

Search for Charged Lepton Flavor Violation at J-PARC - COMET Experiment -

Yoshitaka Kuno Department of Physics Osaka University

August 27, 2015 NLF, Frascati, Italy

Outline

- Why Flavor Physics ?
- Why Charged Lepton Flavor Violation (CLFV) ?
- CLFV Experiments
 - Muon to electron conversion in a muonic atom
- COMET (-> COMET Phase-II)
 - for sensitivity of 7<10⁻¹⁷ (x10000)
- COMET Phase-I
 - for sensitivity of 7<10⁻¹⁵ (x100)
- Summary

Why Charged Lepton Flavor Violation ?

The Standard Model has the Higgs boson, but no new particles are found yet...

The discovery of the Higgs boson has been made.

The Standard Model can explain most of the experimental results. However, there are many undetermined parameters and issues.

The Standard Model is considered to be incomplete. New Physics is needed.

The Standard Model of Particle Interactions Three Generations of Mat/ Ш UCt**b**

Three Frontiers of Particle Physics

To explore new physics at high energy scale

The Intensity Frontier

use intense beams to observe rare processes and study the particle properties to probe physics beyond the SM.

Rare Decays

Flavor Physics

$$V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2 + Y^{ij} \Psi_L^i \Psi_R^j \Phi + \frac{g_{ij}}{\Lambda} \Psi_L^i \Psi_L^{jT} \Phi \Phi^T$$

Origin of flavor
(1) what determines the observed pattern of masses and mixing angle of quarks and leptons ?
(2) which sources of flavor symmetry breaking are accessible at low energy ?

Ques.(1) is difficult to address owing to the lack of theoretical guidance. Ques.(2) can be answered by a series of high-precision measurements

search for new physics

New Physics Search in Quark Flavor

with new physics contributions

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{C_{\text{NP}}}{\Lambda^2} O_{ij}^{(6)} ,$$

Λ is the energy scale of new physics

Quark Flavor

Operator	Limits on Λ (TeV)		Limits on $C_{\rm NP}$		Observables	
	$(C_{\rm NP} = 1)$		$(\Lambda =$	$1\mathrm{TeV})$		
	Re	Im	Re	Im		
$(\overline{s}_L \gamma^\mu d_L)^2$	$9.8 imes 10^2$	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K, \varepsilon_K$	
$(\overline{s}_R d_L)(\overline{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K, \varepsilon_K$	
$(\overline{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D, q/p , \Phi_D$	
$(\overline{c}_R u_L)(\overline{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D, q/p , \Phi_D$	
$(\overline{b}_L \gamma^\mu d_L)^2$	$6.6 imes 10^2$	$9.3 imes 10^2$	2.3×10^{-6}	1.1×10^{-6}	$\Delta m_{B_d}, S_{\phi K_{\mathrm{S}}}$	
$(\overline{b}_R d_L)(\overline{b}_L d_R)$	2.5×10^3	3.6×10^3	3.9×10^{-7}	1.9×10^{-7}	$\Delta m_{B_d}, S_{\phi K_{\mathrm{S}}}$	
$(\overline{b}_L \gamma^\mu s_L)^2$	1.4×10^2	$2.5 imes 10^2$	5.0×10^{-5}	1.7×10^{-5}	$\Delta m_{B_s}, S_{\psi\phi}$	
$(\overline{b}_R s_L)(\overline{b}_L s_R)$	4.8×10^2	8.3×10^2	8.8×10^{-6}	2.9×10^{-6}	$\Delta m_{B_s}, S_{\psi\phi}$	

New Physics Search in Charged Lepton Flavor

with new physics contributions

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{C_{\text{NP}}}{\Lambda^2} O_{ij}^{(6)} ,$$

Charged Lepton Flavor

For instance, $\mu \rightarrow e\gamma$ (B<5.7x10⁻¹³),

$$\frac{C_{\rm NP}}{\Lambda^2} O_{ij}^{(6)} \to \frac{C_{\mu e}}{\Lambda^2} \overline{e}_L \sigma^{\rho\nu} \mu_R \Phi F_{\rho\nu}$$
$$\Lambda > 2 \times 10^5 \,{\rm TeV} \times (C_{\mu e})^{\frac{1}{2}} .$$

 $\Lambda > O(10^5)$ TeV

The constraint in CLFV is even more severe than in the quark flavor. The SM contribution to muon CLFV is small, of the order of $O(10^{-54})$.

