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Quantum fluctuations in early universe
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The Gravitational Wave Detectors Network
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& Currently LIGO-H & LIGO-V operative (first scientific run ended, now stopped
until the end of the year for upgrade)

& Virgo will join at the next scientific run.
¢ This will be important to improve sentitivity, coverage and estimation of parameters



Localization
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& Localization 1s roughly proportional to
the timing accuracy Az,
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& Phase and amplitude consistency are
taken into account also.
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The detector principle

& Description can be coordinate
dependent

¢ Physical observable is not

& Intuitive picture (When ALGW >FL):

tidal force 1 d2 h;Z;T
Fz‘ — §m dt2 Lj

on the end mirrors.
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A more realistic
optical scheme

® Resonant
cavities to End Test Mass
increase the
effective arm
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Advanced detectors: a sensitivity jump
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Strain sensitivity X10
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Larger beams

Heavier mirrors:
42 kg (x2)

New payload
Higher quality optics

Larger finesse: F ~ 450
(X3)

Improved thermal
control of aberrations

~ Improved vacuum
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A fight with the noise

¢ Fundamental noises

E— o Quantum noise

— 9 Gravity gradient

— @ Suspension thermal noise

e @)) Coating Brownian noise
9 Coating thermo-optics noise
@ Substrate Brownian noise
6 Excess gas

— @ Total noise
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& Seismic

& Direct

¢ Newtonian

¢ Thermal

& Suspension
¢ Mirror Coating
¢ Mirror Bulk

¢ Quantum

& Shot noise

¢ Radiation pressure

¢ Technical noises

o @

Laser frequency & intensity
Scattered light

Residual gas

Length and alignment control
systems

Magnetic actuation
Acoustic couplings

Nonlinear couplings (up-
conversion)



Seismic noise = ]

magnets-actuators)
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& Seismic motion is 107 e noie [Cots fixed to ground 1§
much larger than I
the expected mirror
displacement by
GW

Must be attenuated

in the sensitivity
band

Basic idea: an
oscillator act as a
low pass filter
above 1ts resonance

Suspended
Seismic Filters
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Attenuation

ineffective below filtered seismic noise
the resonance(s):
active control Fiarionstie

1 (Coils and mc gneis

needed ‘ ; ] o actuators)

- Mirror
frequency (Hz) and recoil mass
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¢ Dominated by thermal
fluctuations of mirrors and
suspensions

® Handles:

¢ Larger beam spot (statistical
effect)

¢ Fused silica fiber
suspensions (low losses)

¢ Improved mirror coatings
(low losses)

¢ Cryogeny (not foreseen in
LIGO & Virgo)




Coating thermal noise

substrate

last layer (cap) Y 1st layer

363.033 nm [Si] 13 doublets 130.713 nm [Ta]
130.713 nm [Ta]
181.517 nm [Si]

substrate

last layer (cap) Y 1st layer

29.410 nm [Si] 16 doublets 72.677 nm [Ta]
80.688 nm [Ta]
250.984 nm [Si]

& A difficult problem

& Constraint: good optical
properties of materials

¢ Complex theoretical
modelization of dissipation
mechanisms

¢ Phenomenological approach:
parameter optimization
(genetic algorithms, ....)

¢ Experimental approach: test
new materials (new kind of
dopings)

& Currently the limit in the
intermediate frequency region



Quantum noise

¢ Quantum noise comes from
quantization of
electromagnetic field, not of
the test masses

& Source: quantum fluctuations
of the vacuum, entering the
interferometer across the
«dark port»

® Non-classical fields can have a
modified variance

& Non-classical fields can be
used to improve measurement
sensitivity
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Non-classical states are generated
by the interferometer itself
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Ponderomotive squeezing

& In a coherent state phase and amplitude AL.

noise are uncorrelated

& Quasiprobability distribution: isotropic
Gaussian

& Back action induced by radiation

pressure generate a correlation between
phase and amplitude fluctuations

¢ Fluctuations are increased along a
direction, but decreased along another
one: a squeezed state b f
«Optomechanical Kerr effect»
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Effect of optomechanical coupling

Input
Mode
Cleaner

00W laser

& By changing the optical parameter the
sensitivity curve can be tuned....

& ...and maybe adapted to a specific source.

¢ Quantum limit: radiation pressure noise
and shot noise are dual aspects of
quantum fluctuations




Squeezing vacuum generation

& Standard way: nonlinear crystals and optical
parametric amplification

& Opver past decade, squeezing made incredible
progresses

& Squeezing at low frequencies (as low as 1Hz)

& Squeezing factor 10dB
(QON reduction by a factor 3)
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Courtesy: S.Y.Chua, Ph.D. Thesis (2013)



Take advantage of squeezed states

& Injection of a squeezed vacuum state
in the dark port

— & Measure of an optimized quadrature of

the output ponderomotively squeezed
state

Both

Optimal solution: squeezing angle
must be frequency dependent

—— Typical noise without squeezing | : —— Advanced LIGO, no sqz
—— Squeezing-enhanced sensitivity | : —— Advanced LIGO, -6 dB sqz

= Advanced LIGO, -6 dB FD sqz
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LIGO Scientific Collaboration, Nature Photonics (2013) Frequency (Hz)



High power lasers

% Brute force approach to reduce

Shot nOISe CO2 laser shined on the mirror:

heat deposition where needed
to compensate for aberrations

& With squeezing, in principle an
handle to reduce optical noise
at will

Heating rings around
mirrors to tune RoC

& Hower, there is not a free lunch: o g 5 (accuracy: -Im over 1500m)

¢ Thermal lensing effects
¢ Thermo-optic noise

Parametric instabilities

Arm Cavity
Field

Resonant
Scattered
Field

ASD [1/VHz)

' Radiation
Pressure

RS Evans et al., PRL 114, 161102 (2015)
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The observing scenario

Advanced LIGO

T

Early (201516, 4080 Mpe)
I Mid (201617, 80—120 Mpe) |]
I Late (201718, 120170 Mpe) |4
1 Il Design (2019, 200 Mpe)

I BNS-optimized (215 Mpe)
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& Plan: a series of scientific runs with
intermediate commissioning
interruptions

& Sensitivity will increase in steps
toward the design one

¢ Quite successful until now....
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Advanced Virgo

: Early (2016-17, 2060 Mpc)
| I Mid (2017-18, 6085 Mpe)
{ I Late (201820, 65— 115 Mpe)
I D-sign (2021, 130 Mpe)
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What next? The third generation detectors




What next? Space detectors

eLISA Space Based GW Detector

* Laser Interferometer in Space Antenna, LISA, provides unique capabilities
— Immune to seismic noise

— Long baseline provides 0.001 - 1Hz GW spectrum sensitivity needed for observing
massive black hole mergers

* Multiple identical or similar detectors to improve detection confidence

A ,

LISA: a mission to detect and observe gravitational waves, O Jennrich, in Gravitational Wave and Particle
Astrophysics, Proc SPIE v5500




Increasing strength of gravitational waves —>»

—NANOGrav

—NANOGrav 2015
Inspiral of
billion-solar-mass
black holes

elISA

Million-solar-mass black holes
(inspiral and collision)

LISA white dwarfs

Binaries of extremely
unequal masses
(inspiral and collision)

| Unresolvable /

Neutron stars

Inspiral of GE9600
/' LIGO

Frequency (hertz)

Thank you for your attention....
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