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2. The TAMU MDM-Focal Plane Detector
The Oxford detector is an ionization chamber with a plastic scintillator at the back. Four

resistive wires working in avalanche conditions allow for position determination at four
different depths in the detector and therefore permit raytrace reconstruction. A detailed
description can be found in ref [3]. The figure below shows a schematic side view of the
detector and its components. Energy lost in the ionization gas is measured by the three anode
plates at the top. Currently, with only the first two plates connected to produce a signal we
call ΔE1, we obtain energy resolutions of 10-15%. The third plate, ΔE2, gives a signal that
that was never shown to improve the detection resolution and particle identification.

3. The Micromegas
MicroMegas is a relatively new detector

technology that operates as a two-stage
parallel-plate avalanche chamber. It consists
of a small amplification gap (50-300 μm) and
a much larger drift gap (on the order of cm)
separated by a thin electroformed micromesh.
It has been shown to provide gains of up to
105 [4].

4. The Upgraded Detector
In order to improve the ΔE resolution, we replaced the ΔE2 anode with a

MicroMegas plate of identical size, 14.6 cm by 42.6 cm. The detection area
consisted of 28 pads, 3.25 cm by 4.4 cm, each giving an individual ΔE signal
corresponding to the energy lost in the respective gas region. The mesh was
made of nickel and sat at 256 μm below the anode. The drift region, between
this mesh and the cathode was 12 cm.

The detector was filled with
isobutane gas and tested at different
pressures between 30 and 100 Torr.

1. Introduction
The Oxford detector is one of the two focal plane detectors used with the

Texas A&M Multipole-Dipole-Multipole (MDM) spectrometer [1]. It is used
to identify particles and measure their positions along the dispersive
x-direction. Using raytrace reconstruction we can determine the scattering
angle at the target as a function of the angle of the particle path in the detector
[2]. It has been used primarily to study scattering and transfer reactions
involving nuclei with A≤26. However at higher masses than that, we found
that we are having significant difficulties with the particle identification due
to the insufficient resolution of both the ΔE and Eres signals.
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5. Testing conditions
We tested the upgraded detector first with a mixed alpha-source and then

with 3 beams: 16O, 22Ne and 28Si. Each beam had an energy of 12 MeV/u. As
targets we had 197Au, 27Al and 13C. The purpose was to determine the
MicroMegas response to different settings. We looked at the detector
behavior for different bias voltages, different gas pressures and particles of
different N and Z.
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6.1. Results - Alpha source
The source was placed inside the Oxford at

approximately 4 cm from the MicroMegas anode.

6.2. Results - 22Ne Beam
We used a narrow collimated beam to avoid charge sharing and obtain individual pad

responses for similar conditions. Energy resolutions were around 6-7%

Then we used the 13C target to produce a cocktail of reaction products. In the figures below,
you can see comparisons between the identification spectra with MicroMegas and with the
original anode. The pair of pictures on the left are for 100 Torr and those on the right are for 30
Torr, which is the preferred running pressure for astrophysical experiments.

8. Acknowledgments
Many thanks to everyone on the author list, as well as
members of the Cyclotron Institute machine shop and the
design department.
This project was supported by the Department of Energy.

2. The TAMU MDM-Focal Plane Detector
The Oxford detector is an ionization chamber with a plastic scintillator at the back. Four

resistive wires working in avalanche conditions allow for position determination at four
different depths in the detector and therefore permit raytrace reconstruction. A detailed
description can be found in ref [3]. The figure below shows a schematic side view of the
detector and its components. Energy lost in the ionization gas is measured by the three anode
plates at the top. Currently, with only the first two plates connected to produce a signal we
call ΔE1, we obtain energy resolutions of 10-15%. The third plate, ΔE2, gives a signal that
that was never shown to improve the detection resolution and particle identification.

3. The Micromegas
MicroMegas is a relatively new detector

technology that operates as a two-stage
parallel-plate avalanche chamber. It consists
of a small amplification gap (50-300 μm) and
a much larger drift gap (on the order of cm)
separated by a thin electroformed micromesh.
It has been shown to provide gains of up to
105 [4].

4. The Upgraded Detector
In order to improve the ΔE resolution, we replaced the ΔE2 anode with a

MicroMegas plate of identical size, 14.6 cm by 42.6 cm. The detection area
consisted of 28 pads, 3.25 cm by 4.4 cm, each giving an individual ΔE signal
corresponding to the energy lost in the respective gas region. The mesh was
made of nickel and sat at 256 μm below the anode. The drift region, between
this mesh and the cathode was 12 cm.

