Beam intensity upgrade of the LNS Superconducting Cyclotron

Danilo Rifuggiato

INFN Laboratori Nazionali del Sud, Catania

HIB2015@LNS International workshop LNS, Catania, December 14th 2015

INFN LNS: accelerators and experimental halls

The LNS accelerators

450 KV injector 2 sputtering sources

Superconducting ECR source SERSE Normal conducting ECR source CAESAR

The LNS Superconducting Cyclotron

Bending limitHFocusing limitHPole radiusHYoke outer radiusHYoke full heightHYoke full heightHMin-Max fieldHSectorsHRF rangeH

K=800 Kfoc=200 90 cm s 190.3 cm 286 cm 2.2-4.8 T 3 15-48 MHz $(T/A)_{max} = K_{bending} (Q/A)^2 \sim 25 \text{ AMeV Au36+}$ $(T/A)_{max} = K_{focusing} (Q/A) 100 \text{ AMeV fully stripped}$

Versatility (performance)

Reliability (protontherapy)

High intensity (radioactive beams)

Beams developed at the Superconducting Cyclotron

<mark>▲</mark> 4He 80 AMeV

¹¹²Sn 43.5 AMeV

In red beams with intensity 10¹² pps

AX	E (AMeV)
\mathbf{H}_{2}^{+}	62,80
H_3^+	30,35,45
$^{2}\mathbf{D}^{+}$	35,62,80
⁴ He	25,62,80
He-H	10, 21
⁹ Be	45
¹¹ B	55
¹² C	23,62,80
¹³ C	45,55
¹⁴ N	62,80
¹⁶ O	21,25,55,62,80
¹⁸ O	15,55
¹⁹ F	35,40,50
²⁰ Ne	20,40,45,62
²⁴ Mg	50
²⁷ Al	40
³⁶ Ar	16,38
⁴⁰ Ar	15,20,40
⁴⁰ Ca	10,25,40,45
^{42,48} Ca	10,45
⁵⁸ Ni	16,23,25,30,35,40,45
^{62,64} Ni	25,35
^{68,70} Zn	40
⁷⁴ Ge	40
^{78,86} Kr	10
⁸⁴ Kr	10,15,20,25
⁹³ Nb	15,17,23,30,38
¹⁰⁷ Ag	40
¹¹² Sn	15.5,35,43.5
¹¹⁶ Sn	23,30,38
¹²⁴ Sn	15,25,30,35
¹²⁹ Xe	20,21,23,35
¹⁹⁷ Au	10,15,20,21,23
²⁰⁸ Pb	10

Axial injection: intensity enhancement

Extraction is critical due to compactness: $\epsilon \approx 50\%$

Last turn separation $\Delta R = R \cdot (\Delta E/E) \cdot (1/v_r^2) \cdot \gamma/(\gamma+1)$

Increasing the Cyclotron beam intensity

¹³C⁴⁺ @ 45 AMeV Pextr = 150 watt I=1020 enA= 1.5x10¹² pps

Septum: directly cooled New septum material: W vs. Ta Bigger thickness: 0.3 vs. 0.15 mm ⇒extraction efficiency 63% vs. 50%

Thesource-cyclotronmatchingneedstoimproved

Beam transport along the injection line is now being considered, following the MSU, JYFL, KVI methods

Extraction by stripping: high efficiency >99%

Extraction by stripping is based on the instantaneous change of the magnetic rigidity of the accelerated ion, when its charge state is suddenly increased crossing a thin carbon foil

15

12C 15 MeV/u	F(5)=8.35e-4	F(6)=0.99917	Atomic Data and Nuclear Data Tables, Vol. 51, No. 2,
12C 20 MeV/u	F(5)=3.20e-4	F(6)=0.99968	
18O 15 MeV/u 18O 20 MeV/u 18O 30 MeV/u	F(7)=3.14e-3 F(7)=1.29e-3 F(7)=3.74e-4	F(8)=0.99690 F(8)=0.99870 F(8)=0.99963	July 1992, Table 2 pag.187 Light ions - A<20 - with energies higher than 15 MeV/u, are fully stripped -
20Ne 15 MeV/u	F(9)=8.90e-3	F(10)=0.99110	q=Z – with F(Z)>99% - when
20Ne 20 MeV/u	F(9)=3.26e-3	F(10)=0.99670	crossing a stripper foil with
20Ne 30 MeV/u	F(9)=9.51e-4	F(10)=0.99910	equilibrium thickness

Feasibility of the project

- Beam dynamics of extraction by stripping
- Technical feasibility of extraction by stripping

With a strong constraint: keep the design operating diagram – i.e. mass and energy range – wide variety of beam types

Feasibility of extraction by stripping

While making beam simulations it came out that the present extraction channel implied big beam envelopes in the transverse phase space

