Precision determination of b-mass and pseudoscalar B-decay constants

Petros Dimopoulos

in collaboration with:

A. Bussone, N. Carrasco, R. Frezzotti, P. Lami, V. Lubicz,

E. Picca, L. Riggio, G.C. Rossi, S. Simula, C. Tarantino

[arXiv: 1603.04306 – to appear in PRD]

New Frontiers in Theoretical Physics XXXV Convegno di Fisica Teorica and 10th Anniversary of GGI GGI, 17-20 May 2016 LQCD: Theoretical framework for 1st principles QCD computations

among many observables LQCD is indispensable for the precise evaluation of ...

- quark masses
- hadronic effects to Weak Matrix Elements

[Experiment] = [known factors] × [CKM] × [hadronic matrix elements]

LQCD

LQCD: Theoretical framework for 1st principles QCD computations

among many observables LQCD is indispensable for the precise evaluation of ...

- quark masses
- hadronic effects to Weak Matrix Elements

- fundamental SM parameter
- enters as input in Higgs decays: $\mathcal{B}(H \rightarrow b\bar{b}) \propto m_b^2$ in B-decays inclusive: $\mathcal{BR} \propto m_b^5$

 $\mathcal{B}(B
ightarrow au
u) \sim 10^{-4}$ [Belle, BaBar]

 $\mathcal{B}(B
ightarrow au
u) \sim 10^{-4}$ [Belle, BaBar]

[see CMS + LHCb (joint analysis)] (1411.4413)

 $B^0_{s(d)}$

UT_{fit} summer14

BR($B \rightarrow \tau v$)

-0.5

0

Ц

0.5

-0.5

-1

-1

$$\underbrace{\sum_{s(d) \text{ oscillations}}^{0} \underbrace{\sum_{t=1}^{w_{t}} f_{t}}_{p} \underbrace{\sum_{t=1}^{w_{t}} f_{t}}}_{p} \underbrace{\sum_{t=1}^{w_{t}} f_{t}}_{p} \underbrace{\sum_{t=1}^{w_{t}} f_{t}} \underbrace{\sum$$

fBs

LQCD simulations: landscape

- realistic dynamical quark setup (u/d, s, c: 2+1, 2+1+1, 1+1+1+1)
- C.L. (a \rightarrow 0) with scaling a²
- simulations at $m_{ps} \sim m_{\pi}$ (or very close)
- non perturbative schemes for operators renormalisation

LQCD simulations: scales $(L^{-1} \ll \mu \ll a^{-1})$

LQCD simulations: scales $(L^{-1} \ll \mu \ll a^{-1})$

LQCD simulations: scales $(L^{-1} \ll \mu \ll a^{-1})$

B-physics on the Lattice

- Is it possible to set under control discretisation errors when $am_b\gtrsim 1$?
- ➡ A variety of proposals based on the use of effective theories for dealing with valence b-quark effects:
 - Relativistic heavy quark actions designed to reduce lattice artifacts [FNAL, RBC]

 NRQCD action 	[HPQCD]
 HQET and non perturbative matching to QCD 	[ALPHA]
 Chain of ratios for (relativistic) m_h > m_c & HQET scaling laws 	[ETMC]
(ratio method)	

The more (and of different systematics) setups are in play the better control (and confidence) on h-quark systematic uncertainties is gained for the lattice evaluation of B-observables.

ETMC simulations

 $N_f = 2 + 1 + 1$ (u/d, s, c)

<i>a</i> (fm)	$M_{ps}^{min}({ m MeV})$	$L^3 imes T/a^4$	<i>L</i> (fm)	M ^{min} _{ps} L
0.089	245	$32^3 imes 64$	2.84	3.53
0.082	239	$32^3 imes 64$	2.61	3.16
0.062	211	$48^3 imes 96$	2.97	3.19

Action: MtmWilson + Iwasaki glue (+ valence tm/OS)