The detector was filled with
isobutane gas and tested at different
pressures between 30 and 100 Torr.

1. Introduction
The Oxford detector is one of the two focal plane detectors used with the

Texas A&M Multipole-Dipole-Multipole (MDM) spectrometer [1]. It is used
to identify particles and measure their positions along the dispersive
x-direction. Using raytrace reconstruction we can determine the scattering
angle at the target as a function of the angle of the particle path in the detector
[2]. It has been used primarily to study scattering and transfer reactions
involving nuclei with A≤26. However at higher masses than that, we found
that we are having significant difficulties with the particle identification due
to the insufficient resolution of both the ΔE and Eres signals.

MDM Spectrometer

Upgrade of the TAMU MDM-Focal Plane Detector with MicroMegas Technology
A. Spiridon, E. Pollacco1, R. Chyzh, M. Dag,B.T. Roeder, A. Saastamoinen, R.E. Tribble, L. Trache2, G. Pascovici2, R. de Oliveira3

1IRFU, CEA Saclay, Gif-sur-Yvette, France
2IFIN, Bucharest-Magurele, Romania

3CERN, Switzerland

5. Testing conditions
We tested the upgraded detector first with a mixed alpha-source and then

with 3 beams: 16O, 22Ne and 28Si. Each beam had an energy of 12 MeV/u. As
targets we had 197Au, 27Al and 13C. The purpose was to determine the
MicroMegas response to different settings. We looked at the detector
behavior for different bias voltages, different gas pressures and particles of
different N and Z.

7. References
[1] Pringle D.M et al, Nucl. Instr. and Meth. in Physics Research A245 (1986) 230-247
[2] Youngblood D. et al., Nucl. Instr. and Meth. in Physics Research A 361 (1995) 359
[3] T. Al-Abdullah, Ph.D Thesis, Texas A&M University
[4] Giomataris et al., Nucl. Instr. and Meth. in Physics Research A 376 (1996) 29-35

6.1. Results - Alpha source
The source was placed inside the Oxford at

approximately 4 cm from the MicroMegas anode.

6.2. Results - 22Ne Beam
We used a narrow collimated beam to avoid charge sharing and obtain individual pad

responses for similar conditions. Energy resolutions were around 6-7%

Then we used the 13C target to produce a cocktail of reaction products. In the figures below,
you can see comparisons between the identification spectra with MicroMegas and with the
original anode. The pair of pictures on the left are for 100 Torr and those on the right are for 30
Torr, which is the preferred running pressure for astrophysical experiments.

8. Acknowledgments
Many thanks to everyone on the author list, as well as
members of the Cyclotron Institute machine shop and the
design department.
This project was supported by the Department of Energy.

2. The TAMU MDM-Focal Plane Detector
The Oxford detector is an ionization chamber with a plastic scintillator at the back. Four

resistive wires working in avalanche conditions allow for position determination at four
different depths in the detector and therefore permit raytrace reconstruction. A detailed
description can be found in ref [3]. The figure below shows a schematic side view of the
detector and its components. Energy lost in the ionization gas is measured by the three anode
plates at the top. Currently, with only the first two plates connected to produce a signal we
call ΔE1, we obtain energy resolutions of 10-15%. The third plate, ΔE2, gives a signal that
that was never shown to improve the detection resolution and particle identification.

3. The Micromegas
MicroMegas is a relatively new detector

technology that operates as a two-stage
parallel-plate avalanche chamber. It consists
of a small amplification gap (50-300 μm) and
a much larger drift gap (on the order of cm)
separated by a thin electroformed micromesh.
It has been shown to provide gains of up to
105 [4].

4. The Upgraded Detector
In order to improve the ΔE resolution, we replaced the ΔE2 anode with a

MicroMegas plate of identical size, 14.6 cm by 42.6 cm. The detection area
consisted of 28 pads, 3.25 cm by 4.4 cm, each giving an individual ΔE signal
corresponding to the energy lost in the respective gas region. The mesh was
made of nickel and sat at 256 μm below the anode. The drift region, between
this mesh and the cathode was 12 cm.

The detector was filled with
isobutane gas and tested at different
pressures between 30 and 100 Torr.

1. Introduction
The Oxford detector is one of the two focal plane detectors used with the

Texas A&M Multipole-Dipole-Multipole (MDM) spectrometer [1]. It is used
to identify particles and measure their positions along the dispersive
x-direction. Using raytrace reconstruction we can determine the scattering
angle at the target as a function of the angle of the particle path in the detector
[2]. It has been used primarily to study scattering and transfer reactions
involving nuclei with A≤26. However at higher masses than that, we found
that we are having significant difficulties with the particle identification due
to the insufficient resolution of both the ΔE and Eres signals.

