

Neutron physics at CERN: n_TOF

Ciclo di Seminari Internet i Sala Riunioni, venerdì ore 11:30

Cristian Massimi

Bologna, 30/10/2015

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA Riservato al personale dell'università di bologna e non può essere utilizzato ai termini di legge da altre persone o per fini non istituzionali

The n_TOF project

Collaboration, objectives, timeline, basic parameters, instrumentation

INFN contribution to n_TOF

Proposals, detectors, and data analysis

The role of Bologna – INFN section
 Results and prespectives

The n_TOF project INFN

Istituto Nazionale di Fisica Nucleare

6119

 \odot

- Atominstitut, Technische Universität Wien, Austria 1
- 2. University of Vienna, Faculty of Physics, Austria
- European Commission JRC, Institute for Reference Materials and Measurements (IRMM) 3.
- Department of Physics, Faculty of Science, University of Zagreb, Croatia 4.
- Charles University, Prague, Czech Republic 5.
- Centre National de la Recherche Scientifique/IN2P3 IPN, Orsay, France 6.
- Commissariat à l'Énergie Atomique (CEA) Saclay Irfu, Gif-sur-Yvette, France 7.
- Johann-Wolfgang-Goethe Universität, Frankfurt, Germany 8.
- Karlsruhe Institute of Technology, Campus Nord, Institut für Kernphysik, Karlsruhe, Germany 9.
- National Technical University of Athens (NTUA). Greece 10.
- 11. Aristotle University of Thessaloniki, Thessaloniki, Greece
- 12. Bhabha Atomic Research Centre (BARC), Mumbai, India
- 13. ENEA Bologna e
- Dipartimento di Fisica, e Astronomia, Università di Bologna 14.
- Sezione INFN di Bologna, INFN Bari, Bologna, LNL, Trieste, LNS 15.
- Uniwersytet Łódzki, Lodz, Poland 16.
- Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal 17.
- 18. Horia Hulubei National Institute of Physics and Nuclear Engineering – Bucharest, Romania
- Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 19.
- Instituto de Fisica Corpuscular, CSIC-Universidad de Valencia, Spain 20.
- Universitat Politecnica de Catalunya, Barcelona, Spain 21.
- 22. Universidad de Sevilla, Spain
- 23. Universidade de Santiago de Compostela, Spain
- Department of Physics and Astronomy University of Basel, Basel, Switzerland 24.
- European Organization for Nuclear Research (CERN), Geneva, Switzerland 25.
- Paul Scherrer Institut, Villigen PSI, Switzerland 26.
- University of Manchester, Oxford Road, Manchester, UK 27.
- University of York, Heslington, York, UK 28.

The n_TOF project INFN

Istituto Nazionale di Fisica Nucleare

The n_TOF project [NFN

Istituto Nazionale di Fisica Nucleare

Nuclear Data for Science and Technology

How the elements are synthesized in the Universe?

- Stellar nucleosynthesis (**s process**)
- Cosmochronology
- Stellar thermodynamics
- Big Bang nucleosynthesis

Nuclear technology / medicine

- Transmutation of nuclear waste
- Gen-IV reactors
- Accelerator Drives System (ADS)
- Neutron Capture Therapy (NCT)