 Λ is the energy scale of new physics

- Processes which are forbidden or highly suppressed in the Standard Model would be the best ones to search for new physics beyond the Standard Model.
- Flavor Changing Neutral Current Process (FCNC)
- FCNC in the quark sector
 - b→sγ, K→πνν, etc.
 - Allowed in the Standard Model.
 - Need to study deviations from the SM predictions.
 - Uncertainty of more than a few % (from QCD) exists.
- FCNC in the lepton sector
 - $\mu \rightarrow e\gamma$, $\mu + N \rightarrow e + N$, etc. (lepton flavor violation =LFV)
 - Not allowed in the Standard Model (~10⁻⁵⁰ with neutrino mixing)
 - Need to study deviations from none
 - clear signature and high sensitivity

Why Muons, not Taus?

- A number of taus available at B factories are about 1-10 taus/sec. At super-B factories, about 100 taus/sec are considered. Also some of the decay modes are already background-limited.
- A number of muons available now, which is about 10⁸ muons/sec at PSI, is the largest. Next generation experiments aim 10¹¹-10¹² muons/sec. With the technology of the front end of muon colliders and/or neutrino factories, about 10¹³-10¹⁴ muons/sec are considered.

a larger window to search for new physics for muons than taus

Guideline for Rare Decay Searches

No SM Contribution in Charged Lepton Flavor Violation (CLFV)

Observation of CLFV would indicate a clear signal of physics beyond the SM with massive neutrinos.

Quark FCNC vs. Lepton FCNC

Lepton FCNC (CLFV) may still have better sensitivity to NP.

Various Models Predict CLFV.....

Example of Sensitivity to NP in High Energy Scale : SUSY models

For loop diagrams,

$$BR(\mu \to e\gamma) = 1 \times 10^{-11} \times \left(\frac{2\text{TeV}}{\Lambda}\right)^4 \left(\frac{\theta_{\mu e}}{10^{-2}}\right)^2 \quad y = \frac{g^2}{16\pi^2} \theta_{\mu e}$$

> sensitive to TeV energy scale with reasonable mixing

extra dimension model

CLFV Predictions

Various BSM models predict sizable muon CLFV, as well as tau CLFV.

"DNA of New Physics" (a la Prof. Dr. A.J. Buras)

W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub

	AC	BVV2	AKM	δLL	FBMSSM	LHT	RS
	AU	10 12	ARM	OLL	PENDOW	1.111	105
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP} \left(B \to X_s \gamma \right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B\to K^*\mu^+\mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

These are a subset of a subset listed by Buras and Girrbach MFV, CMFV, $2HDM_{MFV}$, LHT, SM4, SUSY flavor. SO(10) – GUT, SSU(5)_{HN}, FBMSSM, RHMFV, L-R, RS₀, gauge flavor,

The pattern of measurement:

- $\star \star \star$ large effects
- ★★ visible but small effects
- ★ unobservable effects
 is characteristic,

often uniquely so,

of a particular model

	GLOSSARY
AC [10]	RH currents & U(1) flavor symmetry
RVV2 [11]	SU(3)-flavored MSSM
AKM [12]	RH currents & SU(3) family symmetry
δ LL [13]	CKM-like currents
FBMSSM [14]	Flavor-blind MSSSM
LHT [15]	Little Higgs with T Parity
	Warned Extra Dimensions

P5 at the US

DRAFT FOR APPROVAL Building for Discovery: Strategic Plan for U.S. Particle Physics in the Global Context

Table 1 Summary of Scenarios

	Scenarios			Science Drivers				er)	
Project/Activity	Scenario A	Scenario B	Senario C	Higgs	Neutrinos	Dark Matter	Cosm. Accel.	The Unknown	Technique (Fronti
Large Projects									
Muon program: Mu2e, Muon g-2	Y, Mu2e small reprofile	Y	Y					~	1
HL-LHC	Y	Y	Y	~		~		~	E
LBNF + PIP-II	LBNF components Y, delayed relative to Scenario B.	Y	Y, enhanced		~			~	I,C
ILC	R&D only	possibly small hardware contri- butions. See text.	Y	~		~		~	E
NuSTORM	N	N	N		~				I
RADAR	N	Ν	Ν		~				I

Flavour Violation on Quarks, Neutrinos, and Charged Leptons

Quark transition observed

Neutrino transition observed

Charged lepton transition not observed.

