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Localization

Localization is a long-known property of supersymmetric
and topological theories, by virtue of which semi-classical
approximation becomes, in certain cases, exact
(Witten:1991).
For instance, the topological quantum field theories
(TQFTs) whose action is BRST-exact are semi-classically
exact since their coupling constant is a gauge parameter
which can be taken to be arbitrarily small.
The traditional route for constructing TQFTs is by
topologically twisting supersymmetric quantum field
theories (SQFTs) by means of a conserved R-symmetry.
Hence, the localization technique has frequently been
associated to SQFTs since the early days.
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Localization à la Pestun

More recently (Pestun: 2007) a new paradigm for
localization emerged for various SQFTs, which makes no
explicit connection to TQFTs.
Rather, localization is seen as a special property of SQFTs
when defined on specific supersymmetry-preserving
curved backgrounds.
These external backgrounds may be identified (Festuccia
et al:2011) with an off-shell, supersymmetric configuration
of a supergravity (SUGRA) multiplet that the SQFT can
couple to.
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Generalized covariantly constant spinors

In this case, there exists (at least) a generalized covariantly
constant spinor that sets the supersymmetry variations of
fermionic fields of the SUGRA multiplet to zero.
The generalized covariantly constant spinor must satisfy
integrability conditions which put stringent constraints on
the bosonic fields of the SUGRA multiplet.
These fields include the spacetime metric and also, in
theories with extended supersymmetries, vector fields of
gauged R-symmetries as well as off-shell auxiliary fields.
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Generalized covariantly constant spinors

A complete classification of generalized covariantly
constant spinors is a complicated problem.
Although explicit solutions have been obtained case by
case in various spacetime dimensions, there is no general
strategy for constructing the covariantly constant spinors
and for classifying the background spacetime metrics and
gauge fields which support them.
I want to describe a different approach to this problem. Its
application to 3d was discussed in C.I. and D.Rosa: 2014.
Today I will discuss the 2d case.
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A topological approach

Topological approach
Instead than coupling susy matter to supergravity, we will
couple topological matter to (gauged)-topological gravity.

The equations which are the counterpart of the equations
for the covariantly constant spinors are obtained by
equating to zero the BRST variations of the fermionic fields
of (gauged)-topological gravity.
These fixed-point equations for the BRST transformations
determine the BRST-invariant backgrounds around which
the topological computation localizes.
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The BRST-invariant topological backgrounds

The topological equations have several advantages with
respect to the supergravity equations.
One avoids all the complications of spinors and obtains
much simpler (in a technical sense) equations.
The equations are largely universal, i.e. independent on
the space-time dimensions. In 2d they have a natural
interpretation in terms of S1-equivariant cohomology of the
underlying space-time.
One obtains a precise definition of topologically equivalent
backgrounds. In 2d this permits the classification of all
solutions up to topological equivalence.
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Topological equations vs Supergravity equations

But one obvious question is:

Do the topological eqs solve the same supersymmetric problem
as the eqs for covariantly constant spinors?

The answer is yes. In 2d we show this explicitly: every
BRST invariant topological background is identifiable with
every localizing SUGRA background.
The map between the topological and the supersymmetric
backgrounds, however, turns out to be quite non-trivial.
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The map between topological and supergravity fields

Most of topological background fields are not, in any
sense, fields of some “topologically twisted” SUGRA.
(Some of) the BRST invariant topological backgrounds are
bilinears of the covariantly constant spinors of supergravity.
For example, the ghost-for-ghost field of TG is identified
with the spinorial bilinear which defines the Killing vector of
the spacetime metric.
Conversely, the localizing SUGRA fields are, in general,
non-linear functionals of the BRST invariant topological
backgrounds.
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The topological background system

The main problem in the topological approach is to identify
the background topological gravity system which is
required to describe localizations of a given
supersymmetric matter system.
In 3d it turns out that the background topological system
which describes supersymmetric matter in the vector
multiplet is pure topological gravity (C.I. D. Rosa, 2014).
In 2d it turns out that to describe N=(2,2) supersymmetric
matter, one needs topological gravity coupled to a
background abelian topological gauge field.
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The topological gravity and gauge background system

The fields of topological gravity are

gµν ψµν γµ

ghost# 0 1 2

The fields of the topological gauge multiplets are

a(1) ψ(1) γ(0)

ghost# 0 1 2
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The topological gravity and gauge background system

The nilpotent BRST operator s

s ≡ S + Lξ

acting as follows

S gµν = ψµν S ψµν = Lγgµν S γµ = 0

S f (2) = −d ψ(1) S ψ(1) = −d γ(0) + iγ f (2) S γ(0) = iγψ(1)

where the BRST operator S satisfies

S2 = Lγ
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Why do we need the background abelian topological
gauge field?