 $(m_{u/d}, m_s, m_c, a)$ phys. input $(M_{\pi}, M_K, M_D \& M_{Ds}, f_{\pi})$ $m_h \sim [m_c, 3.5 m_c]$ (Smearing to isolate ground state)

> Frezzotti & Rossi, hep-lat/0306014, hep-lat/0311008, hep-lat/0407002 ETMC 1004.5284, 1005.2042, 1403.4504

[ETMC, 0909.3187, 1107.1441, 1308.1851]

• Sequence of h-quark masses: $m_h^{(n)} = \lambda \ m_h^{(n-1)}$ $n = 2, \dots, K$ (e.g. $\lambda \approx 1.1 - 1.2$)

• Compute on the lattice a quantity that depends on h-quark:

$$\left[Q(m_h^{(n)})\right]_{lat} = \left[Q(m_h^{(n)})\right]_{C.L} + O((am_h^{(n)})^2)$$

- smooth scaling behaviour (cutoff errors under good control) is expected only for m_h in charm-region (e.g n=1 in our h-mass sequence).
- Ratios are also expected to show good scaling behaviour even for m_h away from charm-region:

$$\left[\frac{Q(m_h^{(n)})}{Q(m_h^{(n-1)})}\right]_{lat} = \left[\frac{Q(m_h^{(n)})}{Q(m_h^{(n-1)})}\right]_{C.L} + (\lambda^2 - 1)O((am_h^{(n)})^2)$$

[ETMC, 0909.3187, 1107.1441, 1308.1851]

• Sequence of h-quark masses: $m_h^{(n)} = \lambda \ m_h^{(n-1)}$ $n = 2, \dots, K$ (e.g. $\lambda \approx 1.1 - 1.2$)

Choose Q(m_h) described by some HQET scaling law;

$$Q(m_h) = \frac{Q_{stat}}{m_h} + \frac{c_1}{m_h} + \dots$$

-> Ratios:

$$R_Q(m_h) = 1 + rac{c_1'}{m_h} + \left(rac{c_2'}{m_h^2}
ight) + \dots \stackrel{m_h o \infty}{\longrightarrow} 1$$

[static limit for ratios is exactly known]

[ETMC, 0909.3187, 1107.1441, 1308.1851]

• Sequence of h-quark masses: $m_h^{(n)} = \lambda \ m_h^{(n-1)}$ $n = 2, \dots, K$ (e.g. $\lambda \approx 1.1 - 1.2$)

[ETMC, 0909.3187, 1107.1441, 1308.1851]

• Sequence of h-quark masses: $m_h^{(n)} = \lambda \ m_h^{(n-1)}$ $n = 2, \dots, K$ (e.g. $\lambda \approx 1.1 - 1.2$)

$$Q_m = \frac{M_{hs}}{(M_{h\ell})^{\gamma} (M_{cs})^{(1-\gamma)}}$$

[ratio of pseudoscalar masses with heavy-light/srange and charm-strange quark content]

B-decay constants computation

$$\mathcal{F}_{hq} = f_{hq}/M_{hq}, \ q = \ell, s$$

[decay constant to pseudoscalar mass ratio
 with heavy-light/strange quark content]

dimensionless quantities:

- → smoother scaling behaviour to the C.L.
- \rightarrow scale setting is provided once extrapolations to C.L. @ m_{π} are done

 * y : variation of this parameter allows further control on systematics

 $\lim_{m_{h}^{\text{pole}} \to \infty} \left(\frac{Q_{m}}{(m_{h}^{\text{pole}})^{(1-\gamma)}} \right) = \text{const.}$

static limit of ratios of Q_m and F_{hq} exactly known (=1)

