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Open	String	Field	Theory	(OSFT)	is	a	microscopic	theory	
for	D-branes,	formulated	as	a	field	theoretic	description	

of	open	strings

Helpful	analogy	

OSFT Yang-Mills

Open	strings Gauge	fields

D-branes Saddle	points	
(instantons,…)	

Closed	strings
Gauge	invariant		

operatorsGauge/Gravity?



• Fix a bulk CFT (closed string background) 
• Fix a reference BCFT0 (open string background, D-brane’s system) 
• The string field is a state in BCFT0 

• There is a non-degenerate inner product (BPZ) 

• The bpz-inner product allows to write a target-space  action 

• Witten product *: associative product between states (OPE+conf. map 
• Equation of motion
      

OPEN STRING FIELD THEORY 



OSFT CONJECTURE (once known as Sen’s Conjectures) 

• Key tool for connecting the two sets is the OSFT construction of the 
boundary  state (Kiermaier, Okawa, Zwiebach  (2008),  

                                           Kudrna, CM, Schnabl (2012) ) 

• The (KMS) boundary state is constructed from gauge invariant quantities 
starting from a given solution 

• Intriguing possibility of relating BCFT consistency conditions (Cardy-
Lewellen, Pradisi-Sagnotti-Stanev) with  OSFT equation of motion!

Classical	Solutions Allowed		
D-branesBoundary State

Tachyon Vacuum  
Sen-Zwiebach 1999 

Schnabl 2005



• A change in boundary conditions is encoded in a bcc 
operator (Cardy, ’86-’89)  

• OSFT: describe the dof of a target BCFT* using the dof 
of a reference BCFT0 

SOLUTION FOR ANY BACKGROUND
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Idea back from Vacuum SFT 
(Rastelli, Sen, Zwiebach,2000)



• Connect two generic backgrounds by passing through 
the tachyon vacuum (simplest universal solution: no D-branes) 
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• The Sigma’s can be constructed due to the trivial 
cohomology at the Tachyon Vacuum, using bcc’s

Qtv⌃ = Qtv⌃ = 0

IF �� = 1

• Convenient universal choice 

⌃ = Qtv(A�)
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Explicitly possible for  
time independent backgrounds! 

(this adds a pure gauge time-like Wilson line) 
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• Tantalizing conjecture 

              
         OSFT EOM  implies BCFT constraints (bootstrap)  

• Can we find the most generic solution to OSFT? 

• All known D-branes give rise to solutions, can we reverse the 
argument to DISCOVER new D-branes? 

• Long-standing problem in CFT!

So we are now in a new phase for OSFT

This is why EM 
works, essentially!



…As a first step in this challenge let’s see how to 
generate new solutions from known ones: 

Topological Defects in OSFT



• They map solutions to solutions

• Generalization of symmetries (which are group-like defects) 

                            

Open string defect operators in OSFT
(Kojita, Masuda, CM, Schnabl, 2015)

[D, Q] = 0

D( 1 ⇤ 2) = (D 1) ⇤ (D 2)
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• An operator     can be explicitly constructed starting from a closed 
topological defect line        . 

[Dcl, T (z)] = [Dcl, T̄ (z̄)] = 0
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• In (diagonal) RCFT: as many fundamental defects as irreps. The fusion 
rules govern their composition and the action on boundary states  

Graham-Watts (2003)
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To make this precise, exchange the roles of space and 
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• In the open string sector we must have (Diagonal Minimal models from now on!)

• Determine X coeff. imposing the star algebra homomorphism 

• In explicit case of diag. minimal models we find (pentagon identity) 
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Figure 1: Action of the defect on the open string field in a graphical presentation. The two
dots at the points where the defect is attached to the boundary represent a multiplication

by
(
F1a′

[
a d
a d

])1/2
and

(
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[
b d
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])1/2
respectively.

solutions to solutions DΨX→Y = ΨDX→DY as we verify by computing the boundary state

following [4]. Somewhat surprisingly however, their fusion rules are twisted by an idem-

potent similarity transform when multiple copies of the same boundary condition gets

generated. [We should convince ourselves that the F matrices appear only in

this case.] Interestingly it turns out that, instead of

DdDc =
∑

e

N e
dc De (1.8)

which holds for defect action on the bulk states, the action on boundary operators obeys
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)
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[This equation is not true as it is written, since U depends on a and a′′, while

U−1 depends on b and b′′. So they cannot be inverses of each other.]

2 Defects in conformal field theory

Here we briefly introduce topological defects in two dimensional CFT. They are one

dimensional solitonic objects, which we can freely deform without changing the value of

the correlation functions involving them. This feature is expressed by the gluing condition

of the energy-momentum tensor across the defects; the topological defects are totally

transmissive with the energy-momentum tensor. If a defect is laid along the real axis,

this condition is given by
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A familiar example of topological defects appears in the Ising model CFT, which is

equivalent to the minimal model M(3, 4) with three primary fields {1, ε, σ}. We can also
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• The composition (fusion) is trickier than in the bulk case. Naively we 
would expect

• However explicit computation reveals a similarity transformation ! 
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 These objects stay invariant under Moore-Seiberg  F-matrix “gauge” symmetry (rescaling of CVO’s) 



• The need for U is transparent using defect-network manipulations

 
 
 

• Defect action  

• Defect fusion 

• Important to keep track of defect junctions (from which the square roots of F 
originates), example:

� For that one can use the powerful TFT approach to 
rational CFT developed by Felder, Fröhlich, Fuchs, Runkel 
and Schweigert. 
 