The n_TOF project [NFN

Istituto Nazionale di Fisica Nucleare

INTOF

The n_TOF project //NFN

	Cm 238 2,4 h	Cm 239 3 h	Cm 240 27 d	Cm 241 32,8 d	Cm 242 162,94 d	Cm 243 29,1 a sf 5.785 5.742 c st; p	Cm 244 18,10 a	Cm 245 8500 a	Cm 246 4730 a 5,386; 5,343	^{244, 245} Cm 1 5 Kg/yr
A 000 0	ε α 6.52	γ 188 9	* 6,291; 6,248 sf g	γ 472 431; 132 9 ⁻ 0	γ (44); 6" σ = 20 σ ₁ = 5	7 278; 228; 210; 9" a 130; ag 620	st; g y (43,); e* e 15; e ₁ 1,1	st.g y 175; 133 # 350; # 2100	si; g γ (45); e ⁻ σ 1,2; σι 0,16	1.5 Kg/yi
Am 236 ? 3,7 m	Am 237 73,0 m	Am 238 1,63 h	Am 239 11,9 h	Am 240 50,8 h	Am 241 432,2 a	Am 242	Am 243 7370 a	20 n 10,1 h 10,1 h 10,1 h 10,1 h	Am 245 2,05 h	²⁴¹ Am:11.6 Kg/yr
e α 6,41	909 909 9	v 5.94 y 963; 919; 561; 605 0	γ 278; 228 σ 0	a 5.378 7 968, 889 9	a 5,430 - 543 st; y 60; 20 67; g a 50 + 570; a), 2	st + 149) # 1700 # 700 # 700 # 2100	# 3,275; 5,233 st; y 75; 44 # 75 + 5 m; 0,074	+ (5064) 098: e^g 154;e ⁻ n;1600 n;2200	γ 253; (241; 296) e ⁻ ; g	²⁴³ Am: 4.8 Kg/yi
Pu 235 25,3 m	Pu 236 2,858 a	Pu 237 45,2 d	Pu 238 87,74 a	Pu 239	Pu 240 6563 a	Pu 241 4,35 a	Pu 242 3,750 · 10 ⁵ a	Pu 243 4,956 h	Pu 244 8,00 · 10 ⁷ a	²³⁹ Pu: 125 Ka/vr
SI 4 155 155 155 155 155 155 155	51 α 5,768; 5,721 sf; Mg 28 y (48: 109); e ⁻ σy 160	ο 5.334 γ 60; e ⁻ σ ₁ 2300	S1 e 5,493; 5,456 s1; Si; Mg γ (43; 100); e ⁻ ε 510; σ ₁ 17	ST = 5,157, 144 st; y (52) e ⁻ ; π σ 270; σy 752.	S α 5,168; 5,124 s ⁽ ; γ (45) θ ⁽ ; g α 290; α ₁ ~ 0,06	SI # 4,890 Y (149); e ⁻ # 370; #y 1010	51 a 4,901; 4,856 sl; y [45) e^; g e 19; ey < 0,2	ST γ840 σ < 100; σ ₁ 200	SI e 4,588; 4,546 sf; γ e ⁻ e 1,7	
Np 234 4.4 d	Np 235 396.1 d	Np 236	Np 237	Np 238 2,117 d	Np 239 2355 d	Np 240	Np 241 13,9 m	Np 242	Np 243 1,85 m	
 β⁺ γ 1559; 1528; 1602 σ₁ ~ 900 	ε; α 5,025; 5,007 γ (26; 84); e g; σ 160 + ?	e 870.5 e 87.0 y (682: g68); e ⁻ 104:e ⁻ g; m 2700 & m 260	Sf # 4,790; 4, 54 γ 29; 67; 6	β ⁺ 1,2 γ 984; 1029; 1026; 924; e ⁺ g; σ ₁ 2100	$\begin{array}{c} \beta^{=} 0.4; 0.7\\ \gamma \ 106; 273\\ 228; e^{-}; g\\ \sigma \ 32 + 19; \sigma_{f} < \end{array}$	β 2.2 γ 565: γ 566: 507 8 601: 1γ	β 1,3 γ 175; (133) 9	B ⁻ 2,7 B ⁻ y 736; 7 786; 780; 945; 1473 159 0 9	β γ 288 9	²³⁷ Np: 16 Kg/yr
U 233 1,592 · 10 ⁵ a	U 234 0,0055	U 235 0,7200	U 236	U 237 75 d	U 238 99,2745	U 239 33,5 m	U 240 14,1 h		U 242 16,8 m	
α 4,824; 4,783 Ne 25; γ (42; 97); e σ 47; σ ₁ 530	2,455 · 10 ⁵ c 0.4.775:4.722; d Mg.28; Nik.; 1(53; 121 c ⁻ ; ar 96; aj < 0.005	25 = 7,038-10 ⁸ a a 4,0881 d 54,0000 c ⁻ a 35, op 586	i y 1787 642 41 41 41 4445; 642 113) 6 ⁻ : ε 5,1	β ⁻ 0,2 γ 60; 208 e ⁻ σ ~ 100; σt < 0,3	270 ps 4,458-10*8 1-2514 - 4.15619 1525 - 300.4.4 4 - 22 1.25	β 1,2; 1,3 γ 75; 44 σ 22; σι 15	β ⁻ 0,4 γ 44: (190) e ⁻ m		β 7 68; 58; 585; 573 m	
Pa 232 1,31 d	Pa 233 27,0 d	Pa 234	21,235 24,2 m	Pa 236 9,1 m	Pa 237 8,7 m	Pa 238 2,3 m	Quantities refer to			
β ⁺⁻ 0,3, 1,3; e γ 969; 894; 150; e ⁻ α 460; σ 700	β ⁺⁺ 0,3; 0,6 γ 312; 300; 341; e ⁺⁻ α 20 + 19; α ₁ < 0,1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	β ⁻ 1 4 γ 12 8 - 659 m	β 2.0; 3,1 γ 642; 687; 1763; g βsf ?	β 1,4; 2,3 γ 854; 865; 529; 541	β ⁻ 1,7; 2,9 γ 1015; 635; 448; 680 9	yearly production in			
Th 231 25,5 h	Th 232 100	Th 233	7h 234 24,10 d	Th 235 7,1 m	Th 236 37,5 m	Th 237 5,0 m	1.01			
β ⁻ 0,3; 0,4 γ 26; 84	1,405-10 ¹⁰ a (4,013; 3,950; sf (84); e	SI 7 87,29, 459	β ⁻ 0,2 γ (3; 92; 93 e ⁻ m	β 1,4 γ 417; 727;	β 1,0 γ 111; (647;	-				LLFP 76.2 Kalvr
	0 1/3r; a/ 0/0000/8	a 1500 ay 15	0,0; 0 < 0,01	090	(80)	P				70.2 Kg/yl

LLFP

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

/ntof

The n_TOF project

Istituto Nazionale di Fisica Nucleare

Nuclear Data for Science and Technology

The European Commission encourages and finances research in nuclear physics applied to the construction of new reactors (EURATOM).

FP VII EURATOM

Topic: Fission-2009-2.3.2: Improved nuclear data for advanced reactor systems.

The combination of advanced simulation systems and more precise nuclear data will allow optimising the use of and need for experimental and demonstration facilities in the design and deployment of new reactors. A concerted effort including new nuclear data measurements, dedicated benchmarks (i.e. integral experiments) and improved evaluation and modelling is needed in order to achieve the required accuracies. The project shall aim to obtain high precision nuclear data for the major actinides present in advanced reactor fuels, to reduce uncertainties in new isotopes in closed cycles with waste minimisation and to better assess the uncertainties and correlations in their evaluation.