MDM Spectrometer

Upgrade of the TAMU MDM-Focal Plane Detector with MicroMegas Technology
A. Spiridon, E. Pollacco1, R. Chyzh, M. Dag,B.T. Roeder, A. Saastamoinen, R.E. Tribble, L. Trache2, G. Pascovici2, R. de Oliveira3

1IRFU, CEA Saclay, Gif-sur-Yvette, France
2IFIN, Bucharest-Magurele, Romania

3CERN, Switzerland

5. Testing conditions
We tested the upgraded detector first with a mixed alpha-source and then

with 3 beams: 16O, 22Ne and 28Si. Each beam had an energy of 12 MeV/u. As
targets we had 197Au, 27Al and 13C. The purpose was to determine the
MicroMegas response to different settings. We looked at the detector
behavior for different bias voltages, different gas pressures and particles of
different N and Z.

7. References
[1] Pringle D.M et al, Nucl. Instr. and Meth. in Physics Research A245 (1986) 230-247
[2] Youngblood D. et al., Nucl. Instr. and Meth. in Physics Research A 361 (1995) 359
[3] T. Al-Abdullah, Ph.D Thesis, Texas A&M University
[4] Giomataris et al., Nucl. Instr. and Meth. in Physics Research A 376 (1996) 29-35

6.1. Results - Alpha source
The source was placed inside the Oxford at

approximately 4 cm from the MicroMegas anode.

6.2. Results - 22Ne Beam
We used a narrow collimated beam to avoid charge sharing and obtain individual pad

responses for similar conditions. Energy resolutions were around 6-7%

Then we used the 13C target to produce a cocktail of reaction products. In the figures below,
you can see comparisons between the identification spectra with MicroMegas and with the
original anode. The pair of pictures on the left are for 100 Torr and those on the right are for 30
Torr, which is the preferred running pressure for astrophysical experiments.

8. Acknowledgments
Many thanks to everyone on the author list, as well as
members of the Cyclotron Institute machine shop and the
design department.
This project was supported by the Department of Energy.

Focal&Plane&Detector&ΔE&&&Posi1on&

MPGD&Replacement&by&Mul1:Pad&Anode&&

2. The TAMU MDM-Focal Plane Detector
The Oxford detector is an ionization chamber with a plastic scintillator at the back. Four
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angle at the target as a function of the angle of the particle path in the detector
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5. Testing conditions
We tested the upgraded detector first with a mixed alpha-source and then

with 3 beams: 16O, 22Ne and 28Si. Each beam had an energy of 12 MeV/u. As
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Project	
  	
  	
  
-­‐Front-­‐end	
  for	
  high	
  
CounGng	
  rates	
  
106Hz	
  
-­‐Improved	
  Resoln	
  
Projects:	
  ZiTiX	
  
&	
  MDM-­‐2	
  



FILTER	
   MLTX	
   ADC	
  

LE	
   TAC	
  LE	
   TAC	
  



DSSD	
  
10x10cm2	
  

128X+128Y	
  
300µm	
  

Collabora%on:	
  	
  	
  IPNO/SPhN-­‐Saclay/GANIL	
  

Si(Li)	
  5mm	
   CsI	
  	
  4cm	
  

Résolution en position 0.7mm   

Résolution énergie FWHM ~ 50 keV 



Trigger	
  +	
  	
  	
  	
  	
  	
  	
  Scalars	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  +ADC	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  +4MUST2	
  	
  	
  	
  	
  +4MUST2	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

For	
  8X288	
  channels	
  of	
  Energy	
  &	
  Time	
  
Project	
  	
  	
  
Can	
  do	
  much	
  be\er	
  
ConcentraGon	
  X20	
  



DE-­‐DE’	
   DE’-­‐E	
  

DE-­‐ToF	
  

Cut 19O in VAMOS 

Cut E-TOF MUST2 A=3 

Project	
  	
  	
  
.	
  Pulse	
  Shape	
  -­‐	
  500MHz	
  
	
  	
  	
  sample	
  
.	
  Improved	
  Back-­‐end	
  
	
  	
  1kHz	
  to	
  20kHz	
  
	
  



17KeV	
  
è	
  MUSETTE	
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E655S configuration 

T1 to T4 

  T6,  
T7 

T5,  
T8 

beam 



•  MUST2	
  has	
  	
  
–  a	
  large	
  solid	
  angle	
  (x50	
  higher	
  than	
  most	
  exisGng	
  system	
  &	
  x10,000	
  of	
  1980	
  data	
  sets)	
  
	
  	
  	
  	
  	
  

•  Experiment	
  prospects:-­‐	
  
–  (t,p),	
  (d,p),	
  (3He,d)	
  …	
  done	
  in	
  1970’s:	
  Solid	
  Angles	
  1/10,000	
  of	
  	
  4xMUST2.	
  