Therefore a new path was taken into consideration: a new channel

Extraction by stripping beam envelopes

Extraction by stripping beam envelopes

Studied cases – expected intensities

lon	Energy	Isource	lacc	lextr	lextr	Pextr
	MeV/u	еμА	еμА	еμА	pps	watt
¹² C q=4+	18	400	60 (4+)	90 (6+)	9.4•10 ¹³	3240
¹² C q=5+	30	200	30 (4+)	45 (6+)	4.7•10 ¹³	2700
¹² C q=4+	45	400	60 (4+)	90 (6+)	9.4•10 ¹³	8100
¹² C q=4+	60	400	60 (4+)	90 (6+)	9.4•10 ¹³	10800
¹⁸ O q=6+	20	400	60 (6+)	80 (8+)	6.2•10 ¹³	3600
¹⁸ O q=6+	29	400	60 (6+)	80 (8+)	6.2•10 ¹³	5220
¹⁸ O q=6+	45	400	60 (6+)	80 (8+)	6.2•10 ¹³	8100
¹⁸ O q=6+	60	400	60 (6+)	80 (8+)	6.2•10 ¹³	10800
¹⁸ O q=7+	70	200	30 (7+)	34.3 (8+)	2.7•10 ¹³	5400
²⁰ Ne q=4+	15	600	90 (4+)	223 (10+)	1.4•10 ¹⁴	6690
²⁰ Ne q=7+	28	400	60 (7+)	85.7 (10+)	5.3•10 ¹³	4800
²⁰ Ne q=7+	60	400	60 (7+)	85.7 (10+)	5.3•10 ¹³	10280

From electrostatic extraction to extraction by stripping

Feasibility of a new superconducting magnet

Specifics

- Main coils form factors within 0.1% of the present ones
- Extraction channel height enlarged by 30 mm
- Superconducting cable
- Lhe and LN2 consumption within the present
- Magnetic, thermic and structural analysis of the cold mass
- Cost estimate

Form factors of the superconducting coils

16/Sep/2014 17:59:08

Opera

TDR : the superconducting magnet

A technical and functional analysis of the new superconducting magnet has been committed to ASG Superconductors, starting from the results of the conceptual design study made with MIT

S.C. magnet TDR : the superconducting cable

Layout	Wire-in-channel a singolo conduttore
Spessore cavo isolato [mm]	4.13
Altezza cavo isolato [mm]	2.84
Spessore cavo nudo [mm]	3.88
Altezza cavo nudo [mm]	2.59
Rapporto Cu/Sc	5.2
Diametro filamento [micron]	<= 156
RRR rame	80 - 100
Spessore treccia fiberglass [mm]	0.125

Tabella 3-1: Caratteristiche del conduttore.

Small cable, maximum current 670 A many turns Higher inductance, longer ramp-up time

S.C. magnet TDR : technical details

TDR : new liner

liner The is the copper structure covering the iron pole to form the vacuum chamber. The present liner will be replaced by a new one to reduce vacuum leaks and increase the beam clearance

TDR : overall mechanical modifications

TDR : stripper system

TDR : mechanical structure for both the extraction modes

TDR : lay-out of the magnetic channels

TDR : new extraction beam line

TDR : improvement of the extraction beam line

TDR : improvement of the extraction beam line

Magnex beam dump

TDR : cost estimation

capitolo	dettaglio	keuro	parziali keuro
Allegato 3	Magnete+Criostato	4078	5094
	torretta Criogenica	1006	
	QDS	10	
1.1	camera estrazione per stripping	40	39.6
	movimentazione stripper	30	
	controlli e diagnostica	16.8	
1.2	modifiche meccaniche al deflettore	10	39.6
	controlli e diagnostica per il nuovo deflettore	29.6	
1.3	canali magnetici nuovo canale	20	110
	canali magnetici canale esistente	30	
	controlli e diagnostica canali magnetici	60	
2	manifattura nuovo liner	350	390
	lucidatura e pulizia in bagno con utlrasuoni	25	
	verifica dimensionale	4	
	prova da vuoto	2.5	
	trasporto assemblaggio	8.5	
3	vuoto cs	90	224
	vuoto nuova linea di estrazione	134	
4	modifiche ai dee	10	40
	raffreddamento sistema RF	30	
5	trim coil avvolgimenti	360	881
	TC convertitori	450	
	quadro elettrico e linee	40	
	concentratore allarmi e pc	31	

TDR : cost estimation

6	N° 1 Dipolo 90°	229	1265
	N* 1 Switching magnet	188	
	N° 2 Dipoli 45°	298	
	N° 2 Dipoli 10°	120	
	N* 8 Quadrupoli	176	
	N° 2 Quadrupoli	54	
	vuoto	200	
7	TPS	13.1	55.6
	Beam losso monitor	42.5	
8	Alimentatori bobine principali	100	420
	Alimentatori della linea di fascio	320	
9	monitoraggio per neutroni e gamma in sala CS	60	967
	sistema di sicurezza sala CS e locali attigui	100	
	schermatura ECR	10	
	impianti idrici per il raffreddamento acqua CS	156	
	monitoraggio per neutroni e gamma in sala Magnex	90	
	Modifiche al sistema di sicurezza	50	
	schermature	421	
	impianti idrici per il raffreddamento beam dump o altro in sala Magnex	80	
10	ribaltatore	250	836.15
	nuova impalcatura per il nuovo magnete di estrazione	25	
	meccanica protezione vitoni	15	
	interfaccia camera pulita	15	
	movimentazione schermature	12.3	
	manpower esterno per smontaggio/rimontaggio	150	
	locale di sgombero	368.85	
		TOTALE	10361.95