The n_TOF project [NFN

Istituto Nazionale di Fisica Nucleare

CERN Bulletin

Issue No. 32-34/2014 - Monday 4 August 2014 More articles at: http://bulletin.cern.ch

THE FIRST NEUTRON BEAM HITS EAR2

On 25 July 2014, about a year after construction work began, the Experimental Area 2 (EAR2) of CERN's neutron facility n_TOF recorded its first beam. Unique in many aspects, EAR2 will start its rich programme of experimental physics this autumn.

The last part of the EAR2 beamline: the neutrons come from the underground target and reach the top of the beamline, where they hit the samples.

GETTING TO KNOW INTERNATIONAL GENEVA

Over recent years, CERN has been tightening its links with fellow organisations in Geneva's vibrant international community.

(Continued on page 2)

In this issue

NEWS

The n TOF project /NFN

Istituto Nazionale di Fisica Nucleare

The n_TOF project (INFN (Istituto Nazionale di Fisica Nucleare

The advange of n_TOF are a direct consequence of the characteristics of the **PS** proton beam: high energy, high peak current, low duty cycle.

The n_TOF project INFN

Istituto Nazionale di Fisica Nucleare

Detectors: radiative capture

Capture reactions are measured by detecting γ -rays emitted in the de-excitation process. **Two different systems**, to minimize different types of background

Detectors: fission

Several systems have been used for detecting fission fragments. The main **problem** in fission measurements is the **background** due to α -decay.

Parallel Plate Avalanche Counters (PPAC)

- Fission fragments detected in coincidence
- Very good rejection of α-background

Micromegas chamber

• low-noice, high-gain, radiation-hard detector

Istituto Nazionale di Fisica Nucleare

Detectors: (n, p) and (n, α) reactions

Gas and solid state detectors are used for detecting charged particles, depending on the energy region of interest and the Q-value of the reaction

Silicon detectors Silicon sandwich Diamond detector AE-E Telescopes

Micromegas chamber

· low-noice, high-gain, radiation-hard detector

NTOF

Detector for the neutron flux

The **spatial distribution** of neutrons as a function of energy has been measured by means of a **double side silicon strip detector** (DSSSD).

- 16 x 16 Si sensor strips
- 3 mm wide strips, 500 mm thick
- 50 x 50 mm² X-Y grid
- LiF converter

Study of the neutron flux

Istituto Nazionale di Fisica Nucleare

INFN

Detector for (n, γ) reaction

n_TOF Internal Report (June 2013)

New C₆D₆ detectors: reduced neutron sensitivity and improved safety

P.F. Mastinu¹, R. Baccomi², E. Berthoumieux³, D. Cano-Ott⁴, F. Gramegna¹, C. Guerrero⁵, C. Massimi⁶, P.M. Milazzo², F.Mingrone⁶, J. Praena⁷, G. Prete¹, A.R. García⁴

¹ Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro, Italy

² Istituto Nazionale di Fisica Nucleare (INFN), Trieste, Italy

³ CEA, Irfu, Gif-sur-Yvette, France

⁴ Centro de Investigaciones Energeticas Medioambientales y Technologicas, Madrid, Spain

⁵ CERN, European Organization for Nuclear Resarch, Geneva, Switzerland

⁶ Dipartimento di Fisica e Astronomia, Università di Bologna and Sezione INFN di Bologna, Italy
 ⁷ Universidad de Sevilla, Spain

ToF(ns)

(The n_TOF Collaboration, <u>http://cern.ch/nTOF</u>)

Other in kind contributions

Proposal and realization of experiments

²³⁵U(n, f) is considered a well known cross
section and is a standard at thermal and from
150 keV to 200 MeV

→ Large deviation observed: $10 < E_n < 40 \text{ keV}$

EAR1@n TOF, to clarify this issue.

Proposal and realization of experiments

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of ${}^{7}Be(n,\alpha){}^{4}He$ and ${}^{7}Be(n,p){}^{7}Li$ cross sections for the Cosmological Lithium Problem

Request for a test beam at n_TOF and sample preparation at ISOLDE May 27, 2014

M. Barbagallo¹, A. Musumarra², A. Mengoni³, L. Cosentino², P. Finocchiaro², N. Colonna¹, D. Schumann⁴, R. Dressler⁴, S. Lo Meo³, C. Massimi⁵, F. Mingrone⁵, J. Andrzejewski⁶, J. Praena⁷, P. Zugee⁸, P.M. Milazzo⁹, T. Stora¹⁰, E. Chiaveri¹⁰, M. Calviani¹⁰, C. Lederer¹¹, the n_TOF collaboration¹⁰

¹Istituto Nazionale Fisica Nucleare, Sez. Bari, Italy
 ²INFN - Laboratori Nazionali del Sud, Catania, Italy
 ³ENEA - Bologna, Italy
 ⁴Paul Scherrer Institute, Villigen, Switzerland
 ⁵Dip. Fisica and INFN - Bologna, Italy
 ⁶Univ. of Lodz, Lodz, Poland
 ⁷Univ. of Sevilla, Sevila, Spain
 ⁸Univ. of Zagreb, Cagreb, Croatia
 ⁹Istituto Nazionale Fisica Nucleare, Sez. Trieste, Italy
 ¹⁰European Organization for Nuclear Research (CERN), Geneva, Switzerland
 ¹¹University of Edinburgh, Edinburgh, UK

Spokespersons: M. Barbagallo [massimo.barbagallo@ba.infn.it] A. Musumarra [musumarra@lns.infn.it] Technical coordinator: O. Aberle [Oliver.Aberle@cern.ch]

Abstract: We propose to measure in the second experimental area of n_TOF the $^7Be(n,\alpha)^4He$ and $^7Be(n,p)^7Li$ reaction in a wide energy range. Both reactions are of interest for the long-standing "Cosmological ⁷Li problem" in Big Bang Nucleosynthesis (BBN).