The standard (Witten:1992) “topological” reformulation of
2d YM matter is genuinely topological only in the
zero-coupling limit. In the non-zero coupling limit it is not
topological and it cannot be coupled to topological gravity.
We need a reformulation of 2D YM which can be coupled
to topological gravity.
It turns out that this matter topological theory does exist if
one introduces a background topological abelian multiplet.
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A new formulation of topological 2D YM

A ≡ c A φ̃ ,

ghost# 1 0 − 1
form degree 0 1 2

Φ ≡ φ Ã c̃
ghost# 0 − 1 − 2

form degree 0 1 2

14 / 31



Topological 2D YM action

The BRST-invariant topological 2D YM action coupled to the
topological backgrounds is

Imatter =

∫
Σ

[
f (2) 1

2
Trφ2 + ψ(1) ∧ Trφ Ã +

+γ(0) Tr (φ c̃ +
1
2

Ã ∧ Ã)
]
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Coupling Topological YM to topological gravity

S c = −c2 + γ(0) φ+ iγA

S A = −D c + γ(0) Ã + ψ(1) φ+ iγφ̃

S φ̃ = −[c, φ̃]− F + γ(0)c̃ + ψ(1)Ã + f (2)φ

S φ = −[c, φ] + iγÃ

S Ã = −[c, Ã]− D φ+ iγ c̃

S c̃ = −[c, c̃]− [φ̃, φ]− DÃ
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BRST invariant topological backgrounds

The topological equations

The topological analogues of covariantly constant spinor eqs of
supergravity are obtained by setting to zero the BRST
variations of the fermionic backgrounds S ψµν = S ψ(1) = 0:

Lγgµν ≡ Dµ γν + Dν γµ = 0

d γ(0) − iγ f (2) = 0

Our aim is to solve these equations and classify the
solutions modulo BRST trivial ones.
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Moduli

The action depends on the topological backgrounds only
through the BRST operator S.
The BRST operator, in turn, depends on the
ghost-for-ghost γµ of TG and on the U(1) fields γ(0) and
f (2) only.
Therefore, the matter TQFT for BRST invariant
backgrounds is automatically independent of any variation
of the metric that preserve γµ, as well as of any topological
variation of the U(1) fields that preserve the class of f (2).
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Killing vectors

The first of the topological equations asserts that γµ has to
be a Killing vector of the metric gµν .
In 2d this leads to consider the sphere S2 and the torus T2,
equipped with metrics having a U(1) isometry
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S1-equivariant cohomology

The second equation is

(d − εΩ iV ) (f (2) + εΩ f (0)) = 0
γ(0) = εΩ f (0) and γµ = εΩ Vµ

f (2) + εΩ f (0) is the equivariantly closed extension of the
ordinary differential form f (2) and D = d − εΩ iV is the
Cartan differential.
V is the Killing vector associated with the S1-equivariant
action;
εΩ is the degree-two generator of the ring of the
S1-equivariant cohomology.
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S1-equivariant cohomology of the 2-sphere

There are two linearly independent equivariant classes x
and y of degree-two

x = εΩ y = f̃ (2) + εΩ f̃ (0)

f̃ (2) =
√

g
1
2
εµνdxµ dxν D2 f̃ (0) =

√
g εµν Dµ V ν

f̃ (0) is solved only up to an additive constant: given a
choice of this constant, a shift to another value induces the
change y → y + c x
We have y2 ∼ x2: i.e. the S1-equivariant cohomology at
any degree is the polynomial ring generated by x and y
modulo this relation.
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Relation to Supergravity Backgrounds