 $\lim_{m_h^{
m pole}
ightarrow\infty} {\cal F}_{hq} \; (m_h^{
m pole})^{3/2} = {
m const.}$

$$Q_m = \frac{M_{hs}}{(M_{h\ell})^{\gamma} (M_{cs})^{(1-\gamma)}}$$

$$\mathcal{F}_{hs} = f_{hs}/M_{hs}$$

$$Q_m = \frac{M_{hs}}{(M_{h\ell})^{\gamma} (M_{cs})^{(1-\gamma)}}$$

B-decay constants computation

$$\mathcal{F}_{hs} = f_{hs}/M_{hs}$$

well controlled discretisation effects of ratios (for $m_h > m_c$ - region)

$$Q_m = \frac{M_{hs}}{(M_{h\ell})^{\gamma} (M_{cs})^{(1-\gamma)}}$$

$$\mathcal{F}_{hs} = f_{hs}/M_{hs}$$

$$Q_m = \frac{M_{hs}}{(M_{h\ell})^{\gamma} (M_{cs})^{(1-\gamma)}}$$

$$\frac{chain equation}{y_Q(m^{(2)}) y_Q(m^{(3)}) \dots y_Q(m^{(N+1)})} = \lambda^{\kappa(\gamma-1)} \frac{Q_m(m^{(N+1)})}{Q_m(m^{(1)})} \cdot \left(\frac{\rho(m^{(N+1)}, \mu)}{\rho(m^{(1)}, \mu)}\right)^{\gamma-1}$$
Satisfy chain equation by tuning *step* λ , such that
$$Q(m_h^{(N+1)}) \text{ matches } (M_{Bs}/(M_B)^{\gamma})(M_{Ds})^{(\gamma-1)}$$

$$\square_{b}$$

$$m_b = \lambda^N m_h^{(1)}$$

$$Q_m = \frac{M_{hs}}{(M_{h\ell})^{\gamma} (M_{cs})^{(1-\gamma)}}$$

 $m_b = \lambda^N m_b^{(1)}$

chain equation

B-decay constants computation

$$Q_{m} = \frac{M_{hs}}{(M_{h\ell})^{\gamma}(M_{cs})^{(1-\gamma)}}$$

$$\mathcal{F}_{hs} = f_{hs}/M_{hs}$$

$$\frac{c_{hain} equation}{y_{Q}(m^{(2)}) y_{Q}(m^{(3)}) \dots y_{Q}(m^{(N+1)}) =}{\lambda^{\kappa(\gamma-1)} \frac{Q_{m}(m^{(N+1)})}{Q_{m}(m^{(1)})} \cdot \left(\frac{\rho(m^{(N+1)}, \mu)}{\rho(m^{(1)}, \mu)}\right)^{\gamma-1}} \xrightarrow{\gamma_{hs}(m^{(N+1)}_{h})}{\sum_{hs}(m^{(N+1)}_{h})} \cdot \frac{C_{A}^{stot}(\mu^{*}, m^{(1)}_{h})}{C_{A}^{stot}(\mu^{*}, m^{(N+1)}_{h})} \left(\frac{\rho(m^{(N+1)}, \mu)}{\rho(m^{(1)}, \mu)}\right)^{3/2}}$$
Satisfy chain equation by tuning *step* λ , such that
$$Q(m^{(N+1)}_{h}) \text{ matches } (M_{Bs}/(M_{B})^{\gamma})(M_{Ds})^{(\gamma-1)}$$

$$M_{b} = \lambda^{N} m^{(1)}_{h}$$

$$M_{b} = \lambda^{N} m^{(1)}_{h}$$

$$M_{b} = \lambda^{N} m^{(1)}_{h}$$

$$M_{b} = \lambda^{N} m^{(1)}_{h}$$

Similar strategy for the evaluation of

• f_{Bs} / f_B

 $\implies f_B = f_{Bs} / (f_{Bs} / f_B)$

b-mass

$$m_b(\overline{\text{MS}}, m_b) = 4.26(3)_{stat+fit}(10)_{syst}[10] \text{ GeV}$$

error budget

uncertainty (in %)	m_b
stat+fit	0.9
syst. discr.	1.6
syst. ratios	0.8
syst. chiral	0.4

