

David Mascali, INFN-LNS Calania - December 15th, 2015

Perspectives about Ion Sources development © INFN-LNS

The ECRIS configuration high intensity of multiply charged ions

Solenoids for *Axial confinement*

Hexapole for radial confinement

Extraction system

"B_minimum" Magnetic Field structure

ECR Plasma $n_e \sim 10^{12} \text{ cm}^{-3}$ $T_e \sim \text{ tens keV}$ $T_{ion} \sim \text{ ms}$

2

Gas injection system

Incident microwaves few **kW** at **tens GHz**

ECR Surface $B_{ECR} = \omega_{RF} m_e/e$

LNS - Ion Source main beams

Frequency	18 GHz + 14.5 GH	z						
Type of launching	WR62, off-axis							
Axial maxima distance	490 mm							
B _{max} (injection side)	2.7 T			B	pams	from 9	SERSI	F
\mathbf{B}_{\min}	0.3 to 0.6 T							
B _{max} (extraction side)	1.6 T							
Resonance zone length	< 100 mm							
Hexapole length	700 mm							
B _{rad} (at chamber wall)	1.55 T maximum							
Biased disk	300 to 600 V, 1 to 2 A	MA				•		
φ plasma electrode	8 mm			145 CH-	10 CU-	14.10	AIE	
φ puller	12 mm	07	+	14.5 GHZ	18 GHZ	14+18	A.I.E.	optimum
Extraction voltage	30 kV max		+	200		208		
			4.	40		55		
		Ar	41	80		84		
		Ar	- 0+	17		21		1
Malay Carolla as		Ar	7+	1		2.6		
Major faults especially in the		Ar	8+	0.05		0.4		
SERSE LHe - cryostat		Kr ²	2+	46	66			
		Kr ²	5+	20	35			
stopped further		Kr ²	7+	4.5	7.8			
davalanmanta		Xe ³	0+	12	17	21.2	27	38.5
developments.		Xe ³	1+	7.6	10.3	14.7	18.3	23.5
Now restarting operations		Xe ³	3+	1.5	3.3	6	7.2	9.1
		Xe ³	4+	1	1.6	3	4.1	5.2
		Xe ³	6+	0.4	0.9	1.3		2

4

Overcoming the current limits of ECRIS

Some questions....

Does exist an "ECRIS fine structure" with respect to magnetic field and RF frequency tuning?
Description of the structure of the str

Evidences of plasma instabilities when tuning B

Evidences of strong fluctuations with the RF frequency correlated to X-ray emission

Some questions....

Does exist an INTERPLAY between the plasma structure and the beam shape, brightness, emittance?

D. Nicolosi et al. ICIS-15, New York City L. Celona et al., Rev. Sci. Instrum. 2008

Does the plasma distribute uniformly?

single mode distrib.

Are electrons of different energy domains merged each other or not?

7

Applying alternative heating schemes

- 1. Frequency tuning
- 2. Two Frequency Heating
- 3. Two Closed Frequency Heating
- 4. "Flat B Field" heating
- 5. "Broadband" heating

Efforts on plasma diagnostics methods development, studies about the impact of new techniques on the beam properties, etc.

8

Strategies for improving LNS-ECRIS efficiency

6-18 months

Improving beam transport/handling

0-18 months

9

Implementing new plasma heating methods

18-36 months

A Big Jump ---> installing a 21 GHz machine (**AISHa**) for very-high intensities

Non-intrusive plasma diagnostics methods

Advanced techniques of plasma diagnostics have been implemented: the X-ray pin-hole camera

11

X-ray sensitive CCD - camera

X-ray imaging can be performed with a pin-hole camera technique

The pin-hole is mounted between the plasma and a X-ray sensitive CCD camera having 1024x1024 pixels in the 0.5-15 keV energy domain

X-ray imaging

From a general inspection of the pictures, it is clearly visible the structure of the plasma:

- 👻 the hole in the near axis region
- the branches due to the electrons escaping from the confinement
- he hot spots due to lost electrons producing bremsstrahlung radiation when impinging on the chamber walls.

Mastering beam transport and source-to-CS matching

BaF₂ screen irradiation

Selection of materials

 $^{40}Ar^{8+}$ ions $I_{beam} = 9.5 \ \mu A \ V_{extr} = 20 \ kV \ E = 160 \ keV$ Deposited power

BaF₂ screen irradiation

Selection of materials

 $^{40}Ar^{8+}$ ions $I_{beam} = 9.5 \ \mu A \ V_{extr} = 20 \ kV \ E = 160 \ keV$ Deposited power

14

Steps toward high intensity beams monitoring

Thermal Simulations

short/mid/long term strategies

	Goal	Action		
Short (0-6 months)	Broaden the beams availability in the perspective of high intensity	 R&D on vaporization techniques (oven, sputtering, innovative methods); Fast and reliable tunings of the Sources 		
Short/Mid (0-12 months)	Improving the primary currents and <q></q>	Implementation of Alternative plasma heating methods (TCFH)		
Short/Mid (6-18 months)	Improving the IS-CS beam matching	Diagnostics and beam transport modelling and optimization		
Mid/Long (18-36 months)	Boost of primary beam currents + Testbench	The AISHa replace CAESAR. CAESAR becomes a Testbench.		

Radial field	1.3 T		
Axial field	2.6 T - 0.4 T - 1.5 T	Ion	Expected currents (eµA)
Operating frequencies	18 GHz (TFH)	C ⁴⁺	800
Operating power	1kW	O ⁶⁺	1000
Extraction voltage	40 kV	Ne ⁷⁺	500
Chamber diameter / length	Ø 92 mm / 300 mm	Ar ¹⁴⁺	150
LHe	Free	Kr ²²⁺	100
Iron yoke diameter/length	42 cm / 60 cm	Au ³⁰⁺	50
Source weight estimation	480 kg	L	

A partial List of Actions already scheduled

- Low temperature oven for SERSE;
- New control system for SERSE (ready for CAESAR);
- Motorized stage for extraction optics (repeller+ground electrodes) ----> SERSE (already done for CAESAR);
- Beam pipes alignement;
- Installation of beam diagnostics tools (Allison Scanner + beam viewers, almost ready);
- Beam transport simulations;
- * X-ray and RF passive diagnostics helping sources tuning;
- New plasma chamber for SERSE and injection flange;

Assets and criticalities

Criticalities

- Long time elapsed from last systematics;
- Time needed for implementing all the actions;
- no test-bench available (very short time available for off-line experiments and tests); ----> AISHa will serve as testbench during 2016

Assets

- Motivated technical manpower with valuable skills;
- Well-established know-how gained by the RD group (recognized international leadership in Ion Sources science and technology);
- INFN-LNS management supporting new synergies and strategies for revamp of LNS machines.