String pair production in non homogeneous backgrounds

Stefano Bolognesi **Università di Pisa**

Work in collaboration with E. Rabinovici and G.Tallarita

Napoli TFI 20/11/2015

Plan of the talk

Introduction to pair production, worldline formalism and non homogeneous backgrounds in field theory

Plan of the talk

Introduction to pair production, worldline formalism and non homogeneous backgrounds in field theory

String theory examples of pair production which are treatable with the *"worldsheet instanton" technique*:

1) String suspended between D-branes

2) Holographic Schwinger effect

Work in collaboration with E. Rabinovici and G.Tallarita

Plan of the talk

Introduction to pair production, worldline formalism and non homogeneous backgrounds in field theory

String theory examples of pair production which are treatable with the *"worldsheet instanton" technique*:

1) String suspended between D-branes

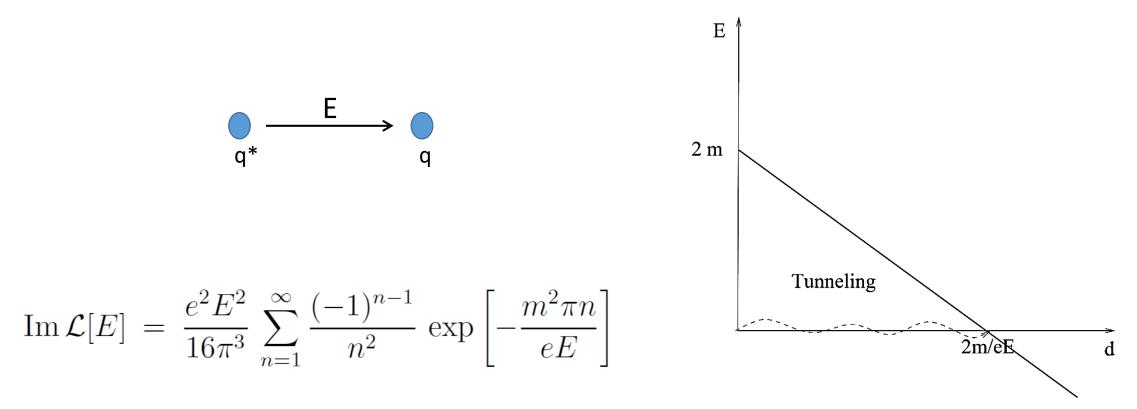
2) Holographic Schwinger effect

Effects of non-homogeneous backgrounds on string production

Work in collaboration with E. Rabinovici and G.Tallarita

Pair production

<u>Schwinger effect</u> for example, is non-perturbative pair production of q-q* due to electric background



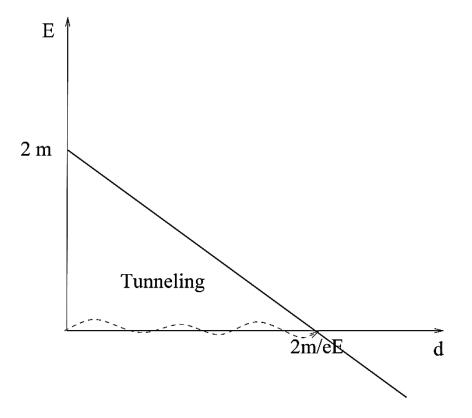
Pair production

<u>Schwinger effect</u> for example, is non-perturbative pair production of q-q^{*} due to electric background

 $\xrightarrow{e} \xrightarrow{e} a^* \xrightarrow{e} a$

This effect becomes significant at

$$E \simeq m^2/e$$



Worldline instanton

One searches for stationary solution of the Euclidean worldline action

$$S_E = m \int d\tau \sqrt{\dot{x}^{\mu} \dot{x}^{\mu}} + iq \int d\tau \dot{x}^{\mu} A^{\mu}$$

Same trajectories of a charged particle moving in a background magnetic field

$$\frac{m\ddot{x}^{\mu}}{2\sqrt{\dot{x}^{\mu}\dot{x}^{\mu}}} = iqF_{\mu\nu}\dot{x}^{\nu}$$

$$\dot{x}^{\mu}\dot{x}^{\mu} = \text{const} = L^2$$

Afflek-Alvarez-Manton 82

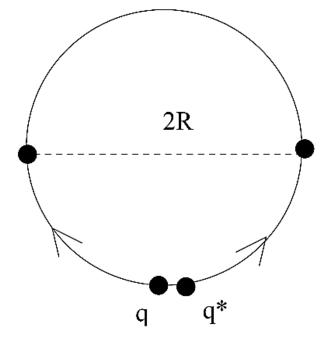
Worldline instanton

For a constant background the solution is given by a circular trajectory

$$x_3(\tau) = \frac{m}{qE}\cos\left(2\pi\tau\right) \qquad x_4(\tau) = \frac{m}{qE}\sin\left(2\pi\tau\right)$$

with action consistent with Schwinger formula

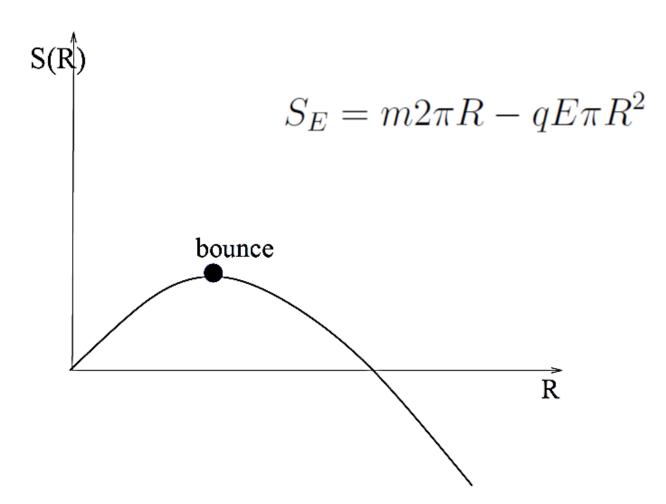
$$S_E = \frac{\pi m^2}{qE}$$

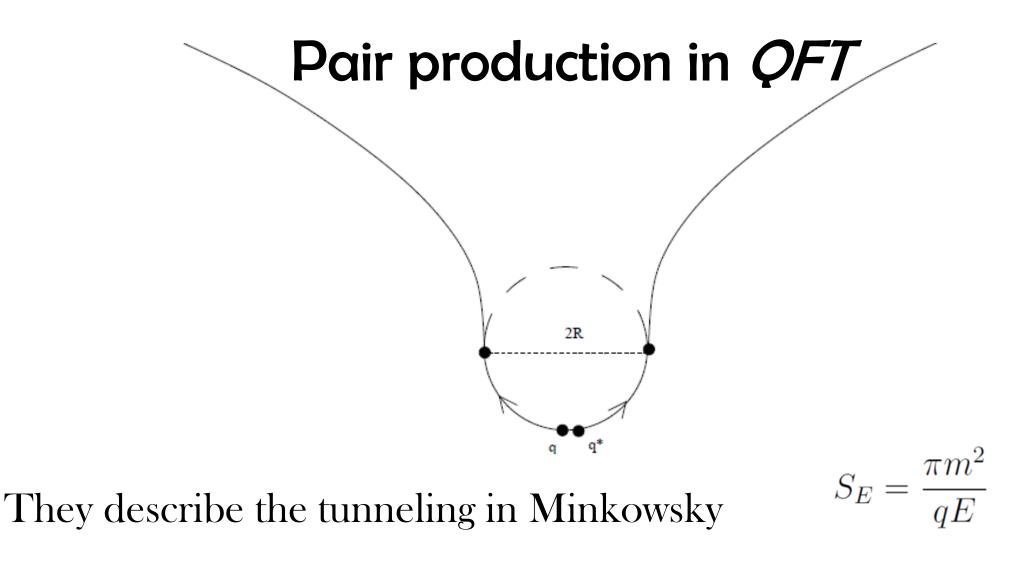


Afflek-Alvarez-Manton 82

Pair production in *QFT*

Solutions are "extremal" circular orbits with radius R





 $P \propto \exp\left(-S_E\right)$

Non homogeneous background

Schwinger effect becomes significant at

$$E \simeq m^2/e = 10^{18} \text{V/m}$$

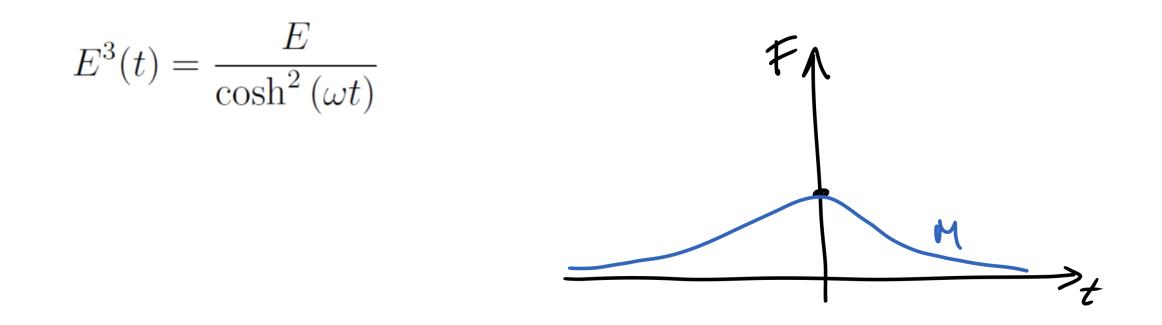
Non homogeneous backgrounds can lower this value significantly!

