

Advanced detectors of gravitational waves: status and perspectives

Giancarlo Cella

Istituto Nazionale di Fisica Nucleare sez. Pisa

New Frontiers in Theoretical Physics - XXXV Convegno Nazionale di Fisica Teorica and GGI 10th anniversary. 17-20 May 2016. Galileo Galilei Institute, Firenze.

The Gravitational Wave Detectors Network

- ♦ Currently LIGO-H & LIGO-V operative (first scientific run ended, now stopped until the end of the year for upgrade)
- ♦ Virgo will join at the next scientific run.
- This will be important to improve sentitivity, coverage and estimation of parameters

Localization

 \diamond Localization is roughly proportional to the timing accuracy $\Delta \tau$,

$$\Delta \tau = \frac{1}{2\pi \, \text{SNR} \, \Delta f}$$

 Phase and amplitude consistency are taken into account also.

The detector principle

- Description can be coordinate dependent
- Physical observable is not
- ♦ Intuitive picture (when $\lambda \downarrow GW \gg FL$): tidal force 1 $d^2 h^{TT}$

$$F_i = \frac{1}{2}m\frac{a}{dt^2}L_i$$

on the end mirrors.

A more realistic optical scheme

- Resonant
 cavities to
 increase the
 effective arm
 length
- Power recycling mirror
- Signal recycling mirror
- **♦**

Advanced detectors: a sensitivity jump

Strain sensitivity ×10

Events rate ×1073

- Larger beams
- Heavier mirrors:42 kg (×2)
- New payload
- Higher quality optics
- \diamond Larger finesse: $\mathcal{F} \simeq 450$ (×3)
- Improved thermal control of aberrations
- ♦ Improved vacuum
- ♦ 200W fiber laser
- ♦ Signal recycling

A fight with the noise

- > Fundamental noises
 - ♦ Seismic
 - ♦ Direct
 - ♦ Newtonian
 - ♦ Thermal
 - ♦ Suspension
 - Mirror Coating
 - Mirror Bulk
 - ♦ Quantum
 - ♦ Shot noise
 - Radiation pressure
 - ♦
- ♦ Technical noises
 - ♦ Laser frequency & intensity
 - ♦ Scattered light
 - ♦ Residual gas
 - Length and alignment control systems
 - ♦ Magnetic actuation
 - Acoustic couplings
 - Nonlinear couplings (upconversion)

Seismic noise

- Seismic motion is much larger than the expected mirror displacement by GW
- Must be attenuated in the sensitivity band
- Basic idea: an
 oscillator act as a
 low pass filter
 above its resonance
- Attenuation

 ineffective below
 the resonance(s):
 active control
 needed

Gravity Gradient Noise

- Direct coupling to gravity field produced by mass density fluctuations
- Fundamental limit for earth-bound detectors.
 Marginally relevant for Advanced detectors.
- Mitigation:
 - ♦ Go underground
 - ♦ Subtract

From: Subtraction of Newtonian noise using optimized sensor arrays
Jennifer C. Driggers, Jan Harms, and Rana X.
Adhikari Phys. Rev. D 86, 102001

Thermal noise

Handles:

- Larger beam spot (statistical effect)
- Fused silica fiber suspensions (low losses)
- Improved mirror coatings (low losses)
- Cryogeny (not foreseen in LIGO & Virgo)

$$S_F^{(m)} = 4k_B T \frac{\omega^{(m)}}{Q^{(m)}}$$

Coating thermal noise

- ♦ A difficult problem
- Constraint: good optical properties of materials
- Complex theoretical modelization of dissipation mechanisms
- Phenomenological approach: parameter optimization (genetic algorithms,)
- Experimental approach: test new materials (new kind of dopings)
- Currently the limit in the intermediate frequency region

Quantum noise

- Quantum noise comes from quantization of electromagnetic field, not of the test masses
- Source: quantum fluctuations of the vacuum, entering the interferometer across the «dark port»
- Non-classical fields can have a modified variance
- Non-classical fields can be used to improve measurement sensitivity

Non-classical states are generated by the interferometer itself

Ponderomotive squeezing

- In a coherent state phase and amplitude noise are uncorrelated
- Quasiprobability distribution: isotropic
 Gaussian
- Back action induced by radiation pressure generate a correlation between phase and amplitude fluctuations
- Fluctuations are increased along a direction, but decreased along another one: a squeezed state
 «Optomechanical Kerr effect»

SR detuning Quantum noise 0.2 Quantum noise 0.1 Quantum noise 0.07 Quantum noise 0.035

Effect of optomechanical coupling

- By changing the optical parameter the sensitivity curve can be tuned....
- ♦ ...and maybe adapted to a specific source.
- Quantum limit: radiation pressure noise and shot noise are dual aspects of quantum fluctuations

Squeezing vacuum generation

- Standard way: nonlinear crystals and optical parametric amplification
- Over past decade, squeezing made incredible progresses
- Squeezing at low frequencies (as low as 1Hz)
- ♦ Squeezing factor 10dB(QN reduction by a factor 3)

Take advantage of squeezed states

- Injection of a squeezed vacuum state in the dark port
- Measure of an optimized quadrature of the output ponderomotively squeezed state
- ♦ Both
- Optimal solution: squeezing angle must be frequency dependent

High power lasers

- Brute force approach to reduce shot noise
- With squeezing, in principle an handle to reduce optical noise at will
- ♦ Hower, there is not a free lunch:
 - ♦ Thermal lensing effects
 - ♦ Thermo-optic noise
 - ♦ Parametric instabilities

Evans et al., PRL 114, 161102 (2015)

The observing scenario

- Plan: a series of scientific runs with intermediate commissioning interruptions
- Sensitivity will increase in steps toward the design one
- Quite successful until now....

What next? The third generation detectors

What next? Space detectors

eLISA Space Based GW Detector

- Laser Interferometer in Space Antenna, LISA, provides unique capabilities
 - Immune to seismic noise
 - Long baseline provides 0.001 1Hz GW spectrum sensitivity needed for observing massive black hole mergers
- Multiple identical or similar detectors to improve detection confidence

LISA: a mission to detect and observe gravitational waves, O Jennrich, in Gravitational Wave and Particle Astrophysics, Proc SPIE v5500

Thank you for your attention....