–  Can	
  perform	
  parGcle-­‐γ	
  measurements	
  to	
  establish	
  decay	
  schemes	
  for	
  
parGcle	
  states	
  in	
  stable	
  or	
  quasi-­‐stable	
  nuclei.	
  

–  MulG-­‐ParGcle	
  final	
  States	
  
•  E.	
  S.	
  Diffenderfer	
  et	
  al.,	
  Phys.	
  Rev.	
  C	
  85,	
  034311	
  (2012)	
  –	
  24Mg	
  
•  Low	
  lying	
  resonances	
  in	
  light	
  nuclei	
  
•  InvesGgaGons	
  of	
  three,	
  four,	
  and	
  five-­‐parGcle	
  exit	
  channels	
  of	
  levels	
  in	
  light	
  

nuclei	
  created	
  using	
  a	
  9C	
  beam;	
  R.	
  J.	
  	
  Charity	
  et	
  al.,	
  PhysRevC.84.014320	
  
•  Decay	
  of	
  10C	
  excited	
  states	
  above	
  the	
  2p	
  +	
  2α	
  

CurGs,	
  N.	
  et	
  al.	
  Phys.Rev.	
  C77	
  (2008)	
  021301,	
  	
  

12N



•  Telescope	
  (ParFcles	
  &	
  Gamma)	
  25%	
  of	
  4π
–  ΔE	
  	
  -­‐	
  	
  DSSSD	
  è	
  40KeV	
  &	
  500nsec	
  resoln	
  

•  6	
  DSSSDs	
  of	
  10cmx10cm	
  

–  E	
  	
  	
  	
  	
  -­‐	
  	
  CeBr3	
  è	
  5%	
  	
  &	
  4mm	
  resoln	
  	
  	
  
•  24	
  crystals	
  of	
  5cmx5cm	
  

•  	
  Gamma	
  12%	
  of	
  4π  	
  
–  E	
  -­‐	
  	
  CeBr3	
  è	
  5%	
  	
  &	
  4mm	
  resoln	
  &	
  high	
  eff.	
  

•  12	
  crystals	
  of	
  5cmx5cm	
  

•  High	
  Phase	
  Space	
  	
  
–  Ωγ	
  x	
  Ωp	
  approx	
  25%	
  

•  Large	
  Phase	
  Space	
  Cover	
  
–  Needs	
  review	
  of	
  electronics	
  for	
  high	
  counGng	
  rates.	
  
–  High	
  dynamic	
  range	
  for	
  parGcles	
  &	
  gammas	
  

	
  
	
  

CeBr	
  
Si
M
P	
  
Si
M
P	
  CeBr	
  



Challenge	
  	
  -­‐	
  how	
  thin	
  100µm,	
  50µm,	
  …?	
  

Project	
  
In	
  Progress	
  



CHyMENE	
  hydrogen	
  target	
  

Ø 	
  50-­‐200	
  micron	
  solid	
  H2/D2	
  film	
  

Ø no	
  C	
  and	
  mylar	
  window	
  
	
  ⇒	
  no	
  C	
  background	
  
	
  ⇒	
  atoms.cm-­‐2	
  x	
  5	
  
	
  ⇒	
  less	
  energy	
  loss	
  

Ø experiments	
  at	
  SPIRAL1	
  and	
  SPIRAL2	
  
	
  ⇒	
  5-­‐15	
  MeV/u	
  and	
  thin	
  target	
  (<0.5	
  mm)	
  

	
  

Developments:	
  
	
  

Ø Early	
  2010:	
  producGon	
  test	
  at	
  Saclay	
  

Ø June	
  2010:	
  in-­‐beam	
  test	
  at	
  Bruyères-­‐le-­‐Châtel	
  

Ø 2011:	
  ANR	
  
Ø Towards	
  below	
  40µm	
  	
  

IPN	
  Orsay,	
  02/03/12	
   19	
  Anna	
  Corsi	
  -­‐	
  CEA	
  Saclay	
  /	
  SPhN	
  



•  Astro-­‐Physics	
  ReacGons	
  (Ph	
  Woods)	
  
–  20Ne(p,d)19Ne	
  è	
  Branching	
  10-­‐4	
  è	
  α	
  +	
  15O	
  
–  21Ne(p,t)19Ne	
  è	
  α	
  +	
  15O	
  
–  Need	
  To	
  populate	
  19Ne(E*=4.033MeV	
  -­‐	
  mbarn)	
  

è High	
  intensity	
  20Ne	
  (1012pps)	
  
è Target	
  no	
  Contaminant	
  (C,	
  O,	
  N	
  …	
  kills	
  the	
  DSSSDs)	
  
è Spectrometer	
  approx	
  0°.	
  