Direct observation of the Schwinger effect may possible in the near future with the use of strong laser pulses

Sauter Brezin-Itzykson 70

Time-dependent pulse

The simplest case is a single pulse of electric field dependent on time only



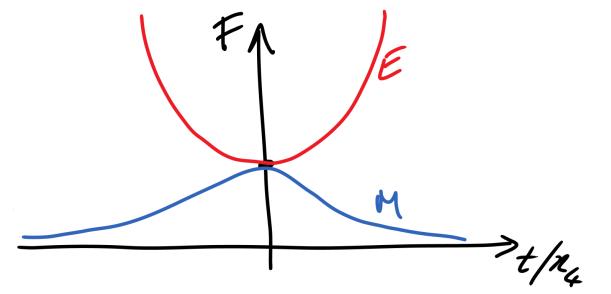
Time-dependent pulse

The simplest case is a single pulse of electric field dependent on time only

$$E^{3}(t) = \frac{E}{\cosh^{2}\left(\omega t\right)}$$

The Euclidean corresponding field is

$$F_{34} = \frac{-iE}{\cos^2\left(\omega x_4\right)}$$

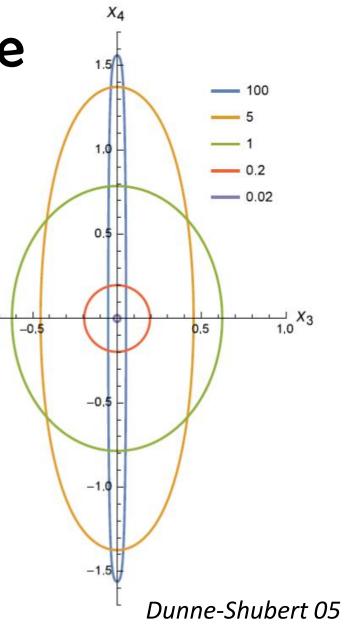


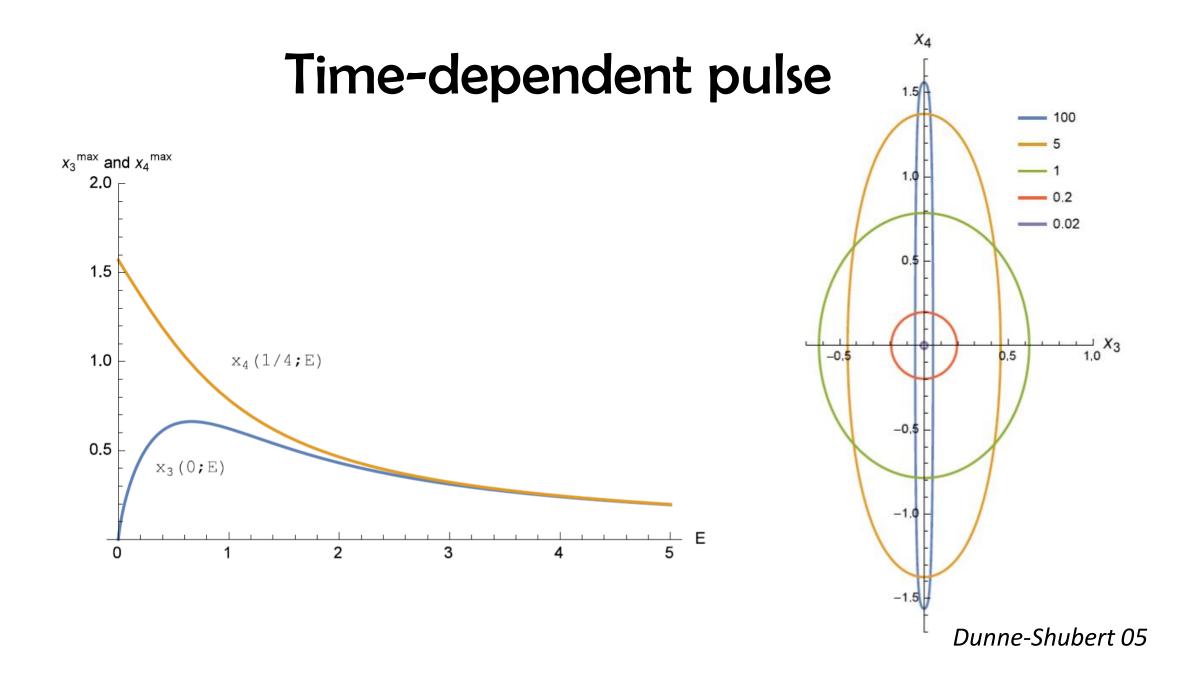
We already see that there should be enhancement of pair production if the instanton is finite!

Time-dependent pulse The exact solution is: $r_{2}(\tau) = \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \operatorname{prescript}(2 \cos(2\pi\tau))$

$$x_{3}(\tau) = \frac{1}{\omega} \frac{1}{\sqrt{1+\gamma^{2}}} \operatorname{arcsinh}(\gamma \cos(2\pi\tau))$$
$$x_{4}(\tau) = \frac{1}{\omega} \operatorname{arcsin}\left(\frac{\gamma}{\sqrt{1+\gamma^{2}}} \sin(2\pi\tau)\right)$$