BBN successfully predicts the abundances of primordial elements such as ⁴He, D and ³He. Large **discrepancy** for ⁷Li, which is produced from electron capture decay of ⁷Be

~ 95% of ⁷Li is produced by the decay of ⁷Be $(T_{1/2}=53.2 \text{ d})$

ITOF

Proposal and realization of experiments

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of ${}^{7}Be(n,\alpha){}^{4}He$ and ${}^{7}Be(n,p){}^{7}Li$ cross sections for the Cosmological Lithium Problem

Request for a test beam at n_TOF and sample preparation at ISOLDE May 27, 2014

M. Barbagallo¹, A. Musumarra², A. Mengoni³, L. Cosentino², P. Finocchiaro², N. Colonna¹, D. Schumann⁴, R. Dressler⁴, S. Lo Meo³, C. Massimi⁵, F. Mingrone⁵, J. Andrzejewski⁶, J. Praena⁷, P. Zugec⁸, P.M. Milazzo⁹, T. Stora¹⁰, E. Chiaveri¹⁰, M. Calviani¹⁰, C. Lederer¹¹, the n_TOF collaboration¹⁰

¹Istituto Nazionale Fisica Nucleare, Sez. Bari, Italy
 ²INFN - Laboratori Nazionali del Sud, Catania, Italy
 ³ENEA - Bologna, Italy
 ⁴Paul Scherrer Institute, Villigen, Switzerland
 ⁵Dip. Fisica and INFN - Bologna, Italy
 ⁶Univ. of Lodz, Lodz, Poland
 ⁷Univ. of Zagreb, Zagreb, Croatia
 ⁹Istituto Nazionale Fisica Nucleare, Sez. Trieste, Italy
 ¹⁰European Organization for Nuclear Research (CERN), Geneva, Switzerland
 ¹¹University of Edinburgh, Edinburgh, UK

Spokespersons: M. Barbagallo [massimo.barbagallo@ba.infn.it] A. Musumarra [musumarra@lns.infn.it] Technical coordinator: O. Aberle [Oliver.Aberle@cern.ch]

Abstract: We propose to measure in the second experimental area of n_TOF the $^7\text{Be}(n,\alpha)^4\text{He}$ and $^7\text{Be}(n,p)^7\text{Li}$ reaction in a wide energy range. Both reactions are of interest for the long-standing "Cosmological ⁷Li problem" in Big Bang Nucleosynthesis (BBN).

⁷Be is destroyed by (n, p) (\approx 97%) and (n, α) (\approx 2.5%)

With a 10 times higher destruction rate of ⁷Be the cosmological lithium problem could be solved (nuclear)

Proposal and realization of experiments

The (n, α) reaction produces **two** α **-particles** emitted back-toback with **several MeV energy** (Q-value=19 MeV)

2 Sandwiches of **silicon detector** (140 mm,3x3cm²) with ⁷Be sample in between **directly inserted in the neutron beam**

Coincidence technique: strong background rejection

NTOF

INFN @ n TOF stituto Nazionale di Fisica Nucleare

Publications

- Physical Review Letter (2) \rightarrow INFN $\frac{1}{2} + \frac{1}{2}$
- Energy & Environmental Science (1) → INFN 1
- Phisical Review C (33) \rightarrow INFN 14
- The European Physical Journal A (7) \rightarrow INFN 4
- Nuclear Instruments and Methods (16) \rightarrow INFN 8
- Nuclear Data Sheets (20) \rightarrow INFN 4
- Others (n) \rightarrow INFN (n/2)
- Proceedings $(n^2) \rightarrow INFN (n^2/2)$

The n_TOF Collaboration ~ 100 researchers INFN ~ 10 researchers

INFN – Bo @ n_TOF / NFN

Istituto Nazionale di Fisica Nucleare

1st publication using the 4π detector: ¹⁹⁷Au(n, γ)

INFN – Bo @ n_TOF / NFN

lstituto Nazionale di Fisica Nucleare

INTOF

1st comparison using both BaF₂ and C₆D₆: ¹⁹⁷Au(n, γ)

INFN – Bo @ n_TOF / Istituto Nazionale di Fisica Nucleare

Reference Cross Section for Astrophysics

٠	Mass	Karlsruhe Astrophysical Database of Nucleosynthesis in Stars										
	0446 ⁻	s-process		[Stand	ards] [Logbook] [FAQ] [Li	nks] [Disclaimer] [Contact]		p-process				
•	Lede	▼ Available isotopes for Gold (Z=79)										
	83 (2)	197 _{AU} 198 _{AU}										
•	Mass		Go to isotope Go!									
	The E											
		▼ Recommended MACS30 (Maxwellian Averaged Cross Section @ 30keV)										
		¹⁹⁷ Au (n, γ) ¹⁹⁸ Au										
		Total MACS at 30keV: 612.8 ± 7.0 mb										
			Cross sections do not include stellar enhancement factors!									
		▼ History										
		Version 1.0 0.0	Total MACS [mb] 612.8 ± 7.0 582 ± 9	Partial to gs [mb] - -	Partial to isomer [mb] - -							

(Version 0.0 corresponds to Bao et al.)

