Lie *n*-algebra models and Chern-Simons theory

Patricia Ritter

Napoli, November 19, 2015

<ロ> (四) (四) (三) (三) (三)

Based on: PR and Christian Sämann: arXiv:1308.4892, arXiv:1507.00972, and work in progress

\bullet Dealing with extended objects \rightarrow World-surfaces:

- Flash-intro to category theory;
- Surface holonomy and Strict Lie 2-algebras;
- Definition of Lie *n*-algebra;
- Example of *n*-algebras on *n*-plectic spaces.

• **0-dimensional models** in quantum gravity:

- IKKT model and its non-commutative emergent geometries;
- Generalized AKSZ-construction for higher Chern-Simons theory;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Non-commutative *n*-plectic geometries solving 0-dim. models.

Outline	Higher Gauge Theory	Definitions and Setup O	Example: <i>n</i> -plectic manifolds

0-dimensional Models

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

This Exists...

Why do we need higher gauge theory?

- In string- and M-theory:

Gauge theory

¿2-Gauge theory?

イロト 不得 トイヨト イヨト

3

・ロト ・ 同ト ・ ヨト ・ ヨト

ж

What is the problem?

Reminder:

$$\gamma \xrightarrow{\mathcal{F}} e^{\mathcal{P} \int A} \in G, A \in \Omega^1(M, \mathfrak{g}), \mathfrak{g}$$
: Lie alg. of G
 $Y \xrightarrow{\mathcal{F}} e^{\mathcal{P} \int A} \in G, A \in \Omega^1(M, \mathfrak{g}), \mathfrak{g}$: Lie alg. of G

Problem with surface holonomy

- Need $B_{\mu\nu}dx^{\mu} \wedge dx^{\nu}$, w. $B \in \mathfrak{h}$, \mathfrak{h} : Lie alg. of H
- Problem: $\Phi_4 \cdot \Phi_3 \cdot \Phi_2 \cdot \Phi_1 = \Phi_4 \cdot \Phi_2 \cdot \Phi_3 \cdot \Phi_1$ iff *G*, *H* abelian
 - \Rightarrow Holonomy ill-defined for non-ablian str. gr. (path-ordering ill defined)!

Definitions and Setup

Example: n-plectic manifolds

0-dimensional Models

Solution

Category theory to the rescue! (Baez, '10) In particular: Categories consist of the following:

Objects || Points on *M*

2-Morphisms $\begin{array}{c} \| \\ Surfaces \Phi_i \text{ joining paths} \\ \downarrow F \\ elements in G \ltimes H, G \neq H \end{array}$

A D > A P > A B > A B >

- associative composition for morphisms
- ullet horizontal (·) and vertical (°) composition for 2-morphisms
- "compatibility" for compositions \Rightarrow well-defined surface ordering

Definitions and Setup

Example: n-plectic manifolds

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

0-dimensional Models

Solution

associative composition for morphisms

- horizontal () and vertical () composition for 2-morphisms
- "compatibility" for compositions \Rightarrow well-defined surface ordering

Definitions and Setup

Example: n-plectic manifolds

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

0-dimensional Models

Solution

associative composition for morphisms

- \bullet horizontal () and vertical () composition for 2-morphisms
- "compatibility" for compositions \Rightarrow well-defined surface ordering

Definitions and Setup

Example: n-plectic manifolds

A D > A P > A B > A B >

0-dimensional Models

Solution

- associative composition for morphisms
- $\bullet\,$ horizontal () and vertical () composition for 2-morphisms
- "compatibility" for compositions \Rightarrow well-defined surface ordering

0-dimensional Models

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(Strict) 2-connection

Explicitly: given a strict Lie 2-algebra

 $(\mathfrak{g}, \mathfrak{h}, t, \alpha), t: \mathfrak{h} \to \mathfrak{g}, \alpha: \mathfrak{g} \mapsto \mathfrak{aut}(H)$

where t and α satisfy "composition-compatibility":

 $[g,t(h)] = t(\alpha(g)h), \qquad \alpha(t(h))h' = [h,h'], \quad g \in \mathfrak{g}, \ h,h' \in \mathfrak{h}$

that the holonomy functor F has to preserve:

A **2-connection** consists of a 1-form field $A \in \mathfrak{g}$ and a 2-form field $B \in \mathfrak{h}$ with $t(B) = F_A$ for well-defined holonomy

• **2-curvature** can be introduced: $Z = dB + \alpha(A) \wedge B$

• 2-gauge transformations are given by a function $g: M \to G$ AND $a \in \Omega^1(M, \mathfrak{h})$

0-dimensional Models

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(Strict) 2-connection

Explicitly: given a strict Lie 2-algebra

 $(\mathfrak{g}, \mathfrak{h}, t, \alpha), t: \mathfrak{h} \to \mathfrak{g}, \alpha: \mathfrak{g} \mapsto \mathfrak{aut}(H)$

where t and α satisfy "composition-compatibility":

 $[g,t(h)] = t(\alpha(g)h), \qquad \alpha(t(h))h' = [h,h'], \quad g \in \mathfrak{g}, \ h,h' \in \mathfrak{h}$

that the holonomy functor F has to preserve:

A 2-connection consists of

a 1-form field $A \in \mathfrak{g}$ and a 2-form field $B \in \mathfrak{h}$ with

 $t(B) = F_A$ for well-defined holonomy

• **2-curvature** can be introduced: $Z = dB + \alpha(A) \wedge B$

 2-gauge transformations are given by a function g : M → G AND a ∈ Ω¹(M, h)

0-dimensional Models

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

(Strict) 2-connection

Explicitly: given a strict Lie 2-algebra

 $(\mathfrak{g}, \mathfrak{h}, t, \alpha), t: \mathfrak{h} \to \mathfrak{g}, \alpha: \mathfrak{g} \mapsto \mathfrak{aut}(H)$

where t and α satisfy "composition-compatibility":

 $[g,t(h)] = t(\alpha(g)h), \qquad \alpha(t(h))h' = [h,h'], \quad g \in \mathfrak{g}, \ h,h' \in \mathfrak{h}$

that the holonomy functor F has to preserve:

A 2-connection consists of

a 1-form field $A \in \mathfrak{g}$ and a 2-form field $B \in \mathfrak{h}$ with

 $t(B) = F_A$ for well-defined holonomy

- 2-curvature can be introduced: $Z = dB + \alpha(A) \wedge B$
- 2-gauge transformations are given by a function $g: M \to G$ AND $a \in \Omega^1(M, \mathfrak{h})$

Truncated L_∞ algebras

Definition

An L_{∞} algebra consists of a graded vector space $L = \bigoplus_i L_i$ endowed with k-ary graded multilinear totally antisymmetric products μ_k , $k \in \mathbb{N}^*$, satisfying

$$\sum_{i+j=k}\sum_{\sigma}(\pm)\mu_{j+1}(\mu_i(x_{\sigma(1)},\cdots,x_{\sigma(i)}),x_{\sigma(i+1)},\cdots,x_{\sigma(i+j)})=0, \quad (1)$$

for σ denoting the (i, j)-unshuffles. Grading $[\mu_k] = 2 - k$.

Or **dual picture**: graded vec.sp. w. grade 1 vec. field Q, s.t. $Q^2 = 0$:

$$Q = -(v^{i}t^{a}_{i} + \frac{1}{2}w^{b}w^{c}f^{a}_{bc})\frac{\partial}{\partial w^{a}} + (w^{a}w^{b}w^{c}h^{i}_{abc} - w^{a}v^{j}g^{i}_{aj})\frac{\partial}{\partial v^{i}} \pm \dots$$
$$\sim -\mu_{1}(v) - \mu_{2}(w,w) + \mu_{3}(w,w,w) - \mu_{2}(w,v) \pm \dots$$

where e.g. $[w^a] = 1$, $[v^i] = 2$, ... Familiar from: BV-quantization, string field theory, higher spin algebras,