$$\gamma = \frac{m\omega}{qE}$$





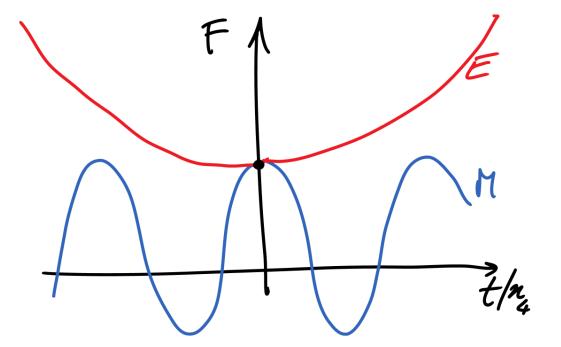
Time-dependent oscillation

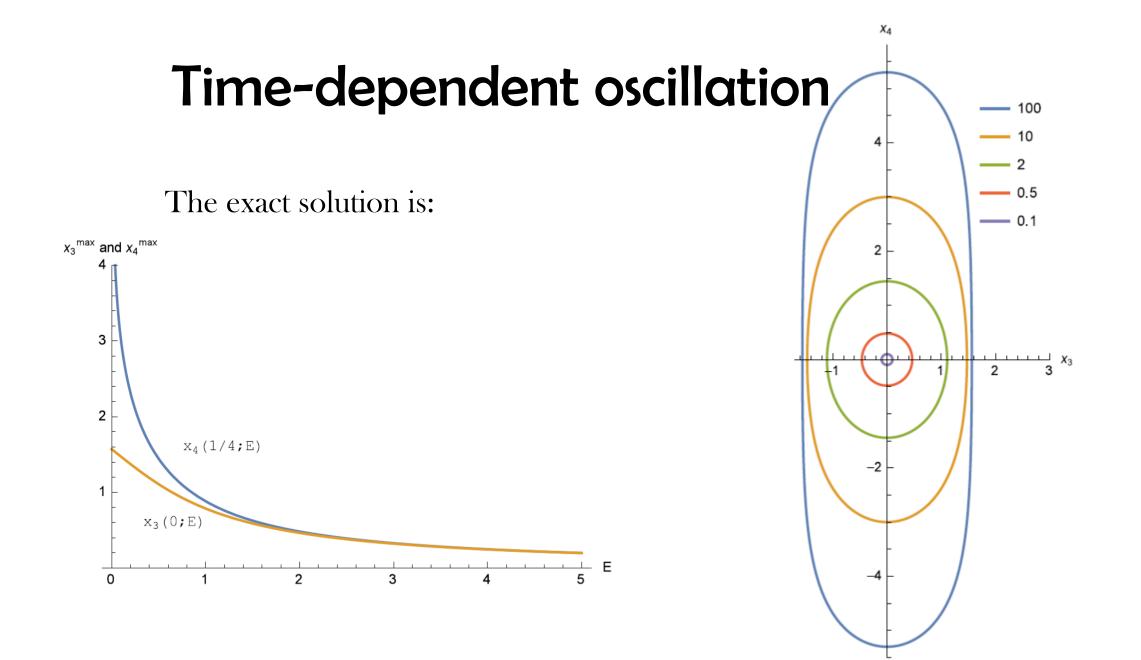
Another important case is an oscillating electric field with fixed frequency

$$E^3(t) = E\cos\left(\omega t\right)$$

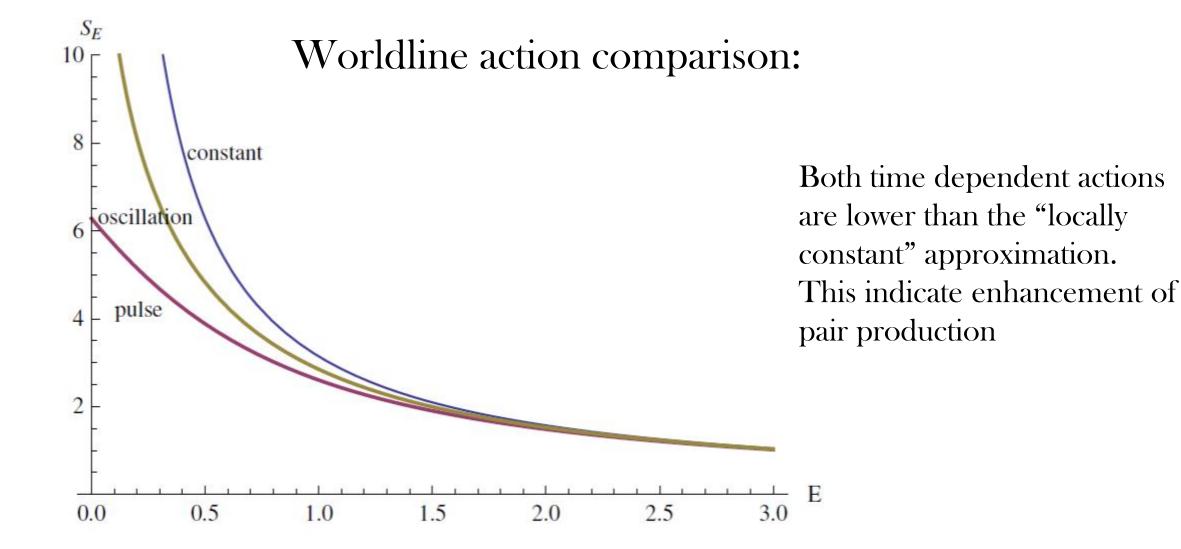
The Euclidean corresponding field is

$$F_{34} = -iE\cosh\left(\omega x_4\right)$$

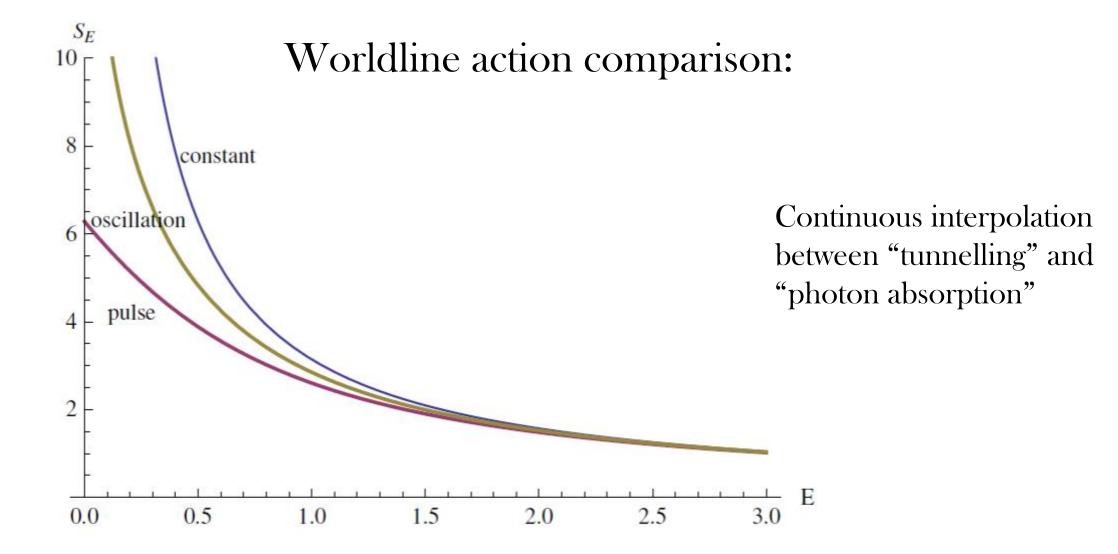




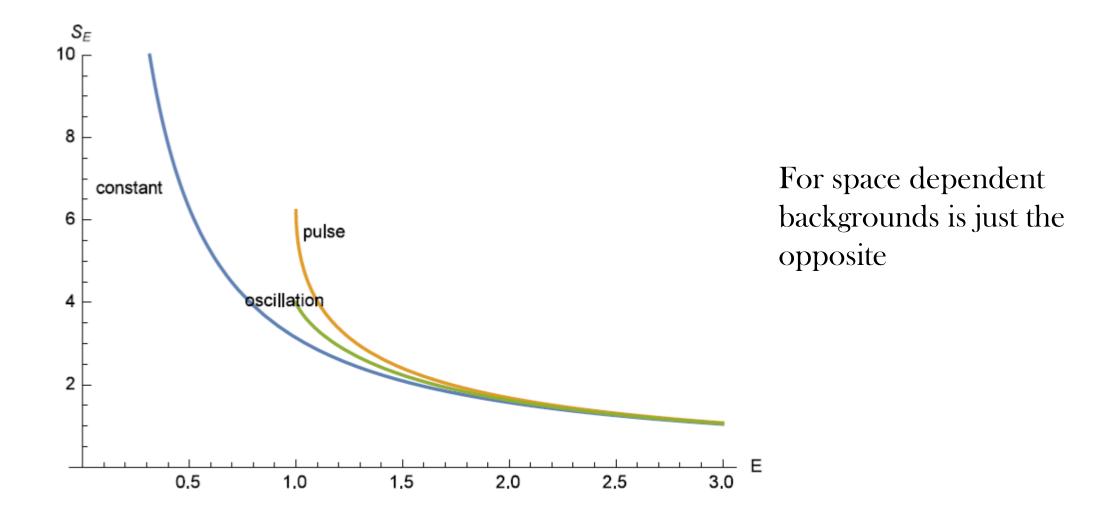
Summary of Results



Summary of Results



Summary of Results



Pair production in string theory

In string theory there is a critical value where the barrier for pair production disappears and the vacuum is "catastrophically" unstable

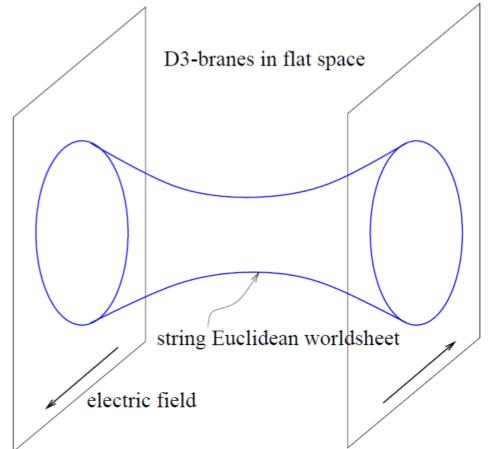
$$eE_{cr} = \frac{1}{2\pi\alpha'}$$

Fradkin-Tseytlin 85 Burgess 87 Bachas-Porrati 92

...

