > OPEP is important to bind atomic nuclei.
- ▶ **Tensor force** of the OPEP generates a strong attraction.

 π exchange \Rightarrow Nucleus-like state?

Hadronic molecules in the heavy quark region

- Hadronic molecules (Hadron composite systems)
 - \rightarrow Appearing near the thresholds (M-M, M-B,...)

Exotic hadrons ⇒ **Hadronic molecules?**

Meson-Meson (X, Y, Z?)

Meson-Baryon

 $X(3872), Z_b$

 Λ_c^* , Pentaquark???

- ▶ Theoretical researches
 - X(3872) as $D\bar{D}^*$,

M. T. AlFiky, et al., PLB640(2006)238, M. B. Voloshin, Prog. Part. Nucl. Phys. 61(2008)455

- ullet Z_b as $Bar{B}^*$, J. R. Zhang, et al., PLB**704**(2011)312,S.Ohkoda,et al., PRD**86**(2012)014004
- $lack \Lambda_c^*$ as DN, T.Mizutani, A.Ramos,PRC**74**(2006)065201,C. Garcia-Recio, et al., PRD**79**(2009)054004

Main Subject: Heavy meson in nuclei

- Hadronic molecules formed by Heavy meson-Nucleon with the π exchange potential.
- Nature of the states containing heavy quarks

- \triangleright New exotic states containing $\bar{Q}qqqq$
- \triangleright **Strong attractions** of π exchange potential from the HQS.

$P^{(*)}N$ Interaction $(P^{(*)} = \bar{D}^{(*)}, B^{(*)})$: OPEP

N: Nucleon

Fig: Meson exchange diagram

$$V_{PN-P^*N}^{\pi} = -\frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_Nf_{\pi}} \frac{1}{3} \left[\vec{\varepsilon}^{\dagger} \cdot \vec{\sigma} C(r) + S_{\varepsilon} T(r) \right] \vec{\tau}_P \cdot \vec{\tau}_N$$

$$V_{P^*N-P^*N}^{\pi} = \frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_Nf_{\pi}} \frac{1}{3} \left[\vec{T} \cdot \vec{\sigma} C(r) + S_T T(r) \right] \vec{\tau}_P \cdot \vec{\tau}_N$$
S.Yasui and K.Sudoh PRD**80**(2009)034008

C(r): Central force, T(r): Tensor force

 \triangleright T(r) generates a strong attraction! \Leftrightarrow Deuteron

$P^{(*)}N$ Interaction $(P^{(*)} = \bar{D}^{(*)}, B^{(*)})$: OPEP

N: Nucleon

Fig: Meson exchange diagram

$$V_{PN-P^*N}^{\pi} = -\frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_Nf_{\pi}} \frac{1}{3} \left[\vec{\varepsilon}^{\dagger} \cdot \vec{\sigma} C(r) + S_{\varepsilon} \mathbf{T}(\mathbf{r}) \right] \vec{\tau}_P \cdot \vec{\tau}_N$$

$$V_{P^*N-P^*N}^{\pi} = \frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_Nf_{\pi}} \frac{1}{3} \left[\vec{T} \cdot \vec{\sigma} C(r) + S_T \mathbf{T}(\mathbf{r}) \right] \vec{\tau}_P \cdot \vec{\tau}_N$$
S.Yasui and K.Sudoh PRD**80**(2009)034008

C(r): Central force, T(r): Tensor force

∇(r) generates a strong attraction!
 ⇔ Deuteron

Results of $P^{(*)}N$ states (2-body)

 $ar{D}N$, BNExotic states $(ar{Q}q+qqq)$

Bound state and Resonance

- We solve the coupled-channel Schrödinger equations for PN and P^*N channels.
- Interaction: π , ρ , ω exchange potentials

DN and BN

•
$$J^P = 1/2^{\pm}, 3/2^{\pm}, 5/2^{\pm}$$
 with $I = 0$

Unit: MeV

Y.Y., S.Ohkoda, S.Yasui and A.Hosaka, PRD84 014032 (2011) and PRD85 054003 (2012)

DN and BN

•
$$J^P = 1/2^{\pm}, 3/2^{\pm}, 5/2^{\pm}$$
 with $I = 0$

One bound state

Y.Y., S.Ohkoda, S.Yasui and A.Hosaka, PRD84 014032 (2011) and PRD85 054003 (2012)

DN and BN

•
$$J^P = 1/2^{\pm}, 3/2^{\pm}, 5/2^{\pm}$$
 with $I = 0$

• One bound state, and resonances in charm

DN and BN

- $J^P = 1/2^{\pm}, 3/2^{\pm}, 5/2^{\pm}$ with I = 0
- One bound state, and resonances in charm and bottom sectors!