The generalized covariantly constant spinor equation for
2D N=(2,2) SUGRA is

(Dµ − iAµ) ζ = −1
2

H Γµζ +
i
2

G ΓµΓ3ζ

Introduce the spinorial bilinears

c0(x) = ζ†(x) ζ(x) cµ(x) = ζ†(x)Γµζ(x) c̃0(x) = ζ†(x) Γ3 ζ(x)

which are related by the Fierz identities

cµcµ = c2
0(x)− c̃2

0(x)

22 / 31



The equation for the generalized covariantly constant
spinor is equivalent to the equations for the bilinears

Dµ cν + Dν cµ = 0
Dµ c̃0 = −i H

√
g εµν cν

Dµ cν =
√

g εµν (G c0 + i H c̃0)

Dµ c0 = G
√

g εµν cν

The first two equations are the same as topological
equations with the identifications

cµ = γµ − i H = f ≡ ∗f (2) c̃0 = γ(0)
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“Composite” SUGRA backgrounds

What about the extra two SUGRA equations?
A solution of the first two equations, i.e. of the topological
sub-system, identifies a unique solution of the full set of
SUGRA equations via the relations

c0 =
√
γ2 + (γ(0))2

G =
1
c0

[
1
2
√

g εµν Dµ γν + f γ(0)

]
The topological equations play the role of “minimal subset” for
the SUGRA equations.
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Topological equivalence

Topological invariance of the “costituent” topological fields

f (2) → f (2) + dω(1) γ(0) → γ(0) + iγ(ω(1))

Lγ ω(1) = 0

induces topological transformations on the “composite”
SUGRA fields

G(2) → G(2) + d ω̃(1) c0 → c0 + iγ(ω̃(1))

where

ω̃(1) ≡ γ(0)√
γ2 + (γ(0))2

ω(1) and Lγ ω̃(1) = 0 .
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U(1)R Field Strength Background

Also the U(1)R background is obtained, via the integrability
condition, from the “costituent” topological fields

FR = ±1
2

√
(f 2 −G2 − R)2 + Dµ fDµf − DµG Dµ G =

=
εµν
√

g
Dµ

[(f c0 −G γ(0)) γν
2 γ2

]
≡ εµν
√

g
DµAν

Under a topological transformations of the topological
“constituents”, FR changes by a globally defined total
derivative:

Aµ → Aµ +
(ερσ ∂ρ ωσ

2 c0
√

g
− γρ ωρ G

2 c2
0

)
γµ
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Classifying localizing SUGRA Backgrounds on S2

For fixed isometry γµ, the general solution of the
topological equations is an element of the equivariant S1
cohomology of degree 2, determined by two parameters
which can be identified with the two graviphoton fluxes

n ≡
∫

Σ

√
g f = γ(0)(π)− γ(0)(0) m ≡

∫
Σ

√
g G

This are quantized if f and G are field strength of abelian
gauge fields associated to compact gauge group.
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Fluxes of localizing backgrounds on the 2-sphere:
n =

∫
Σ

√
g f , m =

∫
Σ

√
g G.

-4 -2 2 4
n

-4

-2

2

4

m

ℱR=1

ℱR=-1

ℱR=0

ℱR=±1
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The non-compact duality symmetry

The SUGRA eqs for the generalized covariantly constant
spinor is invariant under a linear global O(1,1; R) duality
group [

f
G

]
→

[
f ′

G′

]
=

[
coshα sinhα
sinhα coshα

] [
f
G

]
ζ → ζ ′ = e

α
2 Γ3 ζ

Aµ → A′
µ = Aµ

This duality symmetry is realized non-linearly on the
topological “constituents” fields

f → f ′ = coshα f + sinhαG[f , γ(0), γµ]

γ(0) → (γ(0))′ = sinhα c0[γ(0), γµ] + coshα γ(0)
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The action of the discrete non-compact duality
symmetry on fluxes
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Summary

Supersymmetric localization à la Pestun can be
understood in terms of background (gauged) topological
gravity coupled to topological matter QFT’s.
The equations for generalized covariantly constant spinors
are recast in terms of “classical” topological equations for
equivariant cohomology.
This appears to be a powerful point of view to classify
inequivalent localizing backgrounds and their moduli
spaces.
In 2d a whole set of new localizing backgrounds arises:
they are characterized by non-trivial fluxes for both
graviphotons and are still to be explored.
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