Not much is known about string pair production in non homogeneous backgrounds

String suspended between two D-branes



This is a case where pair production can be studied with the "worldsheet instanton" technique

m = Td

$$S = T \int d\sigma d\tau \sqrt{\det g_2(\sigma, \tau)} + iq \int_{boundary} dX^{\mu} A_{\mu}$$

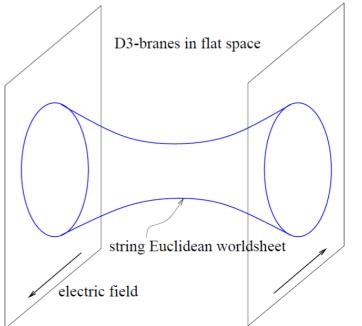
Minimal surface solution

For constant background, and so circular symmetry:

$$S_E = T \int_{-d/2}^{d/2} dz 2\pi r(z) \sqrt{1 + r'(z)^2} - 2q E \pi R^2$$

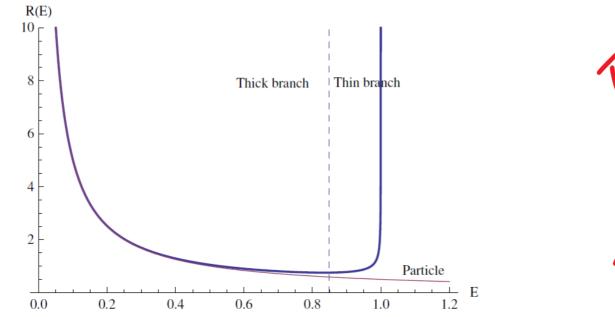
The solutions are the well known "catenaries" minimal s

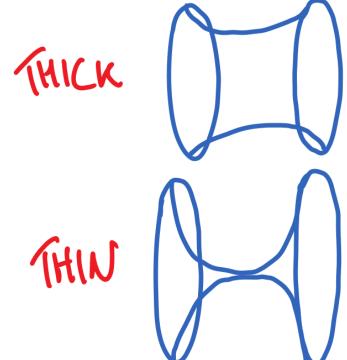
$$r(z) = \frac{1}{c}\cosh\left(cz\right) \qquad \qquad R = \frac{1}{c}\cosh\left(cd/2\right)$$



String suspended between two D-branes

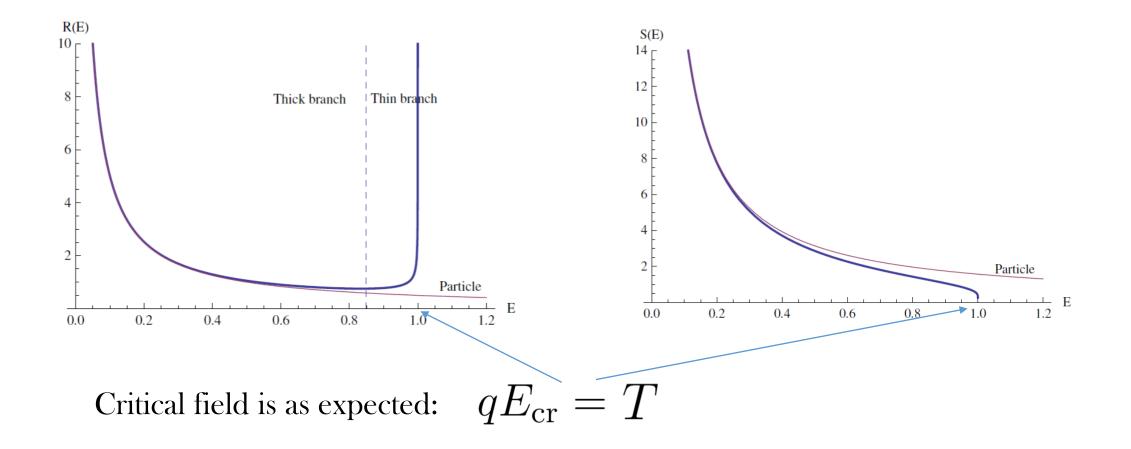
For R sufficiently large there are two solutions: "thick neck" and "thin neck"





String suspended between two D-branes

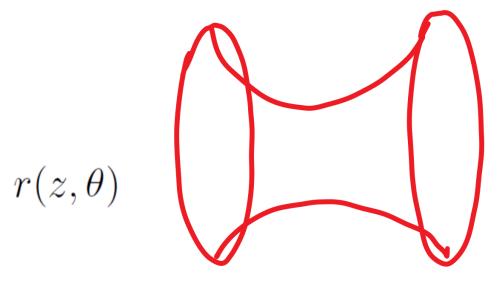
For R sufficiently large there are two solutions: "thick neck" and "thin neck"



Time-dependent setup

We work in cylindrical cordinates (z, r, θ)

and have to find a function of two variables



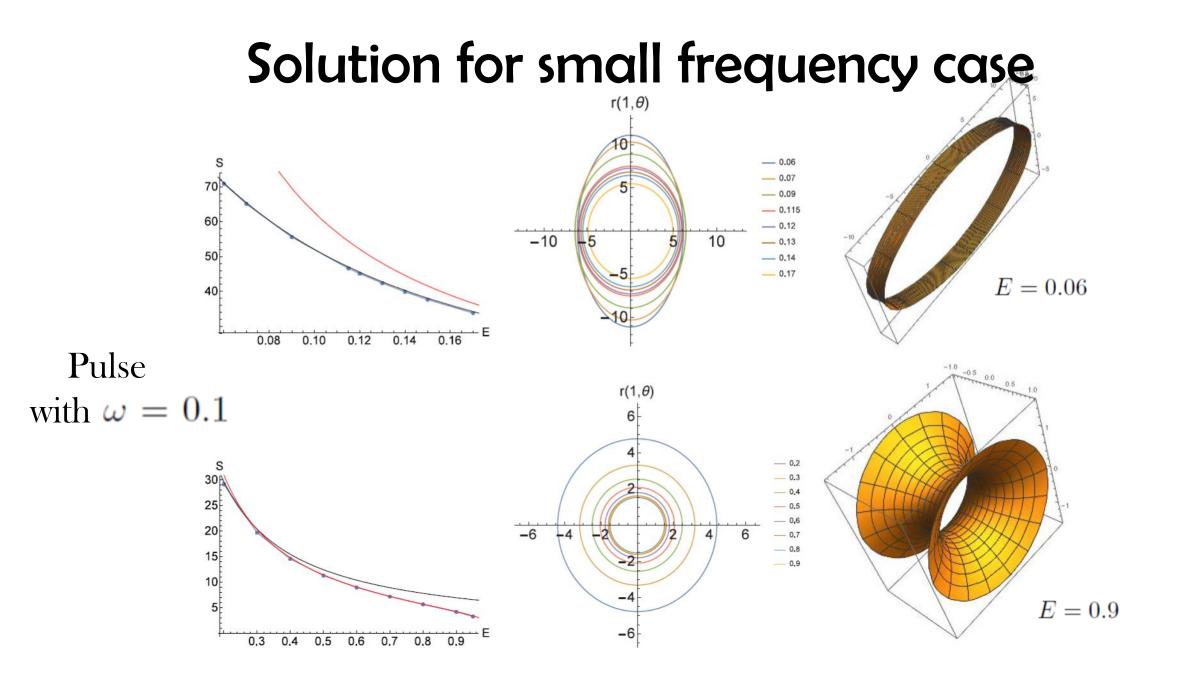
$$S_E = T \int_{-d/2}^{d/2} dz \int_0^{2\pi} d\theta \sqrt{r^2 (1 + (\partial_z r)^2) + (\partial_\theta r)^2} - iq \int_0^{2\pi} d\theta (A_\theta + A_r \partial_\theta r) d\theta (A_\theta + A_r \partial_\theta r)$$