RI' - MS matcing	1.3
Total	2.4

 $4\ \ 4.1\ 4.2\ 4.3\ 4.4$

 $m_b(\overline{\mathrm{MS}}, m_b) \ [\mathrm{GeV}]$

m_b / m_c

m_b/m_c = 4.42 (3)_{stat+fit} (8)_{syst} [8]

error budget

uncertainty (in %)	m_b/m_c
stat+fit	0.7
syst. discr.	0.9
syst. ratios	0.8
syst. chiral	0.3
syst. trig. point	1.2
Total	1.9

From m_c/m_s = 11.62(16)(1) (ETMC 1403.4504) we can easily determine

(HPQCD '14: m_b/m_s =52.55 (55), Chakraborty et al. 1408.4169)

B-decay constants

error budget

 f_B

2.5

0.7

0.6

0.4

1.3

3.0

t[5] MeV	uncertainty (in %)	f_{Bs}	f_{Bs}/f_B
$s_{l}[0] = [25]$	stat+fit	1.7	1.5
$[18)_{syst}[25]$	syst. discr.	1.3	0.6
$_{st}[6] \mathrm{MeV}$	syst. ratios	0.5	0.3
	syst. chiral	0.3	0.2
	syst. from f_K/f_{π}	-	1.3
	Total	2.2	2.1

$$f_{Bs} = 229(4)_{stat+fit}(3)_{syst}[5] \text{ MeV}$$

$$f_{Bs}/f_B = 1.184(18)_{stat+fit}(18)_{syst}[25]$$

$$f_B = 193(5)_{stat+fit}(3)_{syst}[6] \text{ MeV}$$

$$\frac{f_{Bs}/f_B}{f_K/f_\pi} = 0.997(15)_{stat+fit}(7)_{syst}[17]$$
$$\frac{f_{Ds}/f_D}{f_K/f_\pi} = 1.003(13)_{stat+fit}(6)_{syst}[14]$$
[ETMC 1411.7908]

B-decay constants

[weak dependence on number of dynamical flavours] [all results compatible within errors]

Conclusions

- High precision computation of b-quark mass and pseudoscalar B-decay constants with ETMC 2+1+1 gauge ensembles employing ratio method.
- Ratio Method
 - computationally cheap
 - no need for explicit computation in effective theory
- Accurate study of the systematics thanks to new variants of ratios used in the present analysis.

 $(\rightarrow \text{Much reduced total uncertainty wrt ETMC Nf=2 (2013) results})$

Conclusions

- High precision computation of b-quark mass and pseudoscalar B-decay constants with ETMC 2+1+1 gauge ensembles employing ratio method.
- Ratio Method
 - computationally cheap
 - no need for explicit computation in effective theory
- Accurate study of the systematics thanks to new variants of ratios used in the present analysis.

(\rightarrow Much reduced total uncertainty wrt ETMC Nf=2 (2013) results)

Thank you for your attention!

