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The standard Big Bang model and inflation

In the last decades, experiments have provided
the following picture of the Universe:
e it is expanding and, in particular, accelerating;
e it appears very homogeneous and isotropic;
o it is extremely flat;
[}

primordial perturbations, imprinted on the CMB ( ), are
almost
o scale-invariant ( )
o adiabatic ( )
o Gaussian ( );
e no tensor modes ( , 95% CL).

Pk 2013
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The standard Big Bang model and inflation

consists in an accelerated
expansion at early times,

ds? = —dt?+a(t)?dx?, &>0,

and provides an explanation of the
observed features and of the origin
of the density perturbations, as
seeds for the large-scale structure
formation in the Universe.

In terms of a single scalar field:
L= (3¢)% — V(¢), with a flat V(¢) ( );
£ =P((3¢)% ¢) (DB, it

(o]

o
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The Galileon symmetry

Higher derivative operators
are not easy to deal with. Usually, either

e they are (for instance, in the effective field theory of
inflation™, which can parametrize all single-field models in a
single framework, they are generically expected to be negligible
with respect to lower derivative operators)

or

e |ead to

unless some protects the theory.
This is the case of the ]

¢ — ¢+ c+ byxt.

Irrespective of inflation, this is of some theoretical interest. Before
considering its consequences in cosmology, let’s study its main
properties.

i
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Galileons in flat space-time

What are the operators in a 4-d flat space-time invariant
under ? Apart from constant terms and total
derivatives, the kinetic operator

L2 = (3¢)?
is clearly invariant. Moreover, one finds for instance
L3 =(3¢)’0¢.
A generic Galileon theory
(9¢)0¢
——

£=—=(267
=——(0¢)°+cC
> ¢ 3 A
satisfies some remarkable properties:

o the coefficient c3 is not renormalized (

) ;

e second order equations of motion.
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Weakly Broken Galileon symmetry: a simple
example in flat space-time

It turns out to be interesting to break slightly™ the Galileon symmetry.

Let’s introduce a small breaking ( ) of the form
1 (9¢)?0¢
e — = (0g)°
7 (2%) A3

e We expect symmetry breaking operators of the form (8¢)2" to
be generated by quantum corrections.

e All the symmetry breaking operators are generated at a scale
which is parametrically higher than A;.
= The operator (3¢)* gets only small corrections through loop
effects.
This is the remnant of the

TThis is not a mere exercise, but it is necessary once is turned on. Indeed,
the can only be defined in a flat space-time, being
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Coupling to gravity

As anticipated, gravity explicitly breaks the Galileon symmetry:

(3¢)°o ¢]
/\ ’

3

o~ F[——( 39)* +

e As in the previous example, the symmetry breaking operators
(8¢)2" are quantum mechanically generated.

o In particular, the smallest scale by which the operators (6¢)2”
are suppressed is

Therefore, we define a to be of the form
(0¢)°o¢  (3)*
B el
2

1
RO — \/—_Q|:—E(3¢)2 ar
3
where
Loop corrections are suppressed by
powers of
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The most general WBG theory

Introducing the other Galileon interactions, a further generalization (in
), that does not spoil the properties, is still possible:

oy =
4

g rC =2—§ O¢

cLNBGz% RH% [f1e (IS

E\5NBG=2_§ GUVvuvv¢—3A—/;219 (121> —3[2][®2] + 2[°])
4 3

where ,[9%] = VHVL¢VVV,9, ...

The coefficients of the polynomials G;(X) are not
renormalized up to some powers of (WBG symmetry).
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WBG theories in Cosmology: de Sitter solutions

Let’s study the consequences of the (approximate) Galileon
symmetry for the cosmological scalar fields:

¢ — ¢+ c+ byuxH.

An inflationary theory with WBG symmetry can be written as
1 5)
S= | d*xv/=g|=MEZR—V($) + .
2 =2

From the equations of motion one infers that:

e if V =0, exact linear solution ¢ ~ t: the acceleration is driven by
the derivative operators;

e if V # 0, slight deviation from de Sitter (|H] < H?2): the evolution
is of slow-roll type.

In both cases
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The Effective Field Theory of inflation

Parametrizing all single-field models, irrespective of the underlying
microscopic theory, the turns out to be a
useful framework to study cosmological perturbations.

The inflationary phase has to be connected to a
standard decelerated evolution, inducing a privileged slicing. In ADM
variables:

ds? = —N2dt? + y;(N'dt + dx))(Wdt + dx).