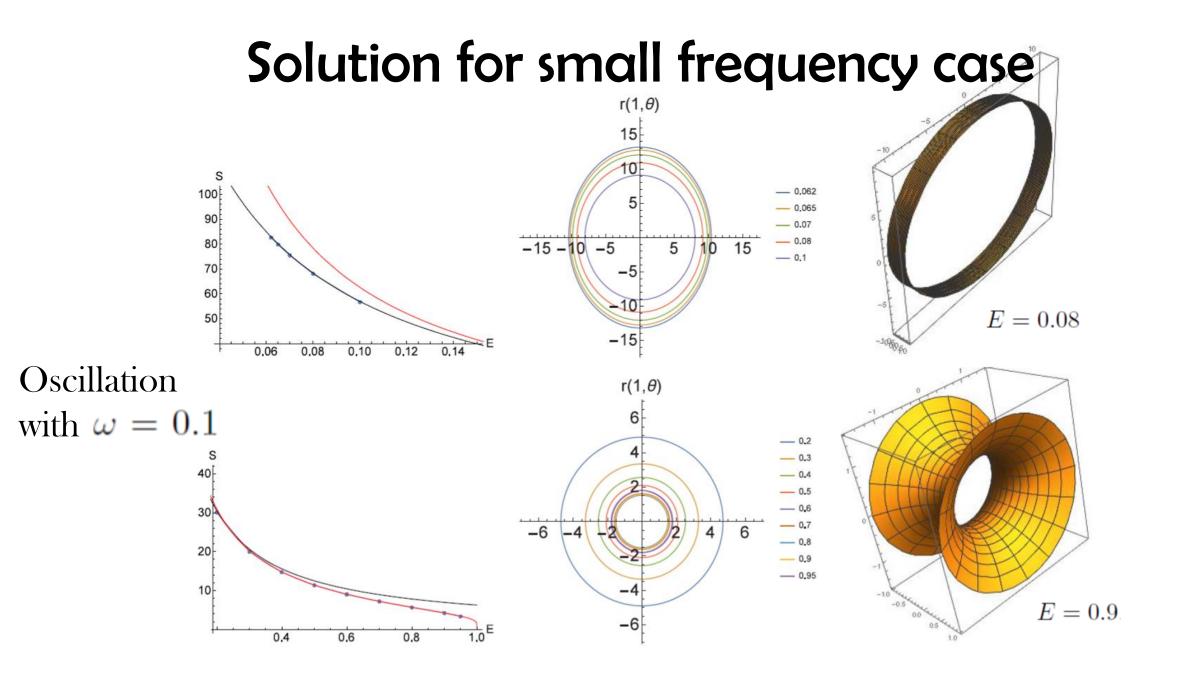
Time-dependent setup

The boundary term is given by the specific choice of background electric field

$$A_{\theta} = -iEf(r\sin\theta)r\sin\theta \qquad \qquad A_r = iEf(r\sin\theta)\cos\theta$$

$$f(x_4) = \frac{\tan(\omega x_4)}{\omega} \quad \text{pulse}$$
$$f(x_4) = \frac{\sinh(\omega x_4)}{\omega} \quad \text{oscillating}$$





Solution for higher frequency

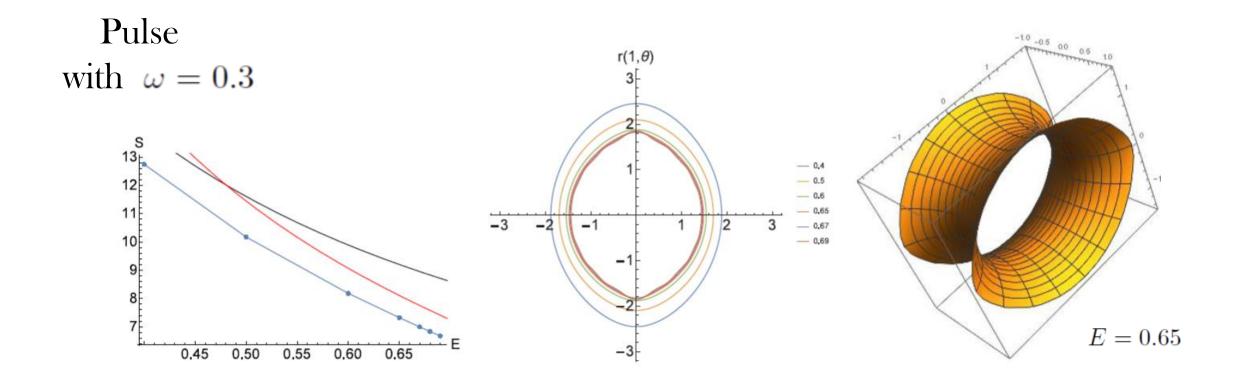
String effects are expected to be important when E is big enough

 $qE \simeq T$

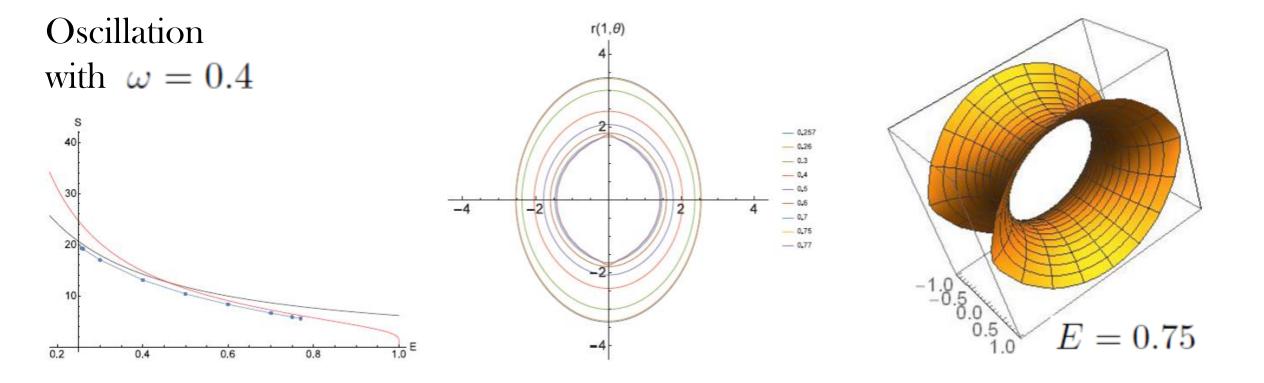
Non-homogeneity effects are expected to be important when E is small enough $qE < m\omega$

So we need to increase omega to see effects that are both "stringy" and related to non-homogeneity

Solution for higher frequency



Solution for higher frequency



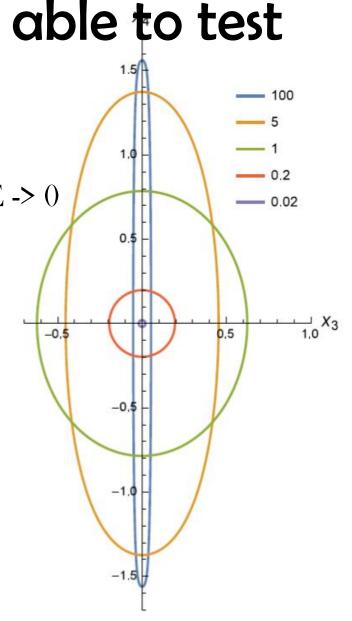
Some expectations we are not able to test yet...