è Detect	
  α	
  +	
  15O	
  &	
  p	
  
	
  

α
19Ne	
  

20Ne	
  –	
  3x108	
  
40MeV.A	
   15O	
  

H2	
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Estimation of the cross sections of 20Ne(p, d)19Ne* to the 4.03 MeV state   

Calculations done by Dan Doherty,  
FR reaction code; sp states 19Ne* 

MAGNET	
  

	
  

E*=4.033MeV	
  	
  

If	
  DCE	
  then	
  this	
  exp!	
  



	
  
–  SiPM	
  –	
  Fast	
  	
  crystals	
  	
  with	
  fast	
  “PMs”	
  

•  100psec	
  &	
  resoln	
  6.5%	
  for	
  CeBr3	
  
•  Developments	
  in	
  progress	
  (noise)	
  
•  Nucl.	
  Phys.	
  Being	
  tested	
  

–  GAIN	
  mode	
  	
  	
  in	
  Si	
  detectors	
  (Not	
  APVs)	
  
•  Low-­‐Gain	
  Avalanche	
  Detectors	
  (LGAD)	
  

–  X10	
  gain	
  
–  Very	
  fast	
  %ming	
  (<30psec)	
  

•  Nucl.	
  Phys.	
  Not	
  trying	
  ?	
  

–  3-­‐D	
  Si	
  for	
  tracking	
  
•  Ultra	
  fact	
  Si	
  
•  Radia%on	
  hard	
  
•  Nucl.	
  Phys.	
  Not	
  trying	
  ?	
  

	
  

66

Measurements with SrI2, CeBr3, GYGAG 

Detectors from Livermore and IPN Orsay: 
• Cylindrical 2” x 2” SrI2 • Cylindrical 2” x 3” CeBr3 • Cylindrical 0.3” x 2” GYGAG  
Measurements performed in Milan: 
• The crystals were scanned using a collimated beam  

of 662 keV gamma rays (along the three axes). 
• Crystal response was measured using standard sources  (60Co, 88Y, 137Cs, 152Eu) 
• The crystal response of gamma rays was measured at 4.4 MeV and 9 MeV. 
• Pulses up to 9 MeV gamma rays were digitized. 

Acquired 
spectra 
with a 
152Eu  
and 

AmBe(Ni) 
sources 

A. Giaz   -   Characterization of new scintillators: CLYC, GYGAG, SrI2 and CeBr3 17 EGAN 2014 

Silicon'Photomul3pliers

•Developments(of(large(arrays(of(SiPMs(

•Technology(directed(towards(simultaneous(PET(and(MRI(

•Bespoke(electronics(and(readout(developed(

•Suffer(from(high(dark(current(IMPROVING(

•Major(gain(instability(with(temperature(IMPROVING(

•Excellent(<ming(resolu<on((100s(of(ps)
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¾ MPDG with CMOS pixel ASICs (“InGrid”)
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Readout plane  � High gain ( >104) 

� Good energy (11% @ 6 keV) and time resolution (< 1 ns) 

� Good spatial resolution (< 50 µm) 

� Reduced ion feedback < 1% 

� Radiation hardness (1016 p/cm2) 

� Fast ion collectionÆ operation at high flux 

� Cope with sparks: resistive coating 

Principle 

High	
  Resoln	
  
þ  Gain:	
  106	
  
þ  Time:	
  2-­‐5ns	
  
þ  Space:	
  <100µm	
  
þ  Charge:	
  <20%/sqrt(E)	
  
þ  Rad.	
  Hard	
  
þ  Ion	
  Feed-­‐Back	
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avalanche	
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  E=5.0MV/m	
  
	
  

Calcula;ons:	
  
S.	
  Franchino,	
  R.	
  de	
  Oliveira	
  &	
  E.	
  Pollacco	
  (ZiTiX	
  Project)	
  
	
  