Extra slides

$$\begin{aligned} \mathsf{N}_{\mathsf{f}} = 2 + 1 + 1 \; \mathsf{MtmWilson} + \mathsf{Iwasaki glue} \; (+ \; \mathsf{tm}/\mathsf{OS}) \\ \\ [sea] \\ S^{sea}_{\ell} &= a^4 \sum_x \bar{\psi}_{\ell}(x) \left\{ \frac{1}{2} \gamma_{\mu} \left(\nabla_{\mu} + \nabla^*_{\mu} \right) - i \gamma_5 \tau^3 \left[M_{\mathrm{cr}} - \frac{a}{2} \sum_{\mu} \nabla^*_{\mu} \nabla_{\mu} \right] + \mu_{\ell} \right\} \psi_{\ell}(x) \\ S^{sea}_{h} &= a^4 \sum_x \bar{\psi}_{h}(x) \left\{ \frac{1}{2} \gamma_{\mu} \left(\nabla_{\mu} + \nabla^*_{\mu} \right) - i \gamma_5 \tau^1 \left[M_{\mathrm{cr}} - \frac{a}{2} \sum_{\mu} \nabla^*_{\mu} \nabla_{\mu} \right] + \mu_{\sigma} + \mu_{\delta} \tau^3 \right\} \psi_{h}(x) \\ \hline \psi_{\ell} &= (\psi_u \; \psi_d)^T \qquad \Rightarrow \; \mathsf{Untwisted mass tuned to its critical value} \; M_{cr} \\ \psi_{h} &= (\psi_s, \psi_c)^T \qquad \Rightarrow \; m^R_{\ell} \equiv \mu^R_{\ell;\mathrm{sea}} = \frac{1}{Z_{\rho}} \mu_{\ell} \\ \Rightarrow \; m^R_{c,s;\mathrm{sea}} = \frac{1}{Z_{\rho}} (\mu_{\sigma} \pm \frac{Z_{\rho}}{Z_{s}} \mu_{\delta}) \\ [valence] \\ \hline S^{val,\mathrm{OS}}_{q} = a^4 \sum_x \sum_f \bar{q}_f \left\{ \frac{1}{2} \gamma_{\mu} \left(\nabla_{\mu} + \nabla^*_{\mu} \right) - i \gamma_5 r_f \left[M_{\mathrm{cr}} - \frac{a}{2} \sum_{\mu} \nabla^*_{\mu} \nabla_{\mu} \right] + \mu_f \right\} q_f(x) \\ \Rightarrow \; f : u/d, s, h \; (c \; \& \; \text{heavier}) \; \Rightarrow \; m^R_f \equiv \mu^R_f = \frac{1}{Z_{\rho}} \mu_f \end{aligned}$$

- unitarity: match sea and val q-masses in terms of meson masses
- automatic O(a) improvement $[O(a^2\mu_q)$ for mesons with $r_1 = -r_2]$

Frezzotti & Rossi, hep-lat/0306014, hep-lat/0311008, hep-lat/0407002 Baron et al. 1004.5284, 1005.2042, Carrasco et al. 1403.4504

Simulation parameters

	β	V/a^4	$a\mu_{sea} = a\mu_\ell$	N_{cfg}	$a\mu_s$	$a\mu_c - a\mu_h$		β	$L(\mathrm{fm})$	$M_{\pi}(\text{MeV})$	$M_{\pi}L$
	1.90	$32^{\circ} \times 64$	0.0030	150	0.0180,	0.21256, 0.25000,	-	1.90	2.84	245	3.53
			0.0040	150	0.0220,	0.29404, 0.34583, 0.40675, 0.47840				282	4.06
Ę			0.0050	190	0.0200	0.40675, 0.47840,				202	4.00
0 0						0.56267, 0.66178,				314	4.53
ö.	1.00	243 40	0.0040	150		0.77836, 0.91546		1.90	2.13	282	3.05
•	1.90	$24^{\circ} \times 48$	0.0040	150						344	3 71
			0.0060	150						011	0.11
			0.0080	150						396	4.27
E			0.0100	150			_			443	4.78
- -	1.95	$32^3 \times 64$	0.0025	150	0.0155,	0.18705, 0.22000,	-	1.05	9.61	220	2.16
8			0.0035	150	0.0190,	0.25875, 0.30433,		1.95	2.01	239	5.10
0.0			0.0055	150	0.0225	0.35794, 0.42099,				281	3.72
			0.0075	150		0.49515, 0.58237				350	4.64
						0.68495, 0.80561				408	5 /1
_ [1.95	$24^3 \times 48$	0.0085	150			-			400	0.41
Ę	2.10	$48^3 \times 96$	0.0015	90	0.0123,	0.14454, 0.17000,	-	1.95	1.96	435	4.32
62			0.0020	90	0.0150,	0.19995, 0.23517,		2.10	2.97	211	3.19
0.0			0.0030	90	0.0177	0.27659, 0.32531,				243	3 66
						0.38262, 0.45001,				240	0.00
σ						0.52928, 0.62252				296	4.46