For the pulse electric field, the instanton area goes to zero as $E \rightarrow 0$

$$A_L \simeq 4x_3^{\max}x_4^{\max} = \frac{2\pi qE}{m\omega^3}\log\left(\frac{2m\omega}{qE}\right)$$

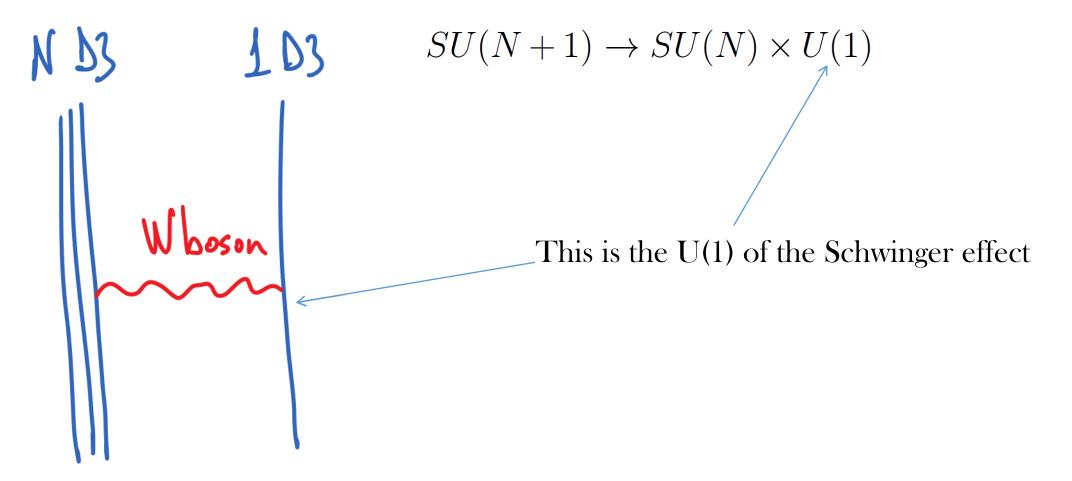
We thus "always" expect some string effect at <u>small</u> E

$$\frac{TqE_{\rm low}}{\pi m^2\omega^2}\log\left(\frac{2m\omega}{qE_{\rm low}}\right)\simeq 1$$



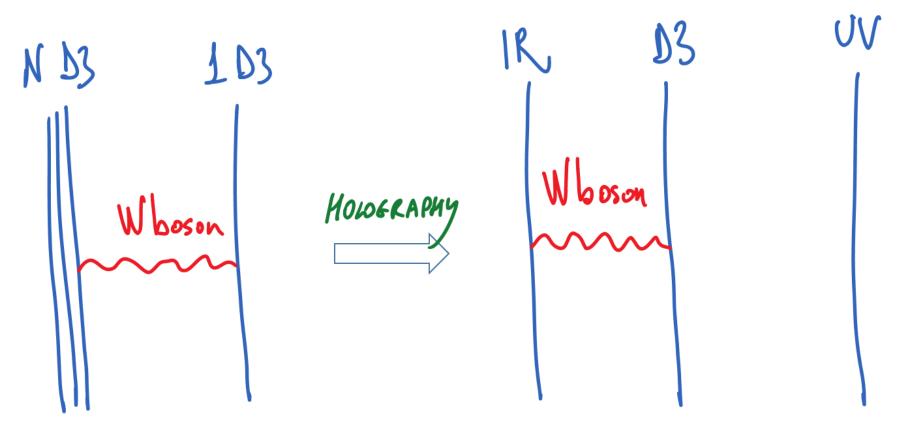
Holographic Schwinger effect

We consider N=4 SYM in the Coulomb phase



Holographic Schwinger effect

We consider N=4 SYM in the Coulomb phase



Holographic Schwinger effect

(J\/

The dictionary is the usual

$$g_s = g^2/4\pi \qquad L^2/l_s^2 = \sqrt{\lambda}/2\pi \qquad \text{If} \qquad \text{oplus the relation for the W mass}$$

$$\frac{1}{l_s^2} \int_0^{r_0} \sqrt{-\det h_{ab}} = \frac{L^2 r_0}{l_s^2} = \frac{\sqrt{\lambda}r_0}{2\pi}$$

$$m = \frac{TL^2}{z_0}$$

Holographic setting

The DBI action predicts the string to break down at "local" string scale

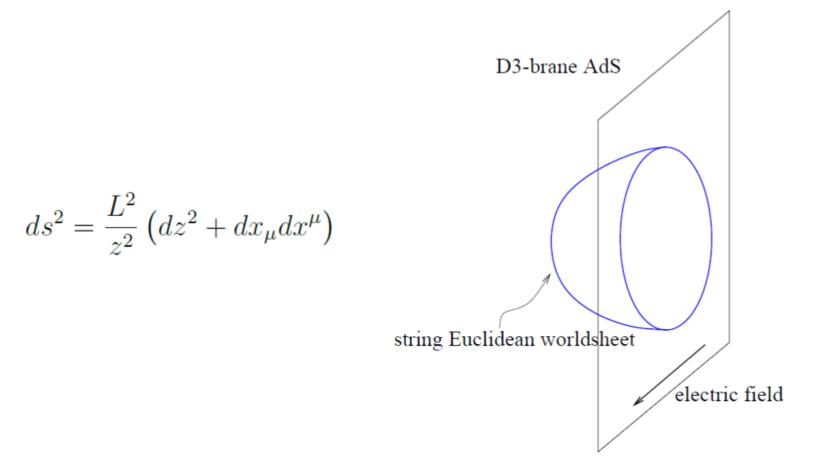
This is translated into a genuine QFT scale

$$S_{DBI} = \frac{1}{g_s l_s^4} \int d^4 x' \sqrt{-\det(\eta_{\mu\nu} - l_s^2 F_{\mu\nu, \ loc})}$$

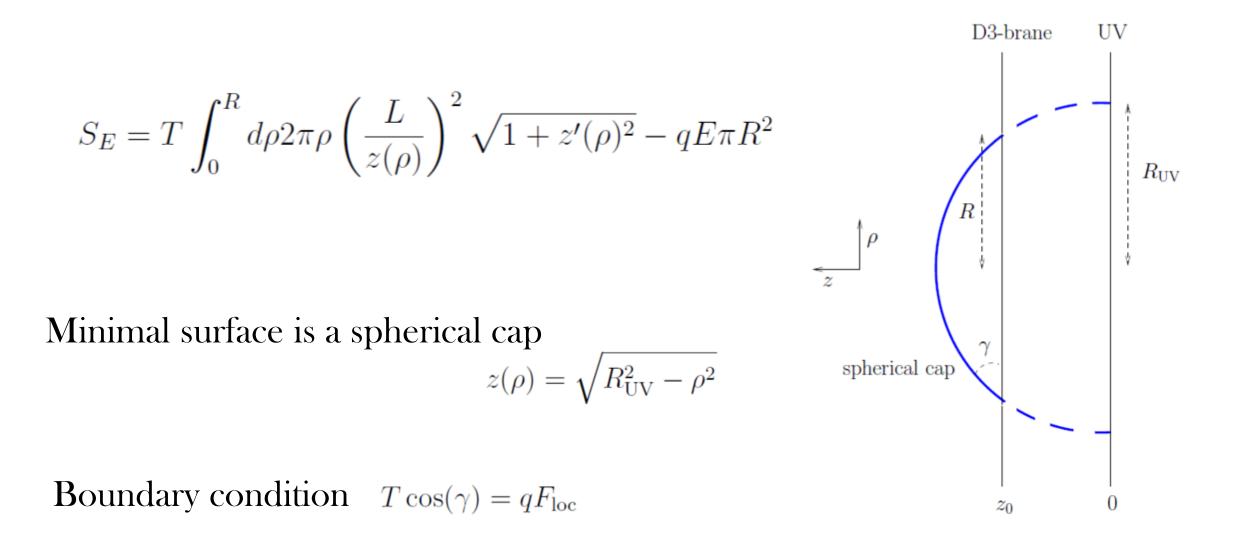
This is the value where the barrier for the pair production drops to zero in the QFT!