Mesh	
  
Support	
  300µm	
  

Anode	
  Cu+Au	
  

PCB	
  

E=0.2MV/m	
  

NOT FOR DISTRIBUTION JINST_006P_1011 v2

Figure 15. Electric potential and field values shown in the plane cut from figure 14. From left to right -
rectangular, cylindrical, woven and calendered mesh. From top to bottom - electric potential, vertical (Ez)
and horizontal (Exy) electric field values. All cases are for the mesh pitch of 96 µm and amplification to drift
field ratio of 320. Maximal electric field values are shown by red color and in the case of the rectangular mesh
component Exy has the lowest value among all 4 geometries. Scaling it so that rectangular maximum value of
the Exy component is equal to 1, the other geometries have the following maximal values - cylindrical 1.06,
woven 1.09, and calendered mesh 1.19, which agrees with our simple explanation of symmetry caused Exy

component cancellation. Even though cylindrical mesh might seem equally symmetrical as the rectangular
one the difference is that because of the curvature of the cylindrical wires one gets more of the deflection
Exy component directly above the wire which is not the case for the rectangular mesh in which the surface of
the wire is not curved - i.e. is flat. Maximum Ez component values are again scaled to the rectangular mesh
value of 1.0 - cylindrical 1.18, woven 1.10, and calendered mesh 1.21.
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Figure 14. Cross section region in a horizontal plane around one hole in the mesh. Detailed electric field
values and potentials are shown in figure 15.
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Figure 15. Electric potential and field values shown in the plane cut from figure 14. From left to right -
rectangular, cylindrical, woven and calendered mesh. From top to bottom - electric potential, vertical (Ez)
and horizontal (Exy) electric field values. All cases are for the mesh pitch of 96 µm and amplification to drift
field ratio of 320. Maximal electric field values are shown by red color and in the case of the rectangular mesh
component Exy has the lowest value among all 4 geometries. Scaling it so that rectangular maximum value of
the Exy component is equal to 1, the other geometries have the following maximal values - cylindrical 1.06,
woven 1.09, and calendered mesh 1.19, which agrees with our simple explanation of symmetry caused Exy

component cancellation. Even though cylindrical mesh might seem equally symmetrical as the rectangular
one the difference is that because of the curvature of the cylindrical wires one gets more of the deflection
Exy component directly above the wire which is not the case for the rectangular mesh in which the surface of
the wire is not curved - i.e. is flat. Maximum Ez component values are again scaled to the rectangular mesh
value of 1.0 - cylindrical 1.18, woven 1.10, and calendered mesh 1.21.
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Novel Results on Small Gap Micromegas Microbulks 
D. Attié1, L. Boilevin-Kayl1, T. Dafnib, E. Ferrer Ribas1*, S. Ferry3,Y. Giomataris1, D.C. Herrera2, F. J. Iguaz2, I. G. 
Irastorza3, M. Kebbiri1, T. Papaevangelou1, R. De Oliveira3, L . Seguí2 and A. Tomás2 
 
1IRFU, Centre d’ études de Saclay, CEA,  France 
2Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Spain 
3CERN, Geneva, Switzerland  

Performance vs pressure  

The Microbulk manufacturing technique provides detectors with excellent energy resolution, flexible structure, low material budget and high radio-purity. Small 

gap micromegas detectors (< 50 µm) are optimized for high pressure applications.  Combining the microbulk technique with a small gap can result in attractive 

detectors for rare event searches, in particular for double  beta decay or dark matter search experiments. 

  
F.J. Iguaz et al., JINST F.J. Iguaz et al., JINST 7P04007(2013)7P04007(2013)  
S. S. AndriamonjeAndriamonje  et al., JINST et al., JINST 5P02001 (2010)5P02001 (2010)  
T. Dafni et al., NIM A608, p259 (2009)T. Dafni et al., NIM A608, p259 (2009)  

�  

G= ea d

VBpdEBp AeAe
p

// ��   
D

Parallel plate detector gain: 

Townsend coefficient α: 

¸
¹
·

¨
©
§ � ¸

¹
·

¨
©
§ � 

E
Bpapd

V
Bpdapd

G
G 11G

Gain variation: 

Y. Giomataris, NIM A419, p239 (1998) 

The gain variation  exhibits a minimum for: p =  V/Bd 

D. Attié et al., JINST 9 (2014) C04013 

*eferrer@cea.fr 

Gain and energy resolution Townsend coefficient 

Gain  

Motivation & Characteristics  

Conclusions and  Perspectives 
 Gains greater than 8 × 103  and Energy resolutions as low as  12% have 

been obtained in Argon-Isobutane mixtures for 12.5 and 25 µm Microbulk 

detectors. Electric field simulations  show that these results are limited by 

manufacturing  constrains on the hole pattern. 