Y.Y., S.Ohkoda, S.Yasui and A.Hosaka, PRD**84** 014032 (2011) and PRD**85** 054003 (2012)

■ Many states near the thresholds. ⇔ No KN bound state

Expectation values in Bound state of $J^P = 1/2^-$

• Expectation values of OPEP in $\bar{D}N$

Table : Expectation values of V_{π} ([MeV])

ĐΝ	$\langle V_{\bar{D}N-\bar{D}^*N} \rangle$	$\langle V_{\bar{D}^*N-\bar{D}^*N} \rangle$
Central	-2.5	$1.6 imes 10^{-1}$
Tensor	-35.2	-1.1

• The tensor force of π exchange potential generates the strong attraction. Especially, $\bar{D}N - \bar{D}^*N$ mixing is important.

Expectation values in Bound state of $J^P = 1/2^-$

ullet Expectation values of OPEP in $ar{D}N$

Table : Expectation values of V_{π} ([MeV])

ĐΝ	$\langle V_{\bar{D}N-\bar{D}^*N} \rangle$	$\langle V_{\bar{D}^*N-\bar{D}^*N} \rangle$
Central	-2.5	1.6×10^{-1}
Tensor	-35.2	-1.1

The tensor force of π exchange potential generates **the strong** attraction. Especially, $\bar{D}N - \bar{D}^*N$ mixing is important.

Expectation values in Bound state of $J^P = 1/2^ \bar{D}N$ and BN

ullet Expectation values of OPEP in $ar{D}N$

Table : Expectation values of V_{π} ([MeV])

ĐΝ	$\langle V_{\bar{D}N-\bar{D}^*N} \rangle$	$\langle V_{\bar{D}^*N-\bar{D}^*N} \rangle$
Central	-2.5	$1.6 imes 10^{-1}$
Tensor	-35.2	-1.1

The tensor force of π exchange potential generates **the strong** attraction. Especially, $\bar{D}N - \bar{D}^*N$ mixing is important.

BN	$\langle V_{BN-B^*N} \rangle$	$\langle V_{B^*N-B^*N} \rangle$
Central	-8.2	1.3
Tensor	-90.2	-8.3

• Mixing effects are enhanced in BN due to small Δm_{BB^*} .

Results of P_0N states $(m_0 \to \infty)$

$$P_Q^{(*)} N \ (m_{P_Q^*} - m_{P_Q} = 0)$$

Heavy quark mass limit

New Frontiers in Theoretical Physics@GGI, Firenze

Heavy Quark Spin Symmetry (Again)

Heavy Quark Spin Symmetry (HQS)

N.Isgur, M.B.Wise, PLB**232**(1989)113

- ⇒ Mass degeneracy of hadrons with the different spins.
- Mass degeneracy of $\{D, D^*\}(Q\bar{q})$, $\{\eta_c, J/\psi\}(Q\bar{Q})$, $\{\Sigma_c, \Sigma_c^*\}(Qqq)$ (baryons)...

Mass degeneracy should appear not only in the ordinary states but also in the hadronic molecules!

P_QN basis \rightarrow Brown muck basis

▶ Mass degeneracy can be seen by introducing New basis (Q̄ — [qN]).

S. Yasui, K. Sudoh, YY, S. Ohkoda, A. Hosaka and T. Hyodo, et al., PLB727(2013)185, PRD91(2015)034034

Hadron basis
$$(P - N) \Leftrightarrow$$
 Brown muck basis $(\bar{Q} - [qN])$

$$|[\ell, [S_P, S_N]_{S_{PN}}]_J\rangle \qquad |[S_Q, [\ell, [S_q, S_N]_{S_{qN}}]_j]_J\rangle$$

$$\vec{J} \qquad \qquad \vec{S}_Q \qquad \vec{j} \qquad \qquad \vec{J}$$
Heavy Hadron
$$\text{Light quarks + Gluons}$$
(Brown muck)

P_QN basis \rightarrow Brown muck basis

▶ Mass degeneracy can be seen by introducing New basis (Q̄ — [qN]).

S. Yasui, K. Sudoh, YY, S. Ohkoda, A. Hosaka and T. Hyodo, et al., PLB727(2013)185, PRD91(2015)034034

$$|PN\rangle = U|\bar{Q}[qN]\rangle$$

Unitary transformation

Comparing the Hamiltonians with different JP

• Hamiltonian $H_{JP}(=K+V_{\pi})$ of Hadron basis (P-N) in the heavy quark mass limit $(m_Q \to \infty)$

$$H_{1/2^{-}} = \begin{pmatrix} K_0 & \sqrt{3}C & -\sqrt{6}T \\ \sqrt{3}C & K_0 - 2C & -\sqrt{2}T \\ -\sqrt{6}T & -\sqrt{2}T & K_2 + C - 2T \end{pmatrix}$$

$$H_{3/2^{-}} = \begin{pmatrix} K_2 & \sqrt{3}T & -\sqrt{3}T & \sqrt{3}C \\ \sqrt{3}T & K_0 + C & 2T & T \\ -\sqrt{3}T & 2T & K_2 + C & -T \\ \sqrt{3}C & T & -T & K_2 - 2C \end{pmatrix}$$

* K_I: Kinetic term, C: Central force, T: Tensor force

Can you expect they are degenerate?

Comparing the Hamiltonians with different JP

• Hamiltonian $H_{J^P}(=K+V_\pi)$ of **Brown muck basis** ($\bar{\mathbb{Q}}[qN]$) in the heavy quark mass limit $(m_Q \to \infty)$

$$\mathbf{H}_{1/2^{-}}^{\mathbf{BM}} = \begin{pmatrix} \begin{array}{c|cc} K_0 - 3C & 0 & 0 \\ \hline 0 & K_0 + C & 2\sqrt{2}T \\ 0 & 2\sqrt{2}T & K_2 + C - 2T \end{array} \end{pmatrix}$$

$$\mathbf{H_{3/2^-}^{BM}} = \begin{pmatrix} \begin{matrix} K_0 + C & 2\sqrt{2}T & 0 & 0 \\ 2\sqrt{2}T & K_2 + C - 2T & 0 & 0 \\ \hline 0 & 0 & K_2 - 3C & 0 \\ 0 & 0 & 0 & K_2 + C + 2T \end{matrix} \end{pmatrix}$$

- * K_I : Kinetic term, C: Central force, T: Tensor force
- In the Brawn muck basis, the Hamiltonians are **block** diagonalized in the heavy quark limit $(m_Q \to \infty)!$

Comparing the Hamiltonians with different JP

• Hamiltonian $H_{J^P}(=K+V_\pi)$ of **Brown muck basis** ($\bar{\mathbb{Q}}[qN]$) in the heavy quark mass limit $(m_Q \to \infty)$

$$\mathbf{H}^{\text{BM}}_{1/2^{-}} = \begin{pmatrix} \begin{array}{c|ccc} K_{0} - 3\textit{C} & 0 & 0 \\ \hline 0 & K_{0} + \textbf{C} & 2\sqrt{2}\textbf{T} \\ 0 & 2\sqrt{2}\textbf{T} & K_{2} + \textbf{C} - 2\textbf{T} \\ \end{array} \end{pmatrix}$$

$$\mathbf{H_{3/2^-}^{BM}} = \begin{pmatrix} \begin{array}{c|ccc} \mathbf{K_0} + \mathbf{C} & \mathbf{2}\sqrt{2}\mathbf{T} & \mathbf{0} & \mathbf{0} \\ \mathbf{2}\sqrt{2}\mathbf{T} & \mathbf{K_2} + \mathbf{C} - \mathbf{2}\mathbf{T} & \mathbf{0} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{K_2} - \mathbf{3}\mathbf{C} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{K_2} + \mathbf{C} + \mathbf{2}\mathbf{T} \\ \end{array} \right)$$

- * K_I: Kinetic term, C: Central force, T: Tensor force
- In the Brawn muck basis, the Hamiltonians are **block** diagonalized in the heavy quark limit $(m_Q \to \infty)!$
- Blue components produce the degenerate states!

Numerical Results: PN molecule in $m_0 \rightarrow \infty$

• In the $\bar{D}N$ and BN sectors (with finite heavy quark mass), Bound states ($J^P = 1/2^-$) and resonances ($3/2^-$) were found.

Numerical Results: PN molecule in $m_0 \to \infty$

• In the $\bar{D}N$ and BN sectors (with finite heavy quark mass), Bound states ($J^P = 1/2^-$) and resonances ($3/2^-$) were found.

• Degenerate states are found! $(1/2^- \text{ and } 3/2^-)$

Numerical Results: PN molecule in $m_0 \to \infty$

• In the $\bar{D}N$ and BN sectors (with finite heavy quark mass), Bound states ($J^P = 1/2^-$) and resonances (3/2⁻) were found.

- Degenerate states are found! $(1/2^- \text{ and } 3/2^-)$
 - ⇒ The molecules belong to the **HQS doublet**.
 - YY, S. Ohkoda, A. Hosaka, T. Hyodo, S. Yasui, PRD91(2015)034034

Summary

Subject: Hadronic molecules $P^{(*)}N$

by introducing Heavy quark symmetry and OPEP

 $\downarrow \downarrow$

- New Bound states and Resonances are found in $P^{(*)}N$ in the heavy quark sectors.
- The Heavy quark symmetry enhances the OPEP between the heavy meson P and the nucleon N.
- Tensor force of OPEP in PN P*N mixing plays a crucial role to produce the New Exotic states.
- In $m_Q \to \infty$, we have obtained the degenerate states in the hadronic molecule.

Thank you for your kind attention.