$$E_{cr} = \frac{r_0^2 L^2}{l_s^2} = \frac{2\pi m^2}{\sqrt{\lambda}}$$

In holography, the instanton is a Wilson loop attached to the D3 brane



B.-Kiefer-Rabinovici 12



The action
$$S_E = \frac{\pi}{qEz_0^2} \left(\left(\frac{TL^2}{qEz_0^2} \right) - 1 \right)^2$$
 vanishes when the spherical cap is

tangent to the D-brane

$$qE_{\rm cr} = \frac{TL^2}{z_0^2}$$

Tunneling barrier exists only below a certain critical field

$$S_E = \frac{\mathcal{T}\pi L^2 R^2}{z_0^2} - qF\pi R^2 + \dots$$

$$qF_{cr} = \frac{\mathcal{T}L^2}{z_0^2}$$

$$F < F_{-}\{cr\}$$

$$F > F_{-}\{cr\}$$

Time-dependence setup

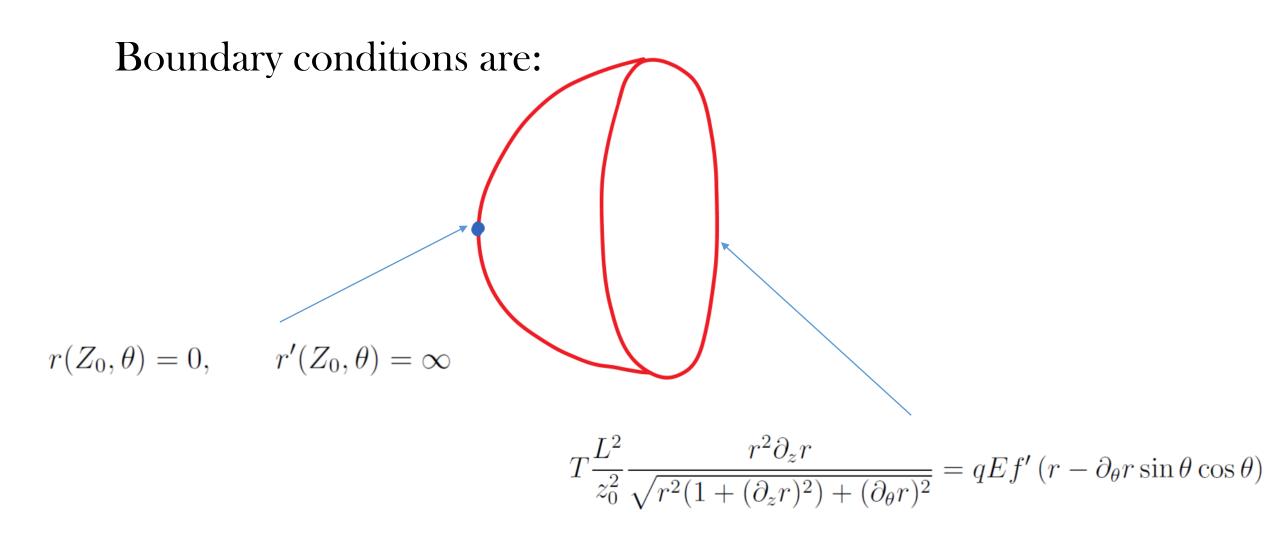
As before:

we work in cylindrical cordinates (z, r, θ)

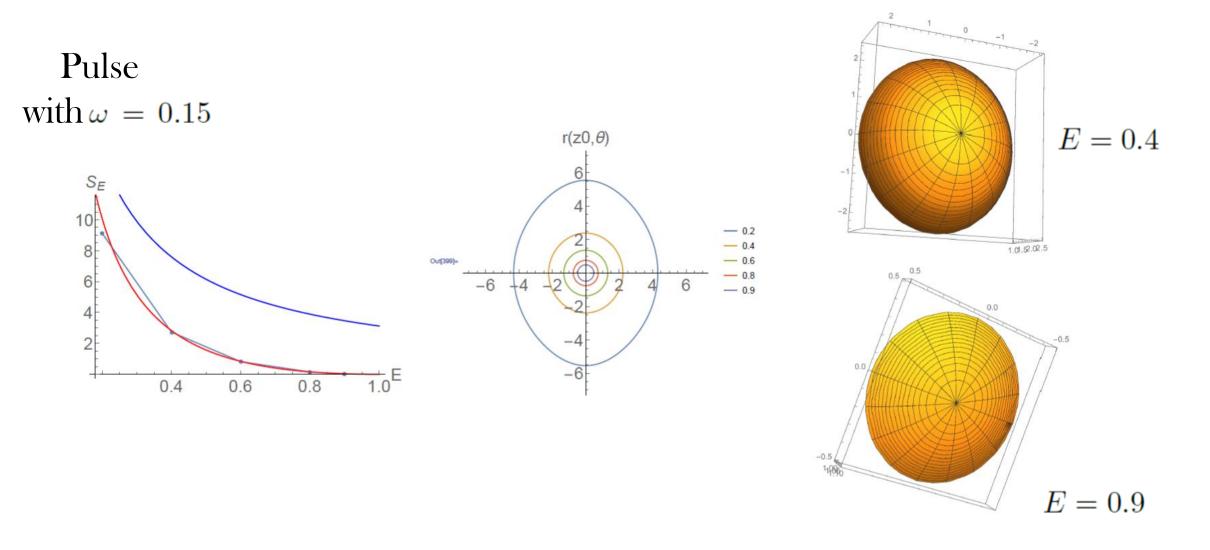
and have to find a function of two variables $r(z, \theta)$

$$S_E = T \int_{z_0}^{Z_0} dz \int_0^{2\pi} d\theta \frac{L^2}{z^2} \sqrt{r^2 (1 + (\partial_z r)^2) + (\partial_\theta r)^2} - iq \int_0^{2\pi} d\theta (A_\theta + A_r \partial_\theta r) d\theta (A_\theta + A_r \partial_\theta r)$$