Charged Lepton Flavor Violation (CLFV)

CLFV Experiments

Present Limits and Expectations in Future

process	present limit	future			
$\mu \rightarrow e\gamma$	<5.7 x 10 ⁻¹³	< 1 0 ⁻¹⁴	MEG at PSI		
$\mu \rightarrow eee$	<1.0 x 10 ⁻¹²	< 1 0 ⁻¹⁶	Mu3e at PSI		
$\mu N \rightarrow eN$ (in Al)	none	<10 ⁻¹⁶	Mu2e / COMET		
$\mu N \rightarrow eN$ (in Ti)	<4.3 x 10 ⁻¹²	<10-18	PRISM		
$\tau \rightarrow e\gamma$	<1.1 x 10 ⁻⁷	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB		
τ→eee	<3.6 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB		
$\tau \rightarrow \mu \gamma$	<4.5 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB		
$\tau \rightarrow \mu \mu \mu$	<3.2 x 10 ⁻⁸	<10 ⁻⁹ - 10 ⁻¹⁰	superKEKB/LHCb		

List of cLFV Processes with Muons

$$\Delta L=1$$

$$\bullet \mu^{+} \to e^{+} \gamma$$

$$\bullet \mu^{+} \to e^{+} e^{+} e^{-}$$

$$\bullet \mu^{-} + N(A, Z) \to e^{-} + N(A, Z)$$

$$\bullet \mu^{-} + N(A, Z) \to e^{+} + N(A, Z-2)$$
this talk

$$\Delta L=2$$

• $\mu^+ e^- \to \mu^- e^+$
• $\mu^- + N(A, Z) \to \mu^+ + N(A, Z-2)$
• $\nu_\mu + N(A, Z) \to \mu^+ + N(A, Z-1)$
• $\nu_\mu + N(A, Z) \to \mu^+ \mu^+ \mu^- + N(A, Z-1)$

What is Muon to Electron Conversion?

1s state in a muonic atom

nuclear muon capture

$$\mu^- + (A, Z) \longrightarrow \nu_\mu + (A, Z - 1)$$

Neutrino-less muon nuclear capture

$$\mu^- + (A, Z) \rightarrow e^- + (A, Z)$$

Event Signature : a single mono-energetic electron of 105 MeV Backgrounds: (1) physics backgrounds ex. muon decay in orbit (DIO) (2) beam-related backgrounds ex. radiative pion capture, muon decay in flight, (3) cosmic rays, false tracking

µ-e Conversion : Target dependence (discriminating effective interaction)

Osaka University

R. Kitano, M. Koike and Y. Okada, Phys. Rev. D66, 096002 (2002)

Experimental Comparison between $\mu \rightarrow e\gamma$ and μ -e Conversion

	background	challenge	beam intensity		
• μ→eγ	accidentals	detector resolution	limited		
 µ-e conversion 	beam	beam background	no limitation		

•μ→eγ:

- Accidental background is given by (rate)².
- The detector resolutions have to be improved, but difficult.
- The ultimate sensitivity would be about 10⁻¹⁴.

• µ-e conversion :

A higher beam intensity can be taken because of no accidentals.

µ-e conversion might be a next step.

Principle of Measurement of Measure µ-e Conversion / Meditation....

muon stopping target

A total number of muons is the key for success.

COMET: 10¹⁸ muons (past exp. 10¹⁴ muons)

Backgrounds for Search for µ-e conversion

intrinsic physics backgrounds	Muon decay in orbit (DIO) Radiative muon decay neutrons from muon nuclear capture Protons from muon nuclear capture Antiproton induced background		
beam-related backgrounds	Radiative pion capture Beam electrons Muon decay in flights		
	Neutron background		
cosmic-ray and other backgrounds	Cosmic-ray induced background False tracking		

µ-e Conversion Signal and Normal Muon Decays

High Intensity beam can be used only for μ -e conversion

Intrinsic Physics Background: Muon Decay in Orbit (DIO)

Decay-in-Orbit is the major source of delayed background in the live window $A(Z,N)\mu^- \to A(Z,N)e^-\bar{\nu}_e\nu_\mu$ $\frac{dN}{dE}$ The free muon decay has a hard cutoff near m /2 Arbitrary Units while the DIO final state has a very long tail 20 40 60 0 80 100 Electron Energy [MeV]

Good momentum resolution is needed.

