

On Instrumenting a Nuclear Physics Program

What does one do with an intense beam?

Emanual Pollacco IRFU/SPhN, CEA Saclay, Fr

SPhN Instrumentation in the Last 10-15 years

- Solid State
 - Large Area Telescope Arrays
- Gas Detectors
 - Beam Trackers
 - Focal Plane & Recoil Detectors
 - Time Projection Chambers
- Gamma
 - AGATA & EXO-GAMME
- Generic Micro Electronics
 - Front-end ASIC based (Analogue & Numeric)
 - Back-end FPGA based
- DAQ

Remodel: Technology for **Particle** and **Astro** Physics for **Nuclear** Physics. Still far to reach Particle Physics **Rates** with Nucl. Phys. specs. → Engineering Funding (see VMM2 for example)

Objective of the Last 10-15 years

- From Stable to Radio Active Beams 10⁸⁻¹⁰ pps to 10⁰⁻⁵ pps
- → Luminosity 🔳

→ Target thickness
→ Resoln.

- → Phase Space Cover
 - →Solid Angle 🛁
 - ➔ Highly Segmented Devices

➔Wide Energy & Momentum Dynamic Range

Challenge Stable Beam

- Radio Active Beams to Stable/Quasi-Stable.
 - 10⁰⁻⁵ pps 🚽 10⁶⁻¹³ pps
- Present our Instruments: Incapable to cover the increase in rates.

• BUT

- Better Stable Beam characteristics
 - Emittance & Time structure
- Knowhow exists in Particle hysicsP for some of the challenges.
- − Develop SPESIFIC/NOUVELLE physics program → SPESIFIC instrument.

Ultra-High selectivity with -Magnetic Spectrometers -High Segmentation -Radiation hard -<u>Engineering Knowhow</u>

A Drouart et al., Nuclear Instruments and Methods in Physics Research A

amos dapnia CaD #2

Technological Transfer PP → NP

tapnia CaD #1

Improvement is still possible to below 2% Towards higher Z ions, Time, Position & GET electronics: Recoil Detectors – $(x,y)/time/\Delta E$ Renewal Focal Spectrometers Expected

Collaboration: IPNO/SPhN-Saclay/GANIL

Project For 8X288 channels of Energy & Time Can do much better

Concentration X20

Trigger +

+ADC

Scalars

+4MUST2 +4MUST2

Project

GENCE NATIONALE DE LA RECHERC

A

MUSETTE

17KeV

Christophe THEISEN IRFU/SPhN MUSETT & S3

Hodoscopes for Particle Spectroscopy
>30 Nucl. Phys Exp. So ... what now?
→ Full Particle-Gamma → GASPARD

Possible Measurements With MUST

- MUST2 has
 - a large solid angle (x50 higher than most existing system & x10,000 of 1980 data sets)
- Experiment prospects:-
 - (t,p), (d,p), (³He,d) ... done in 1970's: Solid Angles 1/10,000 of 4xMUST2.
 - Can perform particle-γ measurements to establish decay schemes for particle states in stable or quasi-stable nuclei.
 - Multi-Particle final States
 - E. S. Diffenderfer et al., Phys. Rev. C 85, 0343
 - Low lying resonances in light nuclei
 - Investigations of three, four, and five-particl nuclei created using a ⁹C beam; R. J. Charity
 - Decay of ¹⁰C excited states above the 2p + 2 <u>Curtis, N. et al. Phys.Rev. C77 (2008) 021301</u>

Particle-Gamma Physics Instrumentation Project

• Telescope (Particles & Gamma) 25% of 4π

- ΔE DSSSD → 40KeV & 500nsec resolⁿ
 - 6 DSSSDs of 10cmx10cm
- E CeBr₃ \rightarrow 5% & 4mm resolⁿ
 - 24 crystals of 5cmx5cm
- Gamma 12% of 4π
 - − E CeBr₃ \rightarrow 5% & 4mm resolⁿ & high eff.
 - 12 crystals of 5cmx5cm

Si CeBr P Si M P Si M P

- High Phase Space
 - Ωγ x Ωp approx 25%
 - Large Phase Space Cover
 - Needs review of electronics for high counting rates.
 - High dynamic range for particles & gammas

CHyMENE hydrogen target

> 50-200 micron solid H_2/D_2 film

➢no C and mylar window

⇒ no C background ⇒ atoms.cm⁻² x 5 ⇒ less energy loss

> experiments at SPIRAL1 and SPIRAL2 \Rightarrow 5-15 MeV/u and thin target (<0.5 mm)

Developments:

- Early 2010: production test at Saclay
- ≻June 2010: in-beam test at Bruyères-le-Châtel

▶2011: ANR▶Towards below 40µm

If DCE then this exp!

Possible Measurements With MUST

- Astro-Physics Reactions (Ph Woods)
 - ²⁰Ne(p,d)¹⁹Ne → Branching 10⁻⁴ → α + ¹⁵O
 - − ²¹Ne(p,t)¹⁹Ne → α + ¹⁵O
 - Need To populate ¹⁹Ne(E*=4.033MeV mbarn)
- → High intensity ²⁰Ne (10¹²pps)
- → Target no Contaminant (C, O, N ... kills the DSSSDs)
- → Spectrometer approx 0°.
 - →Detect α + ¹⁵O & p

Other Si frontiers:-

- SiPM - Fast crystals with fast "PMs"

- 100psec & resoln 6.5% for CeBr3
- Developments in progress (noise)
- Nucl. Phys. Being tested

- GAIN mode in Si detectors (Not APVs)
 - Low-Gain Avalanche Detectors (LGAD)
 - X10 gain
 - Very fast timing (<30psec)
 - Nucl. Phys. Not trying ?