- measurements on 1:20 thermalised gauge conf + blocking
- error analysis: jackknife + bootstrap for fit cross correlations
- RCs from RI-MOM on separate Nf=4 ensembles

Correlators

• light & strange : one-end trick

 \rightarrow (LL, SL, LS, SS) \rightarrow GEVP

• charm & heavier : gaussian smearing on sink / source

$$f_{ps} = (\mu_1 + \mu_2) rac{\langle 0|P^L|ps
angle}{M_{ps} sinh(M_{ps})}$$

$$Q_m = \frac{M_{hs}}{(M_{h\ell})^{\gamma} (M_{cs})^{(1-\gamma)}}$$

y : parameter [0, 0.9]
no need to tune it.
used for better control of

• syst. discr. effects,

o ratio interpolation fit to b-mass

$$\lim_{m_h^{\text{pole}}\to\infty}\left(\frac{Q_m}{(m_h^{\text{pole}})^{(1-\gamma)}}\right)=\text{const.}$$

(HQET asymptotic condition)

$$\frac{\text{ratio}}{y_{Q}(m_{h}^{(n)},\lambda;m_{\ell},m_{s},a)} = \lambda^{(\gamma-1)} \frac{Q_{m}(m_{h}^{(n)};m_{\ell},m_{s},a)}{Q_{m}(m_{h}^{(n)}/\lambda;m_{\ell},m_{s},a)} \left(\frac{\rho(m_{h}^{(n)},\mu^{-1})}{\rho(m_{h}^{(n)}/\lambda,\mu^{-1})}\right)^{(\gamma-1)} \frac{m_{h}^{(n)} = \lambda m_{h}^{(n-1)}}{\binom{m_{h}^{(n)} = \rho(m_{h},\mu)m_{h}(\mu)}{(m_{h}^{(n)}/\lambda,\mu^{-1})}}$$
(known to N³LO;

(extrapolate in CL + phys. light quark)

strong cancellations in ratios → cub % effect to final results)

Ratios in the B-decay constants computation

$$\begin{array}{l} \mathcal{F}_{hq} = f_{hq}/M_{hq}, \quad q = \ell, s \\ m_h^{\mathrm{pole}} \rightarrow \infty \end{array} \mathcal{F}_{hq} \; (m_h^{\mathrm{pole}})^{3/2} = \mathrm{const.} \quad \lim_{m_h^{\mathrm{pole}} \rightarrow \infty} \left(\mathcal{F}_{hs}/\mathcal{F}_{h\ell} \right) = \mathrm{const.} \\ (\mathrm{HQET} \; \mathrm{asymptotic} \; \mathrm{conditions}) \end{array}$$

<u>ratios</u>

$$z_{s}(m_{h},\lambda;m_{\ell},m_{s},a) = \lambda^{3/2} \frac{\mathcal{F}_{hs}(m_{h},m_{\ell},m_{s},a)}{\mathcal{F}_{hs}(m_{h}/\lambda,m_{\ell},m_{s},a)} \cdot \frac{C_{A}^{stat}(\mu^{*},m_{h}/\lambda)}{C_{A}^{stat}(\mu^{*},m_{h})} \frac{[\rho(m_{h},\mu)]^{3/2}}{[\rho(m_{h}/\lambda,\mu)]^{3/2}}$$
$$z_{d}(m_{h},\lambda;m_{\ell},a) = \lambda^{3/2} \frac{\mathcal{F}_{h\ell}(m_{h},m_{\ell},a)}{\mathcal{F}_{h\ell}(m_{h}/\lambda,m_{\ell},a)} \cdot \frac{C_{A}^{stat}(\mu^{*},m_{h}/\lambda)}{C_{A}^{stat}(\mu^{*},m_{h})} \frac{[\rho(m_{h},\mu)]^{3/2}}{[\rho(m_{h},\lambda,\mu)]^{3/2}}$$

f_{Bs} / f_B

f_{Bs} / f_B

(Combined continuum & chiral fits for ratios in the f_{Bs}/f_B computation)

f_{Bs} / f_B