Experiments

History of Search for µ-e conversion

Year	90% Limit	Lab/Collaboration	Reference	Material
1952	1.0×10^{-1}	Cosmic Ray	Lagarrigue and Peyrou [1952]	Sn, Sb
1955	5.0×10^{-4}	Nevis	Steinberger and Wolfe [1955]	Cu
1961	4.0×10^{-6}	LBL	Sard <i>et al.</i> [1961]	Cu
1961	5.9×10^{-6}	CERN	Conversi et al. [1961]	Cu
1962	2.2×10^{-7}	CERN	Conforto et al. [1962]	Cu
1964	2.2×10^{-7}	Liverpool	Bartley et al. [1964]	Cu
1972	1.6×10^{-8}	SREL	Bryman <i>et al.</i> [1972]	Cu
1977	4.0×10^{-10}	SIN	Badertscher <i>et al.</i> [1977]	S
1982	7.0×10^{-11}	SIN	Badertscher <i>et al.</i> [1982]	S
1988	4.6×10^{-12}	TRIUMF	Ahmad <i>et al.</i> [1988]	Ti
1993	4.3×10^{-12}	SINDRUM II	Dohmen $et al.$ [1993]	Ti
1996	4.6×10^{-11}	SINDRUM II	Honecker et al. [1996]	Pb
2006	7.0×10^{-13}	SINDRUM II	Bertl <i>et al.</i> [2006]	Au

Previous Measurements

SINDRUM-II (PSI)

PSI muon beam intensity ~ 10⁷⁻⁸/sec beam from the PSI cyclotron. To eliminate beam related background from a beam, a beam veto counter was placed. But, it could not work at a high rate.

Published Results (2004)

$$B(\mu^{-} + Au \to e^{-} + Au) < 7 \times 10^{-13}$$

In order to make a newgeneration experiment to search for µ-e conversion ...
Improvements for Signal Sensitivity

To achieve a single sensitivity of 10⁻¹⁷, we need

10¹¹ muons/sec (with 10⁷ sec running)

whereas the current highest intensity is 10⁸/sec at PSI.

Pion Capture and Muon Transport by Superconducting Solenoid System

(10¹¹ muons for 50 kW beam power)

Improvements for Background Rejection

Beam-related backgrounds

Muon DIF

background

Beam pulsing with separation of 1µsec

measured between beam pulses

Osaka University

proton extinction = #protons between pulses/#protons in a pulse < 10⁻⁹

Muon DIO background - I low-mass trackers in vacuum & thin target - improve resolution

> curved solenoids for momentum selection

eliminate energetic muons (>75 MeV/c)

base on the MELC proposal at Moscow Meson Factory

µ-e conversion : Mu2e at Fermilab

 $B(\mu^{-} + Al \to e^{-} + Al) = 5 \times 10^{-17} \text{ (S.E.)}$ $B(\mu^{-} + Al \to e^{-} + Al) < 10^{-16} \text{ (90\%C.L.)}$

- Reincarnation of MECO at BNL.
- Antiproton buncher ring is used to produce a pulsed proton beam.
- Approved in 2009, CD0 in 2009, and CD1 in 2011. CD2 in 2015?
- Data taking starts in about 2019.

What is COMET (E21) at J-PARC

Experimental Goal of COMET

$$B(\mu^{-} + Al \to e^{-} + Al) = 2.6 \times 10^{-17}$$

$$B(\mu^{-} + Al \to e^{-} + Al) < 6 \times 10^{-17} \quad (90\% C.L.)$$

- 10¹¹ muon stops/sec for 56 kW proton beam power.
- 2x10⁷ running time (~1 year)
- C-shape muon beam line
- C-shape electron transport followed by electron detection system.
- Stage-1 approved in 2009.

Electron transport with curved solenoid would make momentum and charge selection.