- Comment

Au-197 is used as standard for most astrophysical cross section measurements. Unfortunately, it is at the moment only a standard in the thermal region and between E(n)= 200 keV and 2.8 MeV (au197). Recent measurements at nTOF (CL11, CM10) and GELINA (MBD14) show a discrepancy of about 5% to the previously used standard value at kT= 30 keV from RaK88 and Mac82e.

The new recommended standard cross section for the astrophysical energy region was derived between kT= 5 and 50 keV by the weighted average of the GELINA measurement of MBD14 and the nTOF measurement of CL11,CM10. The uncertainty in this energy range was taken from MBD14. For the energies between kT= 60-100keV we used the average of the recent libraries (jeff32, jendl40, endfb71) and the uncertainty from the standard deviation given in jeff32 and endfb71. The previous standard value used for activations with the Li-7(p,n)Be-7 reaction at E(p)= 1912 keV was 586 (9) mb, the so-called "Ratynski value" (RaK88). At this energy the neutrons are collimated in a forward cone of 120 degree opening angle and resemble a quasi-stellar neutron spectrum of kT= 25 keV. With the new results this value would change to 632 (9) mb.

NTOF

⁶⁴Zr

63Cu

62Ni

INFN – Bo @ n TOF / NFN

Istituto Nazionale di Fisica Nucleare

⁶³Ni ($t_{1/2}$ =100 y) represents the **first branching point** in the sprocess, and determines the abundance of ^{63,65}Cu

⁶²Ni sample (1g) irradiated in thermal reactor (1984 and 1992), leading to enrichment in ^{63}Ni of ~ 13 % (131 mg)

In 2011 ~ 15.4 mg ⁶³Cu in the sample (from ⁶³Ni decay).

After **chemical** separation at PSI, ⁶³Cu contamination <0.01 mg

First high-resolution measurement of ⁶³Ni(n,g) in the astrophysical energy range.

⁶⁷Zn

5.1 m

2.52 h

⁶⁶Zn

β≨C⊓

ĕ4N

⁶⁵Zn

244 1

101 a

INFN – Bo @ n_TOF / Istituto Nazionale di Fisica Nucleare

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Neutron capture cross section of $^{25}\mathrm{Mg}$ and its astrophysical implications

January 4, 2012

C. Massimi^{1,2}, E. Berthoumieux³, N. Colonna⁴, F. Gunsing³ F. Käppeler⁵, P. Koehler⁶, P.M. Milazzo⁷, F. Mingrone^{1,2}, P. Schillebeeckx⁸, G. Vannini^{1,2} and The n_TOF Collaboration (www.cern.ch/ntof)

¹Dipartimento di Fisica, Alma Mater Studiorum Università di Bologna, Italy
²Istituto Nazionale di Fisica Nucleare, Bologna, Italy
³CEA/Saclay - IRFU, Gif-sur-Yvette, France
⁴Istituto Nazionale di Fisica Nucleare, Bari, Italy
⁵Karlsruhe Institute of Technology (KIT), Campus Nord, Institut für Kernphysik, Germany
⁶Oak Ridge National Laboratory, Physics Division, Oak Ridge, USA
⁷ Istituto Nazionale di Fisica Nucleare, Trieste, Italy
⁸ EC-JRC, Institute for Reference Materials and Measurements, Belgium

Spokesperson: C. Massimi cristian.massimi@bo.infn.it Technical coordinator: E. Berthoumieux Eric.Berthoumieux@cern.ch 1. CONSTRAINTS for ${}^{22}Ne(\alpha, n)$ ${}^{25}Mg$: it is one of the most important neutron source in Red Giant stars. Its reaction rate is very uncertain because of the poorly known property of the states in ${}^{26}Mg$. From neutron measurements the J^{π} of ${}^{26}Mg$ states can be deduced.

 NEUTRON POISON: ^{25,26}Mg are the most important neutron poisons due to neutron capture on Mg stable isotopes in competition with neutron capture on ⁵⁶Fe (the basic sprocess seed for the production of heavy isotopes).

INFN – Bo @ n_TOF / NFN

Istituto Nazionale di Fisica Nucleare

Constraints for the ²²Ne(α, n)²⁵Mg reaction

Element	Spin/ parity
²² Ne	0+
⁴ He	0+

Only **natural-parity states in ²⁶Mg** can participate in the ²²Ne(α ,n)²⁵Mg reaction

$$\vec{J} = \vec{I} + \vec{i} + \vec{\ell} \qquad \pi = (-1)^{\ell}$$
$$\vec{J} = \vec{0} + \vec{\ell}$$
$$J^{\pi} = 0^{+}, 1^{-}, 2^{+}, 3^{-}, 4^{+} \dots$$