Fixing the gauge , we write down the most general
Lagrangian compatible with the residual symmetries,
e x 1 E'(t, X):

o

L 4 m _MPIH_ 2 2. L
S=| d*x+v/—g| LeH N2 MPI(3H + H)

+ MASNZ — 6K5N+...]
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The Effective Field Theory of inflation

s=fd4x,/—g[zback+ SN2 — 117 6K8N + ... ].

e One expects that physical 3
observables are MEH
predominantly determined by
the operators with the least o(1

number of derivatives.

e How can a theory with equally
dominant N2 and 6K&N be

consistent, without exiting the O(e
regime of validity of the , G > M
effective theory? L) o) - W
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The EFT of inflation with WBG symmetry

s=fd4x./—g[cchk+ SN2 — 117 6K8N + ... ].

¢ In the case of theories with 2
one can MaH
explore a wider region beyond
M3H < M$. Indeed, o@
WBG

e 6K6N is relevant for ole %WBG

non-Gaussianity. : ke

t T — 1

e Various regimes show up. ole) o). " fE
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Experimental constraints on single-field inflation

A qualitative sketch of the experimental constraints on the effective

parameter space and examples of fundamental theories:

S= J d*xv/=g [ Lback + M7 6N? —

e The bound on r alone
puts strong and robust
constraints on the
parameter space of the
effective theory.

e Further constraints are
imposed by fnL.

Luca Santoni — SNS and INFN, Pisa
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Conclusions

The consequences of an approximate ¢ — ¢ + ¢ + by x*
symmetry have been studied.

We have established the notion of weakly broken Galileon
invariance, introducing a particular non-minimal coupling to
gravity and a higher scale A\» = (Mp|/\§)1/4.

The resulting effective theory is characterized by the technically
natural hierarchy Az > As, allowing to retain the quantum
non-renormalization properties of the Galileon for a broad range
of physical backgrounds.

The de Sitter solutions that these theories possess are
insensitive to loop corrections.

The accelerate expansion can be sustained by the potential or
the derivative operators, leading to potentially and kinetically
driven phases.

On slowly-rolling backgrounds large non-Gaussian signals are in
principle allowed and detectable, well within the validity of the
effective theory.
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Galileon transformations

In presence of gravity we want to study the properties
of the following (necessarily ) symmetry of some scalar
fields:

¢ — @+ c+ byxH.

Couplings to gravity break the Galileon symmetry
explicitly.
Studying theories which retain as much as possible the
Galileon symmetry =
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Weakly Broken Galileon symmetry: a simple
example

£=—Z(00)2 + — (36)?
5 ¢ /\_2 ¢)°0¢

e Exactly invariant under ¢ — ¢ + ¢ + byx*.
e A3 is the cutoff.
Let’s introduce a small breaking ( ):

1 1
£'=—>(39)% + — (8¢)°0¢ +
2 he
e We expect symmetry breaking operators of the form (8¢)2" to
be generated by quantum corrections.
o All the symmetry breaking operators are generated at a scale
which is parametrically higher than A;.
= The operator (3¢)* gets only small corrections through loop
effects.

Luca Santoni — SNS and INFN, Pisa May 17-20, 2016
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Weakly Broken Galileon symmetry

What happens if we introduce gravity?
Let's generalize the simple example

e —3(a¢)2 + i(aq>)2uq> + i(a«p)“
2 A3 A3

following this guide principle:

e preserve the (small quantum corrections).
We will find a class of theories with ( )
invariance. As a consequence, they will have second order equations
of motion.

Applied to inflation, this will provide a radiatively stable
cosmological evolution with interesting phenomenological properties.
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Coupling to gravity

How can we couple our scalar theory to ? There are many
ways to couple the theory to gravity...

This necessarily breaks Galileon invariance.

Let’'s concentrate on quantum generated operators of the form

(a¢)?".

We will see that coupling to gravity defines the sense in which the
breaking can be considered weak.
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Coupling to gravity: minimal coupling

The Galileon theory is obtained by replacing
Operators of the form

(89)%"

RO
PI"*3

are generated.
One can show that the smallest scale by which such operators are
suppressed is

Can one do better? Can one enhance such a scale?
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Coupling to gravity: non-minimal coupling

Let’s consider the following Galileon theory:
L™ = y=g(a¢)°[ ],
£3" = v—g| —4(0¢)* ([21° —[2°1)],
£2m=¢—_g[ +g(a¢)2([¢13—3[¢][¢2]+2[<I>31)].
One can prove that in this case only operators of the form

(9¢)%"

are generated.
The smallest scale by which the operators (3¢)2" are
suppressed is =

The theory turns out to have 2" order e.o.m. also for the
metric: Covariant Galileon.