COMET Collaboration

179 collaborators 32 institutes, 13 countries

The COMET Collaboration

R. Akhmetshin^{6,28}, V. Anishchik⁴, M. Aoki²⁹, R. B. Appleby^{8,22}, Y. Arimoto¹⁵, Y. Bagaturia³³, Y. Ban³, W. Bertsche²², A. Bondar^{6,28}, S. Canfer³⁰, S. Chen²⁵, Y. E. Cheung²⁵, B. Chiladze³², D. Clarke³⁰, M. Danilov^{13, 23}, P. D. Dauncey¹¹, J. David²⁰ W. Da Silva²⁰, C. Densham³⁰, G. Devidze³², P. Dornan¹¹, A. Drutskoy^{13, 23}, V. Duginov¹⁴ A. Edmonds³⁵, L. Epshteyn^{6,27}, P. Evtoukhovich¹⁴, G. Fedotovich^{6,28}, M. Finger⁷, M. Finger Jr⁷, Y. Fujii², Y. Fukao¹⁵, J-F. Genat²⁰, M. Gersabeck²², E. Gillies¹¹ D. Grigoriev^{6, 27, 28}, K. Gritsay¹⁴, R. Han¹, K. Hasegawa¹⁵, I. H. Hasim²⁹, O. Hayashi²⁹, M. I. Hossain¹⁶, Z. A. Ibrahim²¹, Y. Igarashi¹⁵, F. Ignatov^{6,28}, M. Iio¹⁵, M. Ikeno¹⁵ K. Ishibashi¹⁹, S. Ishimoto¹⁵, T. Itahashi²⁹, S. Ito²⁹, T. Iwami²⁹, Y. Iwashita¹⁷, X. S. Jiang², P. Jonsson¹¹, V. Kalinnikov¹⁴, F. Kapusta²⁰, H. Katayama²⁹, K. Kawagoe¹⁹, V. Kazanin^{6, 28} B. Khazin^{§6, 28}, A. Khvedelidze¹⁴, M. Koike³⁶, G. A. Kozlov¹⁴, B. Krikler¹¹, A. Kulikov¹⁴, E. Kulish¹⁴, Y. Kuno²⁹, Y. Kuriyama¹⁸, Y. Kurochkin⁵, A. Kurup¹¹, B. Lagrange^{11,18}, M. Lancaster³⁵, H. B. Li², W. G. Li², A. Liparteliani³², R. P. Litchfield³⁵, P. Loveridge³⁰. G. Macharashvili¹⁴, Y. Makida¹⁵, Y. Mao³, O. Markin¹³, Y. Matsumoto²⁹, T. Mibe¹⁵ S. Mihara¹⁵, F. Mohamad Idris²¹, K. A. Mohamed Kamal Azmi²¹, A. Moiseenko¹⁴, Y. Mori¹⁸, N. Mosulishvili³², E. Motuk³⁵, Y. Nakai¹⁹, T. Nakamoto¹⁵, Y. Nakazawa²⁹, J. Nash¹¹, M. Nioradze³², H. Nishiguchi¹⁵, T. Numao³⁴, J. O'Dell³⁰, T. Ogitsu¹⁵, K. Oishi¹⁹, K. Okamoto²⁹, C. Omori¹⁵, T. Ota³¹, H. Owen²², C. Parkes²², J. Pasternak¹¹, C. Plostinar³⁰, V. Ponariadov⁴, A. Popov^{6, 28}, V. Rusinov^{13, 23}, A. Ryzhenenkov^{6, 28}, B. Sabirov¹⁴, N. Saito¹⁵, H. Sakamoto²⁹, P. Sarin¹⁰, K. Sasaki¹⁵, A. Sato²⁹, J. Sato³¹, D. Shemyakin^{6,28}, N. Shigyo¹⁹, D. Shoukavy⁵, M. Slunecka⁷, M. Sugano¹⁵, Y. Takubo¹⁵, M. Tanaka¹⁵ C. V. Tao²⁶, E. Tarkovsky^{13,23}, Y. Tevzadze³², N. D. Thong²⁹, V. Thuan¹², J. Tojo¹⁹, M. Tomasek⁹, M. Tomizawa¹⁵, N. H. Tran²⁹, I. Trek³², N. M. Truong²⁹, Z. Tsamalaidze¹⁴ N. Tsverava¹⁴, S. Tygier²², T. Uchida¹⁵, Y. Uchida¹¹, K. Ueno¹⁵, S. Umasankar¹⁰ E. Velicheva¹⁴, A. Volkov¹⁴, V. Vrba⁹, W. A. T. Wan Abdullah²¹, M. Warren³⁵, M. Wing³⁵, T. S. Wong²⁹, C. Wu^{2,25}, G. Xia²², H. Yamaguchi¹⁹, A. Yamamoto¹⁵, M. Yamanaka²⁴, Y. Yang¹⁹, H. Yoshida²⁹, M. Yoshida¹⁵, Y. Yoshii¹⁵, T. Yoshioka¹⁹, Y. Yuan², Y. Yudin^{6, 28}, J. Zhang², Y. Zhang²

¹North China Electric Power University, Beijing, People's Republic of China
²Institute of High Energy Physics (IHEP), Beijing, People's Republic of China
³Peking University, Beijing, People's Republic of China
⁴Belarusian State University (BSU), Minsk, Belarus
⁵B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

Proton Beam

J-PARC@Tokai

Hadron Experimental Hall

10.00

COMET Exp. Area

Proton Beam at J-PARC

- A pulsed proton beam is needed to reject beam-related prompt background.
- Time structure required for proton beams.
 - Pulse separation is ~ 1µsec or more (muon lifetime).
 - Narrow pulse width (<100 nsec)

- Pulsed beam from slow extraction.
 - fill every other rf buckets with protons and make slow extraction
 - spill length (flat top) ~ 0.7

Proton Beam for COMET

Muon Beam

Charged Particle Trajectory in Curved Solenoids

 A center of helical trajectory of charged particles in a curved solenoidal field is drifted by

$$D = \frac{p}{qB} \theta_{bend} \frac{1}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right)$$

D : drift distance B : Solenoid field θ_{bend} : Bending angle of the solenoid channel p : Momentum of the particle q : Charge of the particle θ : $atan(P_T/P_L)$

• This can be used for charge and momentum selection.