INFN – Bo @ n_TOF / NFN

Istituto Nazionale di Fisica Nucleare

Constraints for the ²²Ne(α, n)²⁵Mg reaction

Element	Spin/ parity
²⁵ Mg	5/2+
neutron	1/2+

$$\vec{J} = \vec{I} + \vec{i} + \vec{\ell}$$
$$\vec{J} = 2 + \vec{\ell} \quad \vec{J} = 3 + \vec{\ell}$$

s-wave $\rightarrow J^{\pi} = \underline{2^{+}}, 3^{+}$ p-wave $\rightarrow J^{\pi} = \underline{1^{-}}, 2^{-}, \underline{3^{-}}, 4^{-}$ d-wave $\rightarrow J^{\pi} = \underline{0^{+}}, 1^{+}, \underline{2^{+}}, 3^{+}, \underline{4^{+}}, 5^{+}$ States in ²⁶Mg populated by ²⁵Mg+n reaction

Experimental evidence of natural spin parity

INFN – Bo @ n_TOF INFN

PhD on $^{238}U(n, \gamma)$

Neutron capture cross section measurement of 238 U at the n_TOF CERN facility with C_6D_6 scintillation detectors in the energy region from 1 eV to 700 keV

F. Mingrone,^{1, 2} C. Massimi,^{1, 2} G. Vannini,^{1, 2} N. Colonna,³ P. Žugec,⁴ S. Altstadt,⁵ J. Andrzejewski,⁶ L. Audouin,⁷ M. Barbagallo,³ V. Bécares,⁸ F. Bečvář,⁹ F. Belloni,¹⁰ E. Berthoumieux,^{10,11} J. Billowes,¹² D. Bosnar,⁴ M. Brugger,¹¹ M. Calviani,¹¹ F. Calviño,¹³ D. Cano-Ott,⁸ C. Carrapico,¹⁴ F. Cerutti,¹¹ E. Chiaveri,^{10,11} M. Chin,¹¹ G. Cortés,¹³ M.A. Cortés-Giraldo,¹⁵ M. Diakaki,¹⁶ C. Domingo-Pardo,¹⁷ I. Duran,¹⁸ R. Dressler,¹⁹ C. Eleftheriadis,²⁰ A. Ferrari,¹¹ K. Fraval,¹⁰ S. Ganesan,²¹ A.R. García,⁸ G. Giubrone.¹⁷ I.F. Goncalves.¹⁴ E. González-Romero.⁸ E. Griesmaver.²² C. Guerrero.¹¹ F. Gunsing.¹⁰ A. Hernández-Prieto,^{11,13} D.G. Jenkins,²³ E. Jericha,²² Y. Kadi,¹¹ F. Käppeler,²⁴ D. Karadimos,¹⁶ N. Kivel,¹⁹ P. Koehler,²⁵ M. Kokkoris,¹⁶ M. Krtička,⁹ J. Kroll,⁹ C. Lampoudis,¹⁰ C. Langer,⁵ E. Leal-Cidoncha,¹⁸ C. Lederer,²⁶ H. Leeb,²² L.S. Leong,⁷ S. Lo Meo,^{27, 2} R. Losito,¹¹ A. Mallick,²¹ A. Manousos,²⁰ J. Marganiec,⁶ T. Martínez,⁸ P.F. Mastinu,²⁸ M. Mastromarco,³ E. Mendoza,⁸ A. Mengoni,²⁷ P.M. Milazzo,²⁹ M. Mirea,³⁰ W. Mondalaers,³¹ C. Paradela,¹⁸ A. Pavlik,²⁶ J. Perkowski,⁶ A. Plompen,³¹ J. Praena,¹⁵ J.M. Quesada,¹⁵ T. Rauscher,³² R. Reifarth,⁵ A. Riego,¹³ M.S. Robles,¹⁸ C. Rubbia,^{11, 33} M. Sabaté-Gilarte,¹⁵ R. Sarmento,¹⁴ A. Saxena,²¹ P. Schillebeeckx,³¹ S. Schmidt,⁵ D. Schumann,¹⁹ G. Tagliente,³ J.L. Tain,¹⁷ D. Tarrío,¹⁸ L. Tassan-Got,⁷ A. Tsinganis,¹¹ S. Valenta,⁹ V. Variale,³ P. Vaz,¹⁴ A. Ventura,² M.J. Vermeulen,²³ V. Vlachoudis,¹¹ R. Vlastou,¹⁶ A. Wallner,²⁶ T. Ware,¹² M. Weigand,⁵ C. Weiß,²² and T. Wright¹² (The n_TOF Collaboration (www.cern.ch/ntof))

Proton Beam

INFN – Bo @ n TOF Istituto Nazionale

di Fisica Nucleare

GEANT4 simulation of the n TOF neutron source

GEOMETRY: spallation target, coolant and moderator systems separated, the support structures and the concrete pit in which it is mounted.

2 SCORING PLANES: towards EAR1 and EAR2 (at the entrance of the beam pipe).

MODERATOR: borated water is made with 4.2% in weight of H_3BO_3 , with a ¹⁰B enrichment of 90%.

GEANT4 simulation of the n_TOF neutron source

GEANT4 simulation of the n_TOF neutron source

Resolution function, impact on resonances

Resolution function, impact on resonances

The stochastic process of **moderation** inside the neutron-producing target causes a **broadening of** the **energy** distribution of neutrons reaching the experimental area at a given TOF.