Truncation

A semi-strict Lie 2-algebra is a truncated L_{∞} algebra, for which $\mu_{n>3} = 0$. That is, it is a 2-term complex of real vector spaces $L_{-1} \equiv V$ and $L_0 \equiv W$

$$V \xrightarrow{\mu_1} W \xrightarrow{\mu_1} 0$$
, (1)

equipped with products $\mu_1,\,\mu_2,\,\mu_3$ satisfying

$$\begin{split} \mu_1^2(\mathbf{v}) &= 0 , \quad \mu_1(\mathbf{w}) = 0 , \quad \mu_2(\mathbf{v}_1, \mathbf{v}_2) = 0 , \\ \mu_1(\mu_2(\mathbf{w}, \mathbf{v})) &= \mu_2(\mathbf{w}, \mu_1(\mathbf{v})) , \quad \mu_2(\mu_1(\mathbf{v}_1), \mathbf{v}_2) = \mu_2(\mathbf{v}_1, \mu_1(\mathbf{v}_2)) , \\ \mu_3(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) &= \mu_3(\mathbf{v}_1, \mathbf{v}_2, \mathbf{w}) = \mu_3(\mathbf{v}_1, \mathbf{w}_1, \mathbf{w}_2) = 0 , \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Definitions and Setup

Example: n-plectic manifolds

0-dimensional Models

Truncated L_{∞} algebras

Truncation

A semi-strict Lie 2-algebra is a truncated L_{∞} algebra, for which $\mu_{n>3} = 0$. That is, it is a 2-term complex of real vector spaces $L_{-1} \equiv V$ and $L_0 \equiv W$

$$\checkmark \xrightarrow{\mu_1} W \xrightarrow{\mu_1} 0$$
, (1)

equipped with products $\mu_1,\,\mu_2,\,\mu_3$ satisfying

$$\begin{aligned} \mu_1^2(\mathbf{v}) &= 0 , \quad \mu_1(\mathbf{w}) = 0 , \quad \mu_2(\mathbf{v}_1, \mathbf{v}_2) = 0 , \\ \mu_1(\mu_2(\mathbf{w}, \mathbf{v})) &= \mu_2(\mathbf{w}, \mu_1(\mathbf{v})) , \quad \mu_2(\mu_1(\mathbf{v}_1), \mathbf{v}_2) = \mu_2(\mathbf{v}_1, \mu_1(\mathbf{v}_2)) , \\ \mu_3(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) &= \mu_3(\mathbf{v}_1, \mathbf{v}_2, \mathbf{w}) = \mu_3(\mathbf{v}_1, \mathbf{w}_1, \mathbf{w}_2) = 0 , \end{aligned}$$

$$\begin{split} & \mu_1(\mu_3(w_1, w_2, w_3)) = -\mu_2(\mu_2(w_1, w_2), w_3) - \mathsf{cyclic}(1, 2, 3) , \\ & \mu_3(\mu_1(v), w_1, w_2) = -\mu_2(\mu_2(w_1, w_2), v) - \mathsf{cyclic}(w_1, w_2, v) \end{split}$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

heory D

Setup Exam

Example: n-plectic manifolds

0-dimensional Models

n- and 2-plectic manifolds

Definition

A manifold *M* that has a closed (n + 1)-form ϖ that is non-degenerate, i.e. s.t. $\iota_X \varpi = 0 \Leftrightarrow X = 0$, is called a *n*-plectic manifold. ϖ is a *n*-plectic form. This is the categorification of a symplectic structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Higher	Gauge	Theory
0000		

Definitions and Setup

Example: n-plectic manifolds

0-dimensional Models

n- and 2-plectic manifolds

Definition

A manifold *M* that has a closed 3-form ϖ that is non-degenerate, i.e. s.t. $\iota_X \varpi = 0 \Leftrightarrow X = 0$, is called a 2-plectic manifold. ϖ is a 2-plectic form. This is the categorification of a symplectic structure.

▲口▶ ▲□▶ ▲目▶ ▲目▶ 三日 ● ④ ●

n- and 2-plectic manifolds

Definition

A manifold *M* that has a closed 3-form ϖ that is non-degenerate, i.e. s.t. $\iota_X \varpi = 0 \Leftrightarrow X = 0$, is called a 2-plectic manifold. ϖ is a 2-plectic form. This is the categorification of a symplectic structure.