Time-dependence setup

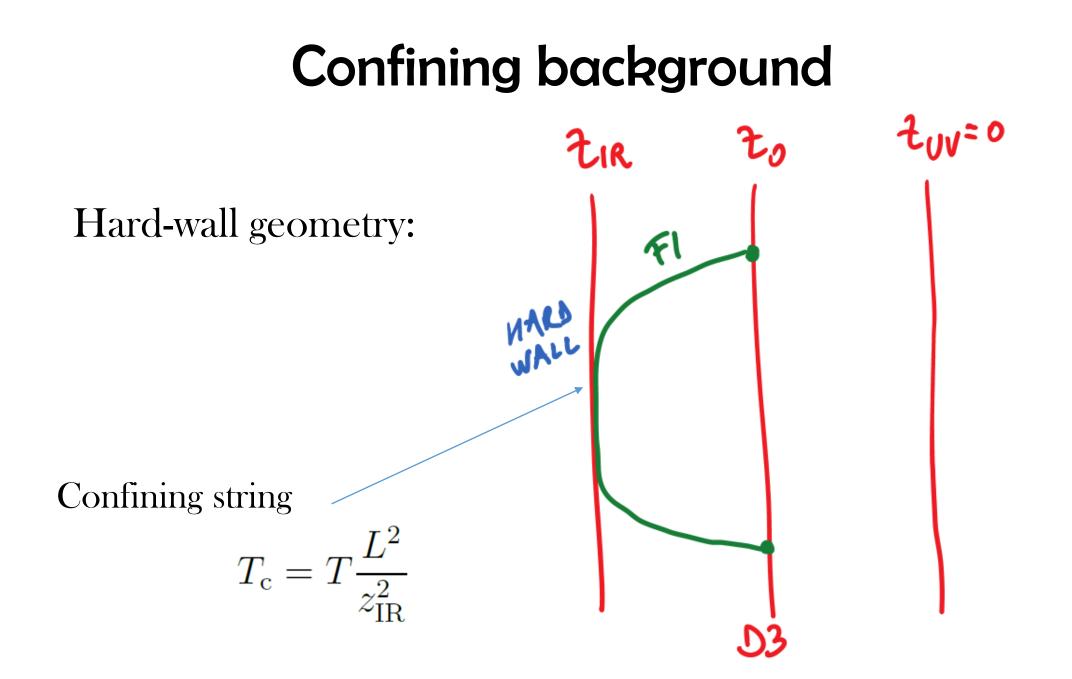


Some solutions

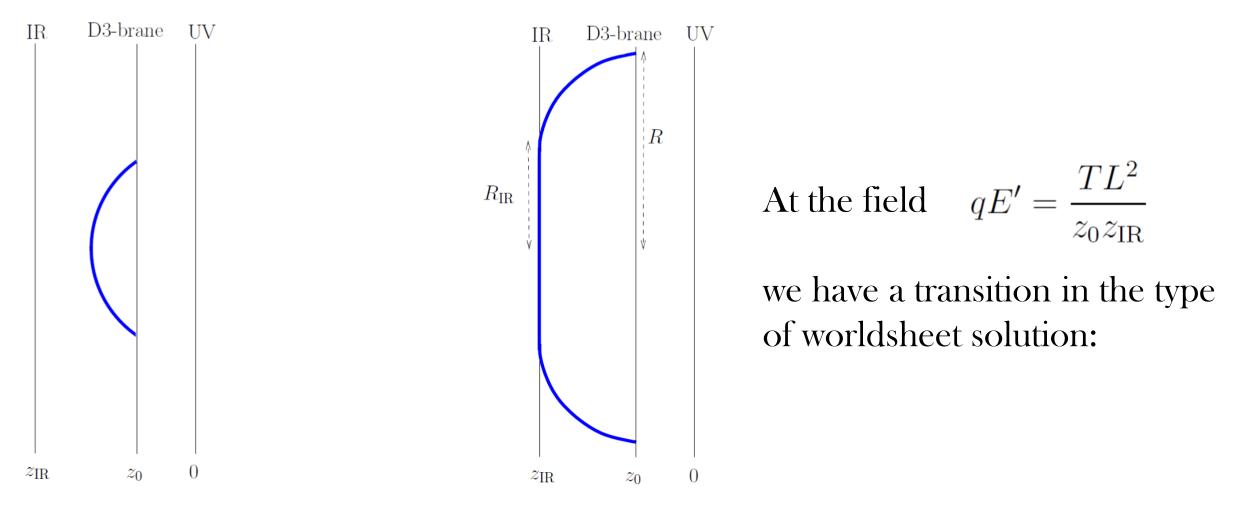


Some solutions

2 0 Oscillation -2 with $\omega = 0.15$ E = 0.4r(z0,*θ*) 15t SE 10 10 - 0.1 8 - 0.3 - 0.5 Out[401]= 0.5 0.5 -15 -10 -5 6 - 0.7 5 10 15 - 0.9 4 0.0 2 -0.5 1.0^E 0.0 0.4 0.6 0.8 -15^L E = 0.9

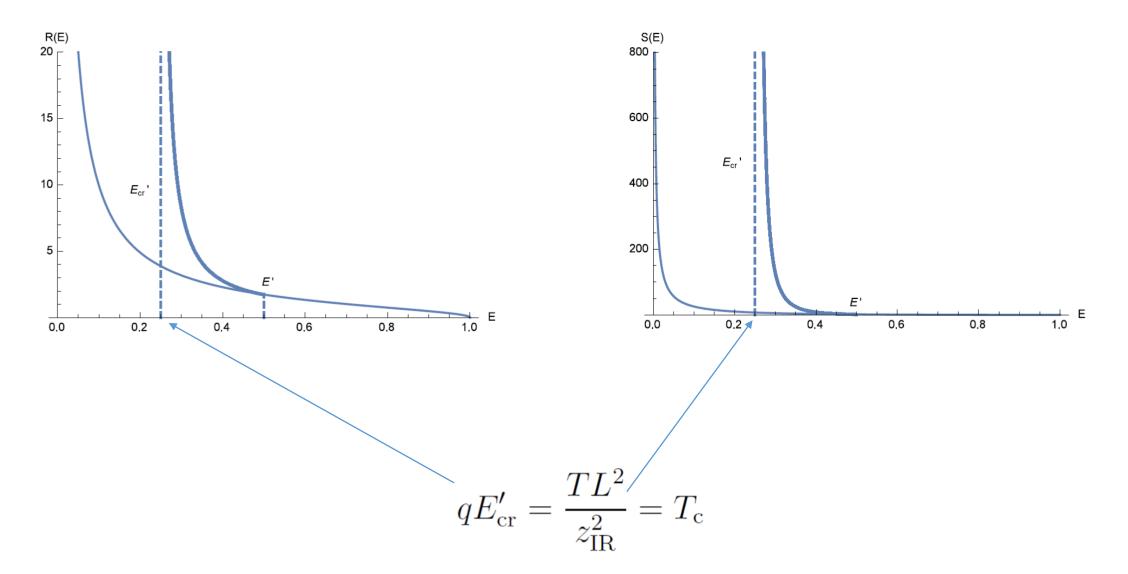


Confining background



E > E'

Low critical field in confing background



Low critical field in confining background

The interpretation of the "low" critical field in Minkowski:

$$V(R) = TL^2 \left(\frac{1}{z_0} - \frac{1}{z_{\rm IR}}\right) + T_{\rm c}R - qER$$

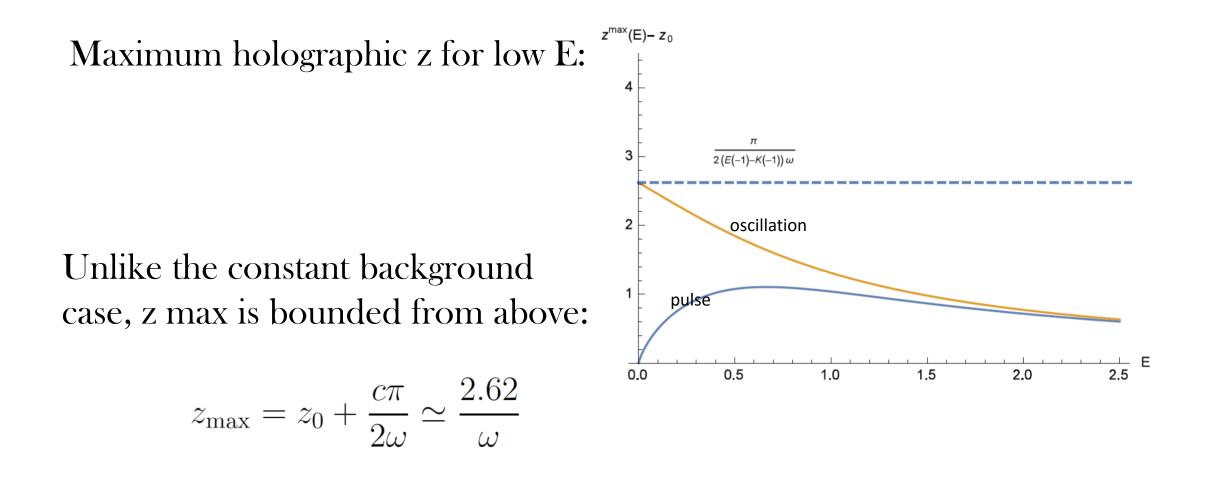
When $qE > T_c$ the electric field is not strong enough to overcome confinement

Low critical field and time-dependence

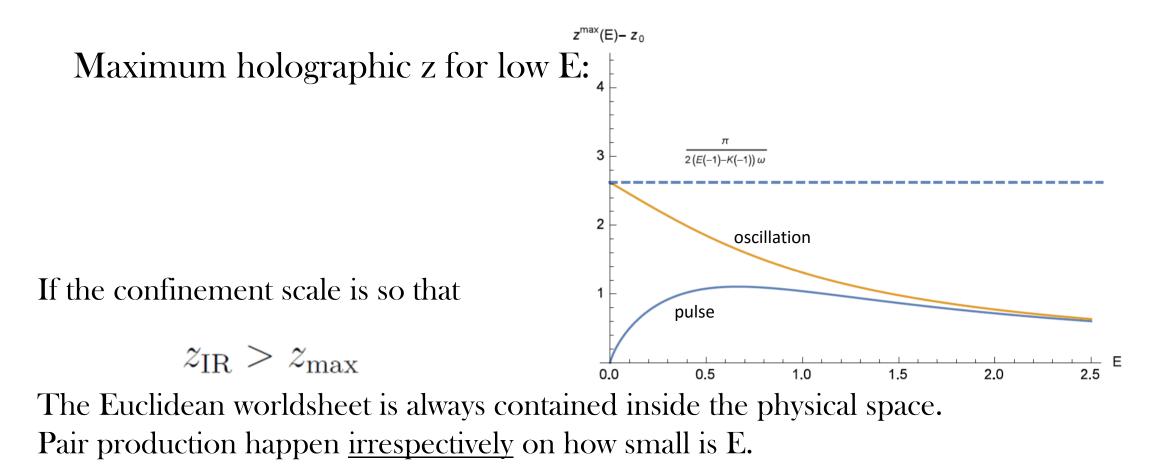
The critical low field $E'_{\rm cr}$ is in general modified by the frequency omega.

We show a clear example in which it vanishes!

Low critical field and time-dependence



Low critical field and time-dependence



Photons energy is enough to produce glueballs and charged particles are intermediary states

Conclusion

- We studied two cases of string pair production with the technique of Euclidean worldsheet instanton
- With this technique we can define the problem on non homogeneous backgrounds and solve PDE numerically
- String nature and non homogeneity work together when omega is big enough; for time dependent backgrounds they enhance even further the pair production
- The nature of pair production in confining background is highly modified by the non-homogeneity. In particular the low critical field can disappear