Istituto Nazionale di Fisica Nucleare

Beam Profile

INFN – Bo @ n_TOF / NFN

Istituto Nazionale di Fisica Nucleare

Proposals for experiments in the next year ...

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of the neutron capture cross section for $^{155}\mathrm{Gd}$ and $^{157}\mathrm{Gd}$ for Nuclear Technology

May 5, 2015

Sergio Lo Meo^{1,2}, Cristian Massimi^{2,3}, Massimo Barbagallo⁴, Donato Maurizio Castelluccio^{1,2}, Nicola Colonna⁴, Antonio Guglielmelli¹, Mario Mastromarco⁴, Federica Mingrone², Federico Rocchi¹, Gianni Vannini^{2,3}

¹ENEA Research Centre E. Clementel, Via Martiri di Monte Sole 4 I-40129 Bologna (Italy)
²INFN Section of Bologna, Viale B. Pichat 6/2 I-40127 Bologna (Italy)
³ Physics and Astronomy Dept. Alma Mater Studiorum - University of Bologna, Via Irnerio 46 I-40126 Bologna (Italy)
⁴INFN Section of Bari, Via E. Orabona 4 I-70125 Bari (Italy)

Spokespersons: Sergio Lo Meo (sergio.lomeo@enea.it) Cristian Massimi (cristian.massimi@bo.infn.it)

Technical coordinator: Oliver Aberle (oliver.aberle@cern.ch)

Abstract: We propose to measure the neutron capture cross-section of ¹⁵⁵Gd and ¹⁵⁷Gd from thermal to 1 MeV neutron energy. The main motivation is related to the need of accurate data for applications to nuclear reactors, but new data could also be useful for recent developments in Neutron Capture Therapy, and for new detector concepts in neutrino research. The measurement should be performed in EAR-1 with cutting edge C_6D_6 detectors specifically designed for n_TOF. Since the cross section of these two isotopes changes by orders of magnitude as a function of neutron energy, two highly-enriched samples for each isotope will be measured: a very thin one up to 100 meV, and a thicker one for cross section determination above 100 meV.

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Proposal to the ISOLDE and Neutron Time-of-Flight Committee

Measurement of the neutron capture cross section of gadolinium even isotopes relevant to Nuclear Astrophysics

May 5, 2015

Cristian Massimi^{1,2}, Federica Mingrone¹, Sergio Cristallo³, Donato Maurizio Castelluccio^{1,4}, Nicola Colonna⁵, Sergio Lo Meo^{1,4}, Gianni Vannini^{1,2}

¹INFN Section of Bologna, Viale B. Pichat 6/2 I-40127 Bologna (Italy)
² Physics and Astronomy Dept.- University of Bologna, Via Irnerio 46 I-40126 Bologna (Italy)
³ INAF - Osservatorio Astronomico di Collurania, Via M. Maggini I-64100 TERAMO (Italy)
⁴ENEA Research Centre E. Clementel, Via Martiri di Monte Sole 4 I-40129 Bologna (Italy)
⁵INFN Section of Bari, Via E. Orabona 4 I-70125 Bari (Italy)

Spokespersons: Cristian Massimi (massimi@bo.infn.it) and Federica Mingrone (mingrone@bo.infn.it) Technical coordinator: Oliver Aberle (oliver.aberle@cern.ch)

Abstract:

We propose to measure the neutron capture cross-section of the stable isotopes ¹⁵²Gd, ¹⁵⁴Gd, ¹⁵⁶Gd, ¹⁵⁶Gd and ¹⁶⁰Gd. This experiment aims at the improvement of existing data of interest for nuclear astrophysics. The measurement will be carried out under similar conditions of previous measurements successfully completed at n_TOF with an optimized detection set-up: a cutting edge detector especially designed for accurate

 (n,γ) measurement will be exploited in combination with a series of isotopically enriched samples. Concerning the correction related to isotopic impurities, we count on taking advantage of the result of the measurement on the ¹⁵⁵Gd(n, γ) and ¹⁵⁷Gd(n, γ), subject of a different proposal.

Cristian Massimi Dipartimento di Fisica e Astronomia massimi@bo.infn.it

www.unibo.it

Th/U fuel cycle

 $^{232}\text{Th} + \text{n} \longrightarrow ^{233}\text{Th} \xrightarrow{\beta^- (22 \text{ min})} ^{233}\text{Pa} \xrightarrow{\beta^- (27 \text{ d})} ^{233}\text{U}$

Il ²³²Th è l'isotopo fertile: a seguito della cattura neutronica (e successivi decadimenti β), produce il ²³³U, isotopo fissile.

Necessarie sezioni d'urto accurate su ²³²Th(n,γ) e ²³³U(n,f), ma non solo.