Luca Santoni — SNS and INFN, Pisa May 17-20, 2016
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WBG symmetry in presence of a scalar potential

Let’s introduce a flat (&, ny < 1) potential V(¢):

f d*xv/—g[L"BC —v(9)],  V(g)~oT.

Do quantum corrections to the vertices spoil the
notion of WBG symmetry of the theory? No. Indeed, for instance,
e only internal graviton lines: ~ (,\/,,\—;)n;
772

; i VN Az )2
5 3 3 5
e one internal scalar field: ~ e EV(—MH) :

These loop corrections are consistent with the notion of WBG
symmetry.
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The inflationary epoch

e horizon problem;
o flatness;

e generation of density
perturbations as seeds for
Universe large-scale structure
formation.

Afterglow Light
Patter

13.7 billion years

Luca Santoni — SNS and INFN, Pisa

(almost)
e scale-invariant (|ns — 1| ~ 10-2),
o adiabatic (|anonadgl $1072),
e Gaussian (fi" = —4 = 43)
spectrum for density perturbations;
e no tensor modes (r < 10-1).

, as a possible solution,
with SEC violation:
ds? = —dt?+a(t)?dx?, d=>0,
with approximate shift symmetry,
, of the scalar field
driving the background evolution,

with degree of breaking € = —Hiz.
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The inflationary epoch

Contact with observations

Experimental constraints
(Planck2015+BICEP2+Keck Array):

: Py (k
tensor-to-scalar ratio, r o 1 ):
Ps(k)

(95% CL) ;
amplitude of scalar modes, As:

scalar spectral index, ns:
oy FEAUIl o Bk, K K)
- X ——L-o2
non-Gaussianity, fy P(k)2 -

Luca Santoni — SNS and INFN, Pisa May 17-20, 2016
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The inflationary phase

A simple action for the inflaton:

1 1
S= J d*xy/—g [EME,IR - 5(a¢>)2 - V(cp)} :
Inflaton fluctuations:

¢(t, X) = ¢po(t) + 6¢(t, X).

Equations of motions:

] : a(t)
¢o+ 3Hpo+ V'(¢o)=0, H()=——.
a(t)

In order to have a sufficiently long inflationary expansion, the inflaton
field ¢ is assumed to slowly roll down a very flat potential:

IH < H?,  Mp|V/| < |V].

Luca Santoni — SNS and INFN, Pisa May 17-20, 2016
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Contact with observations: scalar modes

The inflaton fluctuations 6¢ are responsible for the CMB anisotropies.
The distribution function of the is parametrized in
terms of

e power spectrum:

(6060r) = (2m)3Ps(k)S(k + k"),  Ps(k)k3 = Ak"71;

6000 FT

5000 |-

4000

3000

DIT K2

2000

1000

D’A +
600 F1
300

T

60

430

0

H-30
L L L L L L IE| -60

2 10 30 500 1000 1500 2000 2500

¢

ADIT
)

-300 f
600 F ‘
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Contact with observations: scalar modes

e bispectrum:
(8¢, 60%,60%,) = (2m)>B(k1, ka2, k3)8(Kk1 + k2 + K1).

The bispectrum is related to the field’s self-interactions. A
possible detection could discriminate among different models.

Simple parametrization:
B(k1, k2, k3) ¢ fui [ Ps(k1)Ps(k2)
+ Ps(k1)Ps(k3) + Ps(k2)Ps(k3)].

fnL is highly suppressed in slow-roll models: the extreme
flatness of the potential gives rise to small non-Gaussianity.

What about derivative interactions?
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Observable non-Gaussianity

In a generic low-energy EFT

(0¢)*
/\4

I 5 B g

1
L=+/-g [—E(acp)z — V() +

what is the impact of derivative contributions at the level of
non-Gaussianity? One finds
$2

e~ —2 :

A\

Any amount of fiy. 2 1 would be out of the regime of validity of the
effective theory.
It could not be trusted, unless the infinite series of derivative
operators can be re-summed because of some symmetry protecting
the theory against large quantum corrections, e.g. in DBI inflation

which predicts fﬁﬁu" ~ Clz Cg <1
S
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Observable non-Gaussianity

Theories with weakly broken Galileon symmetry admit
sub-luminal scalar perturbations within a well defined low-energy EFT,
resulting in possibly large non-Gaussian deviations, fy. > 1.
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Contact with observations: tensor modes

Fluctuations of the metric tensor, gy = guv + Yuv, give rise to

/ e HE
(Y2¥5) = QU3Py ()& 8(K+K'),  Py(k)= o
PI
e The are much more model independent and

robust.
Conversely, scalar modes can be adjusted in many ways (shape
of the potential, many scalars, speed of sound cs, ...).

e The amplitude fixes the energy scale of inflation.
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One more brief comment...

Because of the breaking of time diffeomorphisms, the unitary gauge

action describes : the 2 graviton helicities + 1 scalar mode.
(In analogy, the same happens for a spin-1 massive particle: £ = —%Fﬁv = mTzAi)

This mode can be made explicit by performing a broken gauge
transformation, t — t + (¢, X) ( )-
(For a non-Abelian gauge group: A, — UA, Ut — éua,,u‘f, U= eim1?)

In some cases the physics of the Goldstone decouples from the two
graviton helicities at short distances, when the mixing with gravity can
be neglected ( ).

(In analogy with the equivalence theorem for the longitudinal components of the massive gauge
boson: m < E K 4nm/g)
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Inflation with WBG symmetry

The Friedmann equations:
i [ 6o
3MaH? =V + ASX 5—7+262X——6263X+... i

: /\4X[1+262)(—3ZG3)(+...]
2M2H =—-2 :
PI 14 2G4 — 4XGax — 2ZXGsx

Background quantum stability: ;

Depending on the values of X and Z, two phenomenologically distinct

regimes:

° (X ~ Z ~ 1) = mixing with gravity is
order-one important at all scales (i.e. decoupling limit does not
apply);

o (X ~ v€,Z ~ 1) with

M2 H? ~ V> (3¢)? = decoupling limit applies at the Hubble
scale and possible large non-Gaussianity.
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The Effective Field Theory of inflation

The inflationary phase has to be connected to a standard decelerated
evolution, inducing a privileged slicing. In ADM variables:

ds? = —N2dt? + y;(N'dt + dx))(Wdt + dx/).

In unitary gauge, i.e. 6¢(t, X) = 0, the most general perturbative
Lagrangian, invariant under x' — x' + E!(t, X), is

S= | d*xy/YN M—g'((3)R+K K“V—Kz)—w—M2(3H2+H)
= i B 1 N2 Pl

+ MA8N?2 + M3S6N3 + . ..
— M38KSN + M36KSN? + . ..

(6K% — 6Ky oKHY — CREN) + ... ]
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The Effective Field Theory of inflation

s=fd4x,/—g[zback+ SN2 — 117 6K8N + ... ].

In other words: @3

MaH
e One expects to have control
only over the region

M3H < M. =
e Are we able to explore a wider
region of the parameter
space? WBG symmetry
q O(e
allows this... :
o(e) o) '%r
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The EFT of inflation with WBG symmetry

2X2Gaxx x
—3XZ(G3x + 2XG3xx) —2XZGax
12XZ2 (3Gaxx + ...) 8XZZ(%+...)
XZ3(3@+...) 2xz3(3%+...)
X X

o As anticipated, a radiatively stable hierarchy follows:

. @06~ Z ~1);
4 2 12 013 2
M7 ~ Mg H?, M3 ~ Mg H,
. (X il R

4 2 42 V3 2
M3 ~eM2H?, N3 ~eM2H,

Luca Santoni — SNS and INFN, Pisa May 17-20, 2016 21434



A more quantitative analysis

Let’s consider the effective theory
S = J d4xﬁN[cback + MPEN? + MA6N3 — V76K SN + 5/<5N2].