The "Poisson 2-algebra"

Hamiltonian 1-forms $\mathfrak{H}(M) \equiv \{ \alpha \in \Omega^1(M) | \exists X_{\alpha} \in TM \text{ s.t. } d\alpha = \iota_{X_{\alpha}} \varpi \}.$

Semistrict Lie 2-algebra $\Pi_{M,\varpi}$: $V \oplus W := \mathcal{C}^{\infty}(M) \oplus \mathfrak{H}(M)$ with

$$\pi_1(f) = \mathrm{d} f \ , \ \pi_2(\alpha,\beta) = \iota_{X_\alpha} \iota_{X_\beta} \varpi \ , \ \pi_3(\alpha,\beta,\gamma) = \iota_{X_\alpha} \iota_{X_\beta} \iota_{X_\gamma} \varpi \ ,$$

for $f \in \mathcal{C}^{\infty}(M)$ and $\alpha, \beta, \gamma \in \Omega^{1}(M)$.

n- and 2-plectic manifolds

The "Poisson 2-algebra" Hamiltonian 1-forms $\mathfrak{H}(M) \equiv \{\alpha \in \Omega^1(M) | \exists X_{\alpha} \in TM \text{ s.t. } d\alpha = \iota_{X_{\alpha}} \varpi \}.$ Semistrict Lie 2-algebra $\Pi_{M,\varpi}$: $V \oplus W := \mathcal{C}^{\infty}(M) \oplus \mathfrak{H}(M)$ with $\pi_1(f) = \mathrm{d}f$, $\pi_2(\alpha, \beta) = \iota_{X_{\alpha}}\iota_{X_{\beta}} \varpi$, $\pi_3(\alpha, \beta, \gamma) = \iota_{X_{\alpha}}\iota_{X_{\beta}}\iota_{X_{\gamma}} \varpi$, for $f \in \mathcal{C}^{\infty}(M)$ and $\alpha, \beta, \gamma \in \Omega^1(M)$.

Examples: \mathbb{R}^3 and S^3 with respective volume forms, $\varpi = d$ vol. • \mathbb{R}^3 with basis ∂_i , Hamiltonian 1-forms $\xi_i = \frac{1}{2} \epsilon_{ijk} x^j dx^k$:

 $\pi_2(\xi_i,\xi_j) = -\epsilon_{ijk} dx^k , \quad \pi_3(\xi_i,\xi_j,\xi_k) = -\epsilon_{ijk}, \quad (\pi_2(f,\xi_i) = \partial_i f) ,$ kind of Heisenberg 2-algebra.

• S^3 with $\varpi = \sin \eta_1 \cos \eta_1 d\eta_1 d\eta_2 d\eta_3$ (Hopf coord.s), $\xi_i = \frac{1}{2} \epsilon_{ijk} \eta^j d\eta^k$,

$$X_{\xi_i} = \frac{1}{|\varpi|} \partial_i \ , \ \pi_2(\xi_i, \xi_j) = \frac{\epsilon_{ijk} \mathrm{d}\eta^k}{|\varpi|} \ , \ \pi_3(\xi_i, \xi_j, \xi_k) = -\frac{\epsilon_{ijk}}{|\varpi|^2}$$

Higher Gauge Theory

Definitions and Setup

0-dimensional Models

Non-commutative spaces as solutions to brane models

D3 x⁶

Nahm eq. for D1 - D3 system $\frac{d}{dx^{6}}X^{i} + \varepsilon^{i}{}_{jk}[X^{j}, X^{k}] = 0$ Sol.: $X^{i} = \frac{1}{x^{6}}G^{i}$, with $G^{i} = \varepsilon^{i}{}_{jk}[G^{j}, G^{k}]$ *fuzzy* S^{2} funnel

M_s ×^c

Basu-Harvey eq. for M2 - M5 $\frac{d}{dx^{6}}X^{\mu} + \varepsilon^{\mu}{}_{\nu\rho\sigma}[X^{\nu}, X^{\rho}, X^{\sigma}] = 0$ Sol.: $X^{\mu} = \frac{1}{\sqrt{x^{6}}}G^{\mu}$, with $G^{\mu} = \varepsilon^{\mu}{}_{\nu\rho\sigma}[G^{\nu}, G^{\rho}, G^{\sigma}]$ *fuzzy* S^{3} funnel

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

0-dimensional Models

Lie algebra matrix models

Candidate for non-perturbative actions (string- and M-theory): E.g.: **IKKT model:** A_{μ} , ψ : $N \times