 This drift can be compensated in by can auxiliary field parallel to the drift direction given by

$$B_{comp} = \frac{p}{qr} \frac{1}{2} \left(\cos \theta + \frac{1}{\cos \theta} \right)$$

p: Momentum of the particleq: Charge of the particler: Major radius of the solenoid $<math>\theta: atan(P_T/P_L)$ 上流カーブドソレノイドの補正磁場

EM Physics for Particle Trajectories in Toroidal Magnetic Field

Mu2e vs. COMET

	Mu2e	COMET
muon beam line	2x 90° bends (opposite direction)	2x 90° bend (same direction)
electron spectrometer	straight solenoid	curved solenoid

Dipole Coils

COMET curved solenoids have dipole coils on top of the solenoids, to keep muons with momentum of interest in the bending plane.

Mu2e vs. COMET

Select low momentum muons

eliminate muon decay in flight

Selection of 100 MeV electrons

eliminate protons from nuclear muon capture.

eliminate low energy events to make the detector quiet.

COMET Detectors

Sensitivity and Backgrounds

Signal Sensitivity (preliminary) - 2x10⁷ sec

Single event sensitivity

$$B(\mu^- + Al \to e^- + Al) \sim \frac{1}{N_\mu \cdot f_{cap} \cdot A_e},$$

- N_{μ} is a number of stopping muons in the muon stopping target. It is $2x10^{18}$ muons.
- f_{cap} is a fraction of muon capture, which is 0.6 for aluminum.

total protons	8.5x10 ²⁰
muon transport efficiency	0.008
muon stopping efficiency	0.3
# of stopped muons	2.0x10 ¹⁸

• A_e is the detector acceptance, which is 0.04.

 $B(\mu^{-} + Al \to e^{-} + Al) = 2.6 \times 10^{-17}$ $B(\mu^{-} + Al \to e^{-} + Al) < 6 \times 10^{-17} \quad (90\% C.L.)$

Background Rates

Radiative Pion Capture	0.05
Beam Electrons	$< 0.1^{\ddagger}$
Muon Decay in Flight	< 0.0002
Pion Decay in Flight	< 0.0001
Neutron Induced	0.024
Delayed-Pion Radiative Capture	0.002
Anti-proton Induced	0.007
Muon Decay in Orbit	0.15
Radiative Muon Capture	< 0.001
μ^- Capt. w/ n Emission	< 0.001
μ^- Capt. w/ Charged Part. Emission	< 0.001
Cosmic Ray Muons	0.002
Electrons from Cosmic Ray Muons	0.002
Total	0.34

[‡] Monte Carlo statistics limited.

beam-related prompt backgrounds

beam-related delayed backgrounds

intrinsic physics backgrounds

cosmic-ray and other backgrounds

Expected background events are about 0.34.

COMET Milestones

R&D Milestones for µ-e conversion

 $B(\mu^{-} + Al \to e^{-} + Al) < 10^{-16}$

single event sensitivity: 2.6x10⁻¹⁷

Reduction of Backgrounds

Beam pulsing

measurement is done between beam pulses to reduce beam related backgrounds. And proton beam extinction of $<10^{-9}$ is required.

2 Increase of Muon Intensity

Pion capture system

X10³

high field superconducting solenoid magnets surrounding a pion production target

Proton Extinction Measurements at J-PARC

COMET is confident to achieve proton extinction of $< O(10^{-9})$.

Demonstration of Pion Capture System

MuSIC@Osaka-U

Measurements on June 21, 2011 (26 pA)

preliminary

MuSIC muon yields μ^+ : 3x10⁸/s for 400W μ^- : 1x10⁸/s for 400W

cf. 10⁸/s for 1MW @PSI Req. of x10³ achieved...