TDR : time estimation

		2	016			2	2018				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	QZ	
Criostato e magnete											
procedure per emissione ordine											
revisione progetto								1			
Disegn i esecutivi											
Acquisizione materiali e attrezzature											
costruzione											
test finali i n Fabbri ca											
Spedizione e trasporto ai LNS			<u>.</u>								
Test Finali in Laboratorio											
Acquisto Nuovi P.S. bobine principali											
Trim Coils		_				-		1			-
acquisto cavo			S	-				8		-	
prove di avvolgimento								0			
Prove di impregnazione								-			
Costruzione di tutti i 120 trim coils						a (*		-		-	
Acquisto P.S. per i Trim Coils				-		1					
Liners						<u> </u>					-
Progettazione Liners			-					1			
ordine per costruzione Liners					1			1			
Costruzione Liners											
Prove di tenuta da vuoto Liners											
Trasporto Liners al Laboratori											
Acquisizione elementi Magnetici								5			-
e relativi ali mentatori											
definizione degli elementi magnetici			1								
delle linee di trasporto			1					1			
Ordine per acquisto						8				-	
costruzione e consegna			-								
Locale di sgombero								-		-	
Progettazione				<				6			
Gara ed ordine								ð		-	
Costruzione			-								

TDR : time estimation

	4	2017			2	2018			2	2020			
	Q2	Q3	Q4	Q1	Q2	Q1	Q4	01	Q2	Q3	Q4	Qi	02
Lavorazioni presso i LNS													
Meccanica Misuratore magnetico				1.									
elettronica misuratore magnetico	1								1			2	
Ribaltatore													
emissione ordini per lavorazioni varie												2	
smontaggio schermature ed altro		0										2	
smontaggio impianti idrici									1			10	
smontaggio impianto da vuoto		9	1		1		1		1 0		(12	
disconnessione cavi trim coils					1							0	
smontaggio linee Elio, Azoto, PS. E TPS							1					12	
Smontaggio esagono CS		0.5			1				3			1	
Smontaggio Cavità superiori ed inferiori		1					Alexander -	1	- B		1	6	
timozione e ribaltamento polo superiore													
Rimozione Liners e trim coils											1	S	
Installazione nuovi Trim coils e Liners		5			1				1.00			8	
Criostato e magnete							1					8	1
Installazione Criostato nel ciclotrone							-					2	-
Test Finali in Laboratorio			-				-	1	_				-
Lavorazioni presso i LNS			-	-	-		-	1					-
libaltamento e montaggio polo superiore		-	-	-			-	+				-	+
Connessione cavi trim Coils			-	-			-						+
Montaggio esagono			-	-			-	+	-				-
Connessioni Elio, Azoto, PS e TPS	-	-	-	-	-			+	1		-		-
Installazione Nuovi PS e Dumo Resistors			-	-				-	1			-	-
Installatione nuovi PS per Trim Coils		-	-	-	-				-				+
smontaggio linea injegione assiale	-		-		-								+
stallazione nuovo magnete di estrazione		-	-	-	-								+
Montaggio Cavità inferiori e superiori			1	-						-	-		+
Connessione impianti idrici		-	-	-	-		1	-	-		-		+
Ciclotrone OEE	_		-	-					-	-	-	-	+
Installations Printate and sidoteons	_			-	-								+
Test finali magnete in Laborateria			<u> </u>		-		-					-	+
reaction magnese in caboratorio					-		-						+
Lavorazioni presso i LNS		-	-	-	-		+		-	-	_		+
Connessione implanti da vuoto		-					-		-				+
installazione canali magnetici		-	-		-		-				_		+
connessioni con linte di estrazione			-			-	-	+	-				+
installazione misuratore magnetico		-	-	-	-		-	+	+			-	+
Misure magnetiche			-	-	-		-	+	-			_	-
rimontaggio linea di iniezione assiale		-	-	-	-		-		-				
Commissioning Ciclotrone				-	-		-				-		-
Commissioning Linee di fascio		-	-	-		+ +	-	-					100
Modifiche alla linea di trasporto		-	-				-						
nstaliazione diagnostica radioprotezione		-	-		-			1				1	-
schermature sala Magnex e beam dump			-										_

Superconducting Cyclotron reliability

A weak point: the Liquid Nitrogen shields

After the warm-up operations (2 since the first cooldown in 1992) LN2 losses have been detected in the LN2 shields of the cryostat. One of the three shields – named virola interna – has already been closed, but some smaller losses have already been detected in the other big shield – named virola esterna – which cause some problems to the cryostat vacuum.

LN2 shields cannot be fixed nor replaced.

Technical Design Report

The described TDR has been presented to the INFN Machine Advisory Committee on November 12, 2015 Waiting for the MAC (positive) report