� The upshot of their construction is that for minimal 
models with selfconjugate representations one can 
compute correlators of any defect network simply from 
the rule 
 
 
 
now viewed as the defect network itself. Many relations 
follow just by imposing mutual consistency. 

� Let us assume that the original boundary conditions a and 
b arise from the action of defect on the identity boundary 
condition (if it exists). Then one can reinterpret the same 
diagram  
 
 
 
 
 
as one for defect action on defect changing operators 

� So finally the extra factors in 
 
 
 
can be deduced for example from 
 
 
 
 
 
or better yet by refusing on a’ and b’ defect 

See also Frolich, Fuchs,  
Runkel , Schwieger (TFT) 

(2006)
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follows rather naturally from the geometric definition of the defect action. Since the defect

can be partially fused onto the boundary as in Figure 7 (using the rule in Figure 6), the

only issue one has to take care of is the normalization factor F1b0


d b
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�
which has to be

reabsorbed into the definition of the defect action.
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has been absorbed

into the two c-number insertions at the junction points denoted by thick dots.

3.2.1 Defect action on a string field from network manipulations

Consider a string field
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[These are defect networks,
not (a priori) conformal blocks!]



• Change in the (off-shell) action 

• Change in the gauge-invariant coupling to closed strings (Ellwood 
invariant) 

                            

OSFT observables and defects
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where in the second line we have used that the two involved open/closed couplings (carry-

ing the same Virasoro labels but di↵erent boundary conditions) only di↵er by the overall

bulk-boundary structure-constant B and the g-functions, due to the identical operator al-

gebra involved in their calculation. Again, this can be shown geometrically manipulating

defect networks, as shown in figure 11.
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Figure 11: Defect networks manipulations for the Ellwood invariant of a defect-acted open
string-field. The dashed line corresponds to the identification of the left and right part
of the open string, via the identity conformal map f
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�2
. Notice that thanks

to the junctions normalizations and the consequent F-matrix orthogonality relation, only
the identity defect p = 1 stretches between the boundary and the defect d, making d a
genuine closed string defect. When V = 1 this also gives a geometric proof of (3.59).
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•  Given a solution              , we can compute its boundary state 

                            

OSFT boundary state and defects

 X!Y

|B( X!Y )iOSFT = ||Y iiBCFT
Kiermaier, Okawa, Zwiebach (2008) 

Kudrna, CM, Schnabl (2012)

•  Previous slide computation has the important consequence that 

|B(Dd X!Y )iOSFT = Dd
cl||Y iiBCFT Kojita, Masuda, CM, Schnabl (2015)

D X!Y =  DX!DY



•  3 Virasoro labels, 3 fundamental boundary condtns, 3 topological defects

                            

Example: Ising Model OSFT

•  Solutions are organized by the defects action (group and duality defects)

1 , ✏ , � .

From the analysis in section 3.3, we see that the solution DσΨσ→1 describes a σ-brane in

the theory around a system with a 1-brane and a ε-brane. Then we define

Ψ1+ε→σ ≡ DσΨσ→1. (4.13)

Further acting Dσ or DϵDσ, we obtain the two solutions in (4.12)
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)
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ε

−ψ(σσ)
ε ψ(σσ)

1

)
. (4.15)

It is not difficult to find a similarity transformation connecting these two only by looking

them, but let us illustrate how the U matrix discussed in section 3 can be used to relate

them. From (3.26), we find

DϵDσΨ1+ε→σ = Uεσ(DσΨ1+ε→σ)U
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εσ (4.16)
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)
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(
1

−1

)
. (4.17)

Similarly, we can produce different classical solutions by acting defect operators on Ψσ→1.

We here summarize solutions obtained by acting combination of Dσ’s and Dε’s with the

number of Dσ’s less than three:
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besides Ψ2σ→1+ϵ ≡ DσΨ1+ϵ→σ and Ψ2σ→ϵ+1 ≡ DϵDσΨ1+ϵ→σ in (4.14) and (4.15), respec-

tively. The relation between Ψ1+ϵ→σ and Ψ′
1+ϵ→σ is also given by a U matrix,

DσDεΨσ→ε = Uσε(DσΨσ→ε)U
−1
σε , (4.21)
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•  All solutions and their BCFT observables explicitly generated starting from a 
single solution (for example)

 �!1 =  ��
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• OSFT is (among other things) a dynamical field theory for BCFT.  

• All known (time ind.) BCFT’s remarkably give exact analytic 
solutions of OSFT. The string field is indeed “big enough”! 

• Topological defects give rise to new operators in the open 
string algebra which map solutions to solutions.  

• First explicit example of solution generating operators in OSFT: 
they must play an important role in the classification of 
OSFT solutions.

Away from diagonal/minimal/rational  

Open Superstring Field Theory Vs Boundary SCFT??

CONCLUSIONS

Thank you.