COMET Phase-I

COMET Staged Approach (2012~)

COMET Phase-I

COMET Phase-II

Goals of COMET Phase-I

2

direct measurement of potential k sources for the full COMET exper actual COMET beamline construct

Osaka University

Search for µ-e conversion

a search for µ⁻–e⁻ conversion at intersensitivity which would be more than the SINDRUM-II limit

COMET Phase-I Experimental Layout

COMET Proton Beamline

Hadron South Building (COMET Experimental Hall)

Superconducting Solenoids

Pion capture solenoid system

- The delivery of aluminum stabilized superconductors is being made (10 km in 2013, 12 km in 2014, and 8 km in 2015).
- TS1a coil winding is made by a new winding machine.
- CS and MS coils will be made in 2015 or later.

Muon transport solenoid system

 The construction of the muon transport system (TS2-TS3) has been delivered by Toshiba Co. TS1a coil winding

The review of radiation safety and design of the COMET magnet was made in January, 2014.

Curved Solenoids for Muon Transport Completed and Delivered!

COMET Phase-I Muon Beam Line

detector system

muon transport system

pion production system

CyDet (Cylindrical Detector): Layout

CDC Momentum Resolution (simulation)

about 200 keV/c achieved.

σ of the core Gaussian at the high momentum side SigH	195 keV/c
σ of the core Gaussian at the high momentum side SigL	226 keV/c
Fraction in the tail distribution TFH	39%
σ of the tail Gaussian at the high momentum side \texttt{TSigH}	$365 \ \mathrm{keV}/c$
σ of the tail Gaussian at the low momentum side \texttt{TSigL}	642 keV/c
o of the tail Gaussian at the low momentum side ISIgL	042 KeV/C

CDC Construction

CDC Outer wall

CDC assembly

CDC on wire stringing assembly

Wire Stringing for the CDC Started !

Status of Wire Stringing at July 14th, 2015

24% strung on July 14th.

Days: 35 (2015/07/14) Wire: 24% (4673/19548) Sense: 24% (1188/4986) Field: 24% (3485/14562)

may finish in December.

of total strung wires

of strung wires per day

Signal Sensitivity with CyDet

Signal Acceptance

Table 28: Breakdown of the $\mu^- N \to e^- N$ conversion signal acceptance.							
Event selection	Value	Comments					
Geometrical acceptance	0.37						
Track quality cuts	0.66						
Momentum selection	0.93	$103.6 \text{ MeV}/c < P_e < 106.0 \text{ MeV}/c$					
Timing window	0.3	700 ns $< t < 1100$ ns					
Trigger efficiency	0.8						
DAQ efficiency	0.8						
Track reconstruction efficiency	0.8						
Total	0.043						

Signal Sensitivity

$$B(\mu + Al \to e + Al) \sim \overline{N_{\mu} \cdot f_{cap} \cdot A}$$

- f_{cap} = 0.6
- $A_e = 0.043$
- $N_{\mu} = 1.23 \times 10^{16}$ muons

Muon intensity

$$\begin{split} B(\mu^- + Al \to e^- + Al) &= 3.1 \times 10^{-15^+} \\ B(\mu^- + Al \to e^- + Al) < 7 \times 10^{-15^-} \quad (90\% C.L.) \end{split}$$

about 0.00052 muons stopped/proton

With 0.4 μ A, a running time of about 110 days is needed.

Background List

Intrinsic physics backgrounds

1	Muon decay in orbit (DIO)	Bound muons decay in a muonic atom		
2	Radiative muon capture (external)	$\mu^- + A \to \nu_\mu + A' + \gamma,$		
		followed by $\gamma \to e^- + e^+$		
3	Radiative muon capture (internal)	$\mu^{-} + A \to \nu_{\mu} + e^{+} + e^{-} + A',$		
4	Neutron emission after	$\mu^- + A \to \nu_\mu + A' + n,$		
	after muon capture	and neutrons produce e^-		
5	Charged particle emission	$\mu^- + A \to \nu_\mu + A' + p \text{ (or } d \text{ or } \alpha),$		
	after muon capture	followed by charged particles produce e^-		

Beam related prompt/delayed backgrounds

6	Radiative pion capture (external)	$\pi^- + A \to \gamma + A', \ \gamma \to e^- + e^+$
7	Radiative pion capture (internal)	$\pi^- + A \to e^+ + e^- + A'$
8	Beam electrons	e^- scattering off a muon stopping target
9	Muon decay in flight	μ^- decays in flight to produce e^-
10	Pion decay in flight	π^- decays in flight to produce e^-
11	Neutron induced backgrounds	neutrons hit material to produce e^-
$\overline{12}$	\overline{p} induced backgrounds	\overline{p} hits material to produce e^-

Other backgrounds

14	Cosmic-ray induced backgrounds	
15	False tracking	

Table 8: A list of potential backgrounds for a search for $\mu^- N \to e^- N$ conversion.

prompt and delayed backgrounds

Background Estimate for µ-e conversion Search

Table 30: Summary of the estimated background events for a single-event sensitivity of 3.1×10^{-15} with a proton extinction factor of 3×10^{-11} .