 

Townsend coefficients have been extracted and will be compared to 

simulations . 

 

The performances of these detectors as a function of pressure have been 

studied and follow the expected bell shape with the maximum shifted with 

pressure. 

 

Confirmation of suitability of small gap microbulk for rare event detection 

that would require operation pressures above the atmospheric. 

 

d  

d = 12.5, 25 or 50 µm 

The gas mixture for every  amplification gap  has  been chosen  to optimise the 

energy resolution. 
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AstroBox2 - Detector for low-energy
β-delayed particle detection

A. Saastamoinen1,∗, E. Pollacco2, B. T .Roeder1, A. Spiridon1, L. Trache3, G. Pascovici3, R. E. Tribble1

1Cyclotron Institute, Texas A&M University, College Station, TX, USA
2 IRFU, CEA Saclay, Gif-sur-Yvette, France

3 National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania

Physics Motivation: β-delayed Particle Emission as Indirect Probe for Nuclear Astrophysics

• Explosive hydrogen burning (rp-process) in novae and X-ray bursts proceeds often via resonant (p, γ) reactions.

• E.g. a bottleneck reaction for elements beyond sulphur in novae: 30P(p, γ)31S.

•Most important states in typical temperatures only few hundred keV above proton separation threshold.

• Allowed β-decay can be used as a very selective, indirect probe.

• β-background dominates low energy region when implanting into a Si detector.
→ Gas as detection medium nearly transparent to betas.
→ Still good response for heavier particles, such as low energy protons and alphas.

• Calorimetric measurement: Emeas. = Ep + k · Erec.+ < β >

• Using MicroMEGAS (Micro MEsh GAseous Structure) technology for high gas gain with good resolution.

The AstroBox2 Detector

An illustration of the AstroBox2 detector setup. The beam comes to the setup from left through a rotatable degrader and enters the detector gas volume
through an aramica window. The cathode has a source holder that can be masked while the detector remains under operating conditions. All materials
inside the gas volume are minimally outgassing, and all mounting hardware is vented design by default. The preamplifiers are mounted directly into the
detector PCB, eliminating need for feedthroughs. Modular design of the chamber allows e.g. optimized side flanges for γ-ray detection.

Left: The AstroBox2 MicroMEGAS mounted on its flange.
Right: The field cage mounted on the detector.

Left: The detector setup at the MARS spectrometer in April 2015.
Right: Inside of the chamber without the detector to show the beam
window and the optional sub-flange for magnetically coupled source
holder which allows scanning of the whole detector under operating
conditions.

First Test Results and Outlook

Source tests

Detector response to a mixed
148Gd,239Pu,241Am,244Cm α-source. Typical
resolution for 241Am line is 3% for tightly collimated
source.

Detector response to 55Fe X-ray source. Typical
resolution of 11 – 13% is achieved for 256 µm
detector.

* Contact address: ajsaasta@comp.tamu.edu

Beam tests and Implantation Control

Measured energy losses in two pads versus each other (left), and the total sum
versus one pad (right) when 25Si beam is stopped inside the detector. The
diagonal has all the other ions punching through these pads, and the almost
horizontal line indicates the beam stopping within the pad in question.

Left: Event display showing pads during beam on period. The beam is
stopped in the centermost pad, as illustrated by the energy loss plots above.
Right: Same, but now beam off, showing decays occurring.

Decay test with 25Si

β-delayed proton spectrum of 25Si. Resolution of the 401 keV proton group
is ∼4%. The data was collected by pulsed beam with a cycle of 500 ms on
and 500 ms off.

Future Developments and Outlook

•Adding HPGe detectors for γ-rays to look for possible
p-γ-coincidences (to distinguish decays to excited states).

• Improved gas handling system under design.

• Further characterizations to understand systematic effects.