- 3-D Si for tracking

- Ultra fact Si
- Radiation hard
- Nucl. Phys. Not trying ?

Mico-Patter Gas Det.

High Resolⁿ

Energy resolⁿ vs. gain Large P.P. data base (RD51 Collaboration)

saclay

Good Position, Time & Charge Resoln

Decay Spectroscopy

Produce A Radio-Active Species \rightarrow (*then*) Measure the decay products (p, 2p, 3p, α , α p, ...)

A. Saastamoinen, <u>E. Pollacco</u>, B. Roeder, A. Spiridon, L. Trache, R. De Oliveira, R. E. Tribble

AstroBox2 - Detector for low-energy β -delayed particle detection

Improvements presently to reach optimum single pad Q resoln Lowering β -background \rightarrow Very Low Branching Ratios (10⁻⁵) measurement reachable

Replacing Si by Gas Medium - AstroBox

GET Collaboration

Faisal Abu-Nimeh⁴, Shebli Anvar¹, H. Baba⁵, Pascal Baron¹, Daniel Bazin⁴, Chiheb Belkhiria², Bertram Blank², Joël Chavas¹, Patricia Chomaz¹, Eric Delagnes¹, Frederic Druillole¹, Patrick Hellmuth², Cedric Huss², Eugene Galyaev⁴, Bill Lynch⁴, Wolfgang Mittig⁴, Tetsuya Murakami⁵, Laurent Nalpas¹, Jean-Louis Pedroza², Emanuel Pollacco¹, Riccardo Raabe³, Jérôme Pibernat², Bruno Raine³, Abdel Rebii², Atsushi Taketani⁵, Frederic Saillant³, Patrick Sizun¹, Daisuke Suzuki⁴, Nathan Usher⁴ and Gilles Wittwer³.

- ¹ IRFU/SPhN, CEA-Saclay, Cedex 91191 Gif-sur-Yvette, France •
- ² CENBG, Chemin du Solarium, 33175 Gradignan Cedex, France
- ³ GANIL, Bd Henri Becquerel. BP 55027, 14076 Caen Cedex 05. France
- ⁴ NSCL, MSU, 1 Cyclotron, East Lansing, Michigan 48824-1321, US Engl Articipaus major Needs a major Aleeds a pr for a pr
- ⁵ RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan •

Analogic Memory Sampled Signal (1-150MHz)

Table of projects

N° Ch

SπIRIT,	10k
ACTAR TPC	16k
LAMPS	2.5 -
AT-TPC	10k
N_TOF	2.5k
CNS-AT	2.5k
E-15	6k
ELI-TPC	1k
FARCOS	5k
TexAT-P	2 - >
ND-TPC	1k
Shanghai-TPC	1k
NEXT	1 - >
Lanzhou-TPC	2k
S ³	4k
SpecMAT	2.5k
Focal-Plane	256
eTPC	1k
SSD	2k
MINOS	6k

Instrument

Hosting lab. NSCL, Riken, ..., Jp GANIL, IRFU, IPNO..., Fr IBS Korea, Korea > 20k NSCL, ..., US CERN, IRFU, ... Univ. Tokyo, Jp J-PARC, ... ,Jp Univ. Warsaw, Pl INFN-Catania, It 32k Texas A&M, US Univ. ND, US CAS, Cn Univ. of Zaragosa, Es 5k IMP, Cn SPIRAL2, Fr KU Leuven Orsay, IN2P3, Fr Univ. Warsaw IFNF-Catania, It IRFU

Funding Agency

DOE, RIKEN, ERC, GANIL, IN2P3, IBS NSF IRFU CNS J-PARC **ELI-NP INFN-Catania Texas A&M** Lots of Responsabilits Lots of Response Univ. ND CAS Univ. of Zaragosa IMP GANIL, IRFU ERC IN2P3 **ELI-NP INFN-Catania** ERC

80k Channels Total 20 experiments 4ch to 20k ch

Hardware

INFN – Catania: CHIMERA GROUP - EoS

GEANT simulation ¹³²Sn+¹²⁴Sn collisions at E/A=300 MeV

Measure differential flow and yield ratios for (π⁺ & π⁻), (p & n), (³H & ³He) in Heavy RI Collisions at E/A=300MeV

* CENBG

car

18kch Micromegas/ THGEM pads

actar-tpc ACTAR Collaboration

AT-TPC

DSSSD-Wall

Physics Opportunities One and two nucleon transfer reactions

- Resonant elastic scattering
- Inel. scattering and giant resonances

erc

- Nuclear astrophysics
- Exotic nuclear decay (2p, β3p, βαp, ...)

Lip:*n***pro.ganil-spiral2.eu/spiral2/instrumentation/actar-tpc**

ACTAR-TPC_Proto 2k Channels (2015) ACTAR-TPC 18k Channels (2016) GANIL & ISOLDE & SPES MINOS : Magic Numbers Off Stability

In-beam knockout experiments

(p,2pγ) (p,pnγ) (p,αγ)

γ – spectroscopy

A. Obertelli *et al.,* Eur. Phys. Jour. A **50**, 8 (2014) http://minos.cea.fr

è

TPC

Cea

erc