Type	Background	Estimated events
Physics	Muon decay in orbit	0.01
Physics	Radiative muon capture	$5.6 imes 10^{-4}$
Physics	Neutron emission after muon capture	< 0.001
Physics	Charged particle emission after muon capture	< 0.001
Prompt Beam	Beam electrons (prompt)	$8.3 imes 10^{-4}$
Prompt Beam	Muon decay in flight (prompt)	$\leq 2,0\times 10^{-4}$
Prompt Beam	Pion decay in flight (prompt)	$\leq 2.3 \times 10^{-3}$
Prompt Beam	Other beam particles (prompt)	$\leq 2.8 \times 10^{-6}$
Prompt Beam	Radiative pion capture(prompt)	$2.3 imes 10^{-4}$
Delayed Beam	Beam electrons (delayed)	~ 0
Delayed Beam	Muon decay in flight (delayed)	~ 0
Delayed Beam	Pion decay in flight (delayed)	~ 0
Delayed Beam	Radiative pion capture (delayed)	~ 0
Delayed Beam	Anti-proton induced backgrounds	0.007
Others	Electrons from cosmic ray muons	< 0.0001
Total		0.019

COMET TDR September 2014

COMET Phase-I

- The Technical Design Report (TDR) on COMET Phase-I (version September 2014) was submitted to the J-PARC PAC.
- It is a single document of 170 pages.
- The note of the COMET response to the KEK/IPNS Technical Review has been submitted to the PAC.

Technical Design Report

September, 2014

Schedule of COMET Phase-I and Phase-II

	JFY	2014	2015	2016	2017	2018	2019	2020	2021	2022
COMET	construction									
Phase-I	data taking									
COMET Phase-II	construction									
	data taking									
COMET Phase-I: COMET Phase-II:						:				
2017 ~							2021~			
S.E.S. ~ 3x10 ⁻¹⁵							S.E.S. ~ 3x10 ⁻¹⁷			7
(for 110 days							(for 2x10 ⁷ sec			
with 3.2 kW proton beam)			n)			wit	with 56 kW proton beam)			

Comparison of COMET Phase-I / Phase-II and Mu2e

90% C.L. upper limit is 7x10⁻¹³ (SINDRUM)

	S.E. sensitivity	BG events at aimed sensitivity	running time (sec)		Comments
COMET Phase-I	3x10 ⁻¹⁵	0.02	1.5x10 ⁶	2018 -2019	Proposal (2012)
COMET Phase-II	3x10 ⁻¹⁷	0.34	2x10 ⁷	~2021	CDR (2009)
Mu2e	3x10 ⁻¹⁷	0.37	3x (2x10 ⁷)	~2021	3 years

Other CLFV

Other CLFV Physics at COMET Phase-I

$$\mu^- + N(Z) \rightarrow e^+ + N(Z-2)$$

$$\mu^- + e^- \rightarrow e^- + e^-$$

- µ⁻e⁻→e⁻e⁻ has two-body final state, although µ⁺→e⁺e⁺e⁻ is a 3body decay.
- A muonium CLFV decay such as µ ⁺e⁻→e⁺e⁺ is a 2-body decay having a larger phase space, but the overwrap of µ⁺ and e⁻ is small.

The overwrap between μ^{-} and e^{-} is proportional to Z³. For Z=82 (Pb), the overwrap increases by a factor of 5x10⁵ over the muonium. The rate is 10⁻¹⁷ to 10⁻¹⁸.

PRISM (~10⁻¹⁹)

PRISM/PRIME : Future Search with S.E. sensitivity of 3x10⁻¹⁹

Summary

- CLFV would give the best opportunity to search for BSM. (So far, no BSM signals at the LHC.)
- Muon to electron conversion could be one of the important CLFV processes.
- COMET (Phase-II) at J-PARC is aiming at S.E. sensitivity of 3x10⁻¹⁷.
- COMET Phase-I is aiming at S.E. sensitivity of 3x10⁻¹⁵.
 - The construction of the beam line started at KEK in 2013.
 - The measurement will start in early 2018-2019.

New collaborators are welcome.