We want to explore configurations in which the decoupling limit does
not apply and the full computation is required.

e Defining the gauge v;; = a(t)? e? 5ij,
e solving linearly the Hamiltonian constraints,
e expanding up to the 3™ order

yields the action for the scalar mode

- 4y 3| s (Y 3)
5—2fd xa [C g = ek ]
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Constraints on single-field inflation

In terms of the dimensionless parameters

13 4 VE;

= Ml B: Ml Y= M2
= 2 1y’ % 2 4 = 2 1y’
Mg H MP|H2 Mg H

the speed of sound is

i (e+a)(1—a)+ 3

C2

S gl 3o JEEa

4
_MZ

= > 2,
M2H

Different choices for the values of the parameters can yield a small

speed of sound.
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Constraints on single-field inflation: summary

Pararmeters: £=1072, Y2d~1
0.05F 0.000
0.04]

-0.002f
0.03]
= = T -0.004;
= r=0.1 =
T 0.02f s
s g
g g
= = -0.006¢
= o0} ==
0.00] -0.008
- 0.01 i ‘ : ; . | -0.010%
00 02 04 06 08 10
MM H)
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Constraints on single-field inflation: summary

Pararngters:

=103,

0.010f}

0.008 -

0.006

0.004 -

3
,/@M2H)

)

0.002-

0.000-

-0.002-

r=0.01 |

0.0 0.2
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04 06 08
M3 1M H)

1.0

Y>b~1

rRemarks.
e DBI allowed.
e WBG inflation is allowed as

well with the (stable) tuning
a<$1072 whileB,7,6 S 1.

e In particular, slow-roll-WBG
inflation is allowed.
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Inflationary models

a= ’\ﬁ BEI:’—L{, ‘YEMTg, 6EM—3.
MpH MpiH? MpiH Mg H?
£<1; a,B8,7,6=0 1 faL~¢
a,Yy=0; e<BK6 [53 fNL~Cl2
oCdiro - fa~ s or~ )
£e<a,B,y,6~1 t% fNL’“‘Cis
E~a,B,7,6 S fNL~Ci4

Such a steep growth is ruled out by experimental constraints.
Slight deformation of slow-roll inflation, but with possible large
non-Gaussianity.
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de Sitter space and symmetries

Inflation takes place in (an approximate) de Sitter space,

ds? (—dn? + dx?) = —dt? + e?Mtdx2,

= H2,72

whose isometry group is SO(4,1). Spatial and
are exact symmetries because of homogeneity and isotropy of the
background evolution. The other de Sitter isometries are

. N —An, X-—AX,
e n—-n—2n(b-%), xi—xi+bi(—n2+x2)—2xi(b-X).
In general, these are not symmetries of the background. However,

invariance under dilation, which guarantees a power
spectrum and constraints the 2-point function to be

F(kn)
k3 g

can be recovered by an additional invariance.
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Potentially driven WBG inflation

The de Sitter phase is sustained by the potential, that satisfies the

conditions . 5
M V/ 124
APl = 2
v=(v) . mi=ml
as in standard . The equations of motion are

: 2
3HoF(X,Z) ~—V'(¢o), X= /\_2 ~ T 7
2

Moreover, : then, = strongly sub-luminal scalar
perturbations. The WBG symmetry guarantees that this is respected
by loop corrections.

s
£3 5 (30)%9%¢ = fﬁﬁ“"~g.
S
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Summary of Part |

e The consequences of a theory with an approximate Galileon
symmetry (¢ — ¢ + ¢ + byxH) in presence of gravity have been
studied.

e We have introduced the notion of WBG invariance, which
characterizes the unique class of couplings of such a theory to
gravity that maximally retain the defining symmetry: it is the

curved-space remnant of the Galileon’s non-renormalization
properties.
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Conclusions (1)

e The consequences of an approximate ¢ — ¢ + by,x* symmetry
have been studied.

e Among all possible couplings to gravity, the “more invariant” one
under Galileon transformations has been chosen: this has
provided the notion of weakly broken Galileon invariance.

e The resulting action defines a sub-class of Horndeski theories
(with second order equations of motion), that one with fine
quantum properties.

e The resulting effective theory is characterized by two scales (with
a technically natural hierarchy A, > A3), allowing to retain the
quantum non-renormalization properties of the Galileon for a
broad range of physical backgrounds.
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Conclusions (2)

e The de Sitter solutions that these theories possess are
insensitive to loop corrections.

e The accelerate expansion can be sustained by the potential or
the derivative operators, leading to potentially and kinetically
driven phases.

e On slowly-rolling backgrounds large non-Gaussian signals are in
principle allowed and detectable, well within the validity of the
effective theory.

e The theories characterized by WBG symmetry can also be
applied in the context of late-time cosmic acceleration.
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