• First physics experiments expected late 2015.
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F. de Oliveira Santos, K. Peräjärvi, M. Stanoiu, Eur. Phys. J. A 21 (2004)223

419–435.224

4

Simula'on*

Data**Decay*25Si*

401*keV*(4%*FWHM)*

Improvements*presently*to*reach*op'mum*single'pad'Q'resoln'!*see#poster#
Lowering* βGbackground*!#Very#Low#Branching#Ra4os#(1085)#measurement#reachable##

β

AstroBox2*SetGup*–*Micromegas*256µm*P5*gas*900Torr*

A.*Saastamoinen,*E.*Pollacco,*B.*Roeder,**
A.*Spiridon,*L.*Trache,**R.*De*Oliveira,*R.*E.*Tribble**
*

AstroBox2 - Detector for low-energy
β-delayed particle detection

A. Saastamoinen1, E. Pollacco2,∗, B. T .Roeder1, A. Spiridon1, L. Trache3, G. Pascovici3, R. E. Tribble1

1Cyclotron Institute, Texas A&M University, College Station, TX, USA
2 IRFU, CEA Saclay, Gif-sur-Yvette, France

3 National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania

Physics Motivation: β-delayed Particle Emission as Indirect Probe for Nuclear Astrophysics

• Explosive hydrogen burning (rp-process) in novae and X-ray bursts proceeds often via resonant (p, γ) reactions.

• E.g. a bottleneck reaction for elements beyond sulphur in novae: 30P(p, γ)31S.

•Most important states in typical temperatures only few hundred keV above proton separation threshold.

• Allowed β-decay can be used as a very selective, indirect probe.

• β-background dominates low energy region when implanting into a Si detector.
→ Gas as detection medium nearly transparent to betas.
→ Still good response for heavier particles, such as low energy protons and alphas.

• Calorimetric measurement: Emeas. = Ep + k · Erec.+ < β >

• Using MicroMEGAS (Micro MEsh GAseous Structure) technology for high gas gain with good resolution.

The AstroBox2 Detector

An illustration of the AstroBox2 detector setup. The beam comes to the setup from left through a rotatable degrader and enters the detector gas volume
through an aramica window. The cathode has a source holder that can be masked while the detector remains under operating conditions. All materials
inside the gas volume are minimally outgassing, and all mounting hardware is vented design by default. The preamplifiers are mounted directly into the
detector PCB, eliminating need for feedthroughs. Modular design of the chamber allows e.g. optimized side flanges for γ-ray detection.

Left: The AstroBox2 MicroMEGAS mounted on its flange.
Right: The field cage mounted on the detector.

Left: The detector setup at the MARS spectrometer in April 2015.
Right: Inside of the chamber without the detector to show the beam
window and the optional sub-flange for magnetically coupled source
holder which allows scanning of the whole detector under operating
conditions.

First Test Results and Outlook

Source tests

Detector response to a mixed
148Gd,239 Pu,241Am,244Cm α-source. Typical
resolution for 241Am line is 3% for tightly collimated
source.

Detector response to 55Fe X-ray source. Typical
resolution of 11 – 13% is achieved for 256 µm
detector.

* Contact address: emmanuel.pollacco@cea.fr

Beam tests and Implantation Control

Measured energy losses in two pads versus each other (left), and the total sum
versus one pad (right) when 25Si beam is stopped inside the detector. The
diagonal has all the other ions punching through these pads, and the almost
horizontal line indicates the beam stopping within the pad in question.

Left: Event display showing pads during beam on period. The beam is
stopped in the centermost pad, as illustrated by the energy loss plots above.
Right: Same, but now beam off, showing decays occurring.

Decay test with 25Si

β-delayed proton spectrum of 25Si. Resolution of the 401 keV proton group
is ∼4%. The data was collected by pulsed beam with a cycle of 500 ms on
and 500 ms off.

Future Developments and Outlook

•Adding HPGe detectors for γ-rays to look for possible
p-γ-coincidences (to distinguish decays to excited states).

• Improved gas handling system under design.

• Further characterizations to understand systematic effects.

• First physics experiments expected late 2015.
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SPiRIT-TPC as tracker for multi 
particles from HIC

Measure differential flow and 
yield ratios for (π+ & π-), (p & n), 
(3H & 3He) in Heavy RI Collisions at 
E/A=300MeV

p+

p-

• Considerations 
– Good track-reconstruction 

efficiency for pions 
– Physical space constraints (limit 

drift length, vertical spatial res.) 
– Tolerances (affect momentum 

resolution) 
• Design influenced heavily by  
 EOS and STAR TPCs 

S-TPC: Design 

GEANT simulation  
132Sn+124Sn collisions at E/A=300 MeV 

Pad plane area 1.34m x 0.86 m 

Number of pads 12096 (108 x 112) 

Pad size 12 mm x 8 mm 

Drift distance 53 cm 

Pressure 1 atm 

dE/dx range Z=1-8 (GET electr.) 

Two track 
resolution 

2.5 cm 

Multiplicity limit 200 (may impact pion 
eff. in large systems) 
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Principle of operation
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http://pro.ganil-spiral2.eu/spiral2/instrumentation/actar-tpc 

Physics	
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