Importante le sezioni d'urto di cattura e fissione del ²³³Pa, molto difficile da misurare direttamente.

s- and r- process

Stellar nucleosynthesis (s-, r-process)

The R-matrix formalism

saclay

œ

The Breit-Wigner Single Level approximation: total cross section:

$$\sigma_c = \pi \lambda_c^2 g_c \left(4 \sin^2 \phi_c + \frac{\Gamma_\lambda \Gamma_{\lambda c} \cos 2\phi_c + 2(E - E_\lambda - \Delta_\lambda) \Gamma_{\lambda c} \sin 2\phi_c}{(E - E_\lambda - \Delta_\lambda)^2 + \Gamma_\lambda^2/4} \right)$$

neutron channel: c = nonly capture, scattering, fission: $\Gamma_{\lambda} = \Gamma = \Gamma_n + \Gamma_{\gamma} + \Gamma_f$ other approximations: $\ell = 0$ $\cos \phi_c = 1$ $\sin \phi_c = \rho = ka_c$ $\Delta_{\lambda} = 0$

total cross section:

$$\sigma_T(E) = \frac{4\pi R'^2}{4\pi R'^2} + \pi \lambda^2 g \left(\frac{4\Gamma_n(E - E_0)R'/\lambda + \Gamma_n^2 + \Gamma_n\Gamma_\gamma + \Gamma_n\Gamma_f}{(E - E_0)^2 + (\Gamma_n + \Gamma_\gamma + \Gamma_f +)^2/4} \right)$$

Neutrons/In(E)/7e12 ppp

 10^{5}

 10^{4}

10⁻¹

1

1.1.1.1.1.1

The flux was measured for each target, with four different systems based on ⁶Li, ¹⁰B and ²³⁵U.

Measurements were repeated for the ¹⁰B-water moderator (the thermal peak in the flux is suppressed).

The use of borated water suppresses the 2.2 MeV g-rays from ¹H(n,g)²H. Background reduced by a factor of 10 in some energy regions!

РТВ SiMon

FLUKA n TOF-Ph1

MGAS (¹⁰B) MGAS (235 U)

 10^{3}

DAQ - fADC

JnTOF

Detector signal sampling, Acqiris digitizers

²⁵Mg(n, γ)²⁶Mg resonances \longrightarrow R-matrix parameterization of the cross section

E_n (keV)	l	J^{π}	$\Gamma_{\gamma} ~(\mathrm{eV})$	$\Gamma_n \ (eV)$
-154.25	0	2^{+}	6.5	30000
19.86 ± 0.05	0	2^{+}	1.7 ± 0.2	2310 ± 30
62.727 ± 0.003	1^a	$1^{+ a}$	4.1 ± 0.7	28 ± 5
72.66 ± 0.03	0	2^{+}	2.5 ± 0.4	5080 ± 80
79.29 ± 0.03	0	3^{+}	3.3 ± 0.4	1560 ± 80
81.117 ± 0.001	0^b	$(2)^+$	3 ± 2	0.8 ± 0.7
93.60 ± 0.02	(1)	(1^{-})	2.3 ± 2	0.6 ± 0.2
100.03 ± 0.02	0	3^{+}	1.0 ± 0.1	5240 ± 40
$[101.997 \pm 0.009]$	[1]	$[2^{-}]$	$[0.2 \pm 0.1]$	$[4 \pm 3]$
$[107.60 \pm 0.02]$	$[0]^{b}$	$[3^+]$	$[0.3 \pm 0.1]$	$[2 \pm 1]$
156.34 ± 0.02	(1)	(2^{-})	6.1 ± 0.4	5520 ± 20
188.347 ± 0.009	0	$(2)^+$	1.7 ± 0.2	590 ± 20
194.482 ± 0.009	(1)	$4^{(-)}$	0.2 ± 0.1	1730 ± 20
200.20 ± 0.03	16	1^{-}	0.3 ± 0.3	1410 ± 60
200.944 ± 0.006	(2)	(2^+)	3.0 ± 0.3	0.7 ± 0.7
203.878 ± 0.001	(1)	(2^{-})	0.8 ± 0.3	2 ± 1
208.27 ± 0.01	(1)	(1^{-})	1.2 ± 0.5	230 ± 20
211.14 ± 0.05	(1)	(2^{-})	3.1 ± 0.7	12400 ± 100
226.255 ± 0.001	(1)	(1^{-})	4 ± 3	0.4 ± 0.2
242.47 ± 0.02	(1)	(1^{-})	6 ± 4	0.3 ± 0.2
244.60 ± 0.03	1	1^{-c}	3.5 ± 0.6	50 ± 20
245.552 ± 0.002	(1)	(1^{-})	2.3 ± 2	0.5 ± 0.2
253.63 ± 0.01	(1)	(1^{-})	3.1 ± 2.7	0.1 ± 0.1
261.84 ± 0.03	(1)	$4^{(-)}$	2.6 ± 0.4	3490 ± 60
279.6 ± 0.2	(0)	(2^+)	1.9 ± 0.7	3290 ± 50
311.57 ± 0.01	(2)	(5^+)	(0.84 ± 0.09)	(240 ± 10)

Convoluted with **neutron** stellar **flux**

Results

Stellar site	Temperature keV	MACS (Massimi 2003)	MACS (KADoNiS)	MACS Massimi 2012
He - AGB	8	4.9±0.6 mb	4.9 mb	4.3 mb
He - AGB	23	3.2±0.2 mb	6.1 mb	4.3 mb
30	30	4.1±0.6 mb	6.4±0.4 mb	4.1 mb
He – Massive	25	3.4±0.2 mb	6.2 mb	4.2 mb
C - Massive	90	2.6±0.3 mb	4.0 mb	2.5 mb

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Intof

-40<u>4</u>0 -30 -20 -10 0 10 20 30 40 X (cm)

-40⁴/₄₀ -30 -20 -10 0 10 20 30 40 X (cm)

-40⁻⁴⁰-30 -20 -10 0 1

JNTOF

40

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

INTOF

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

PRT

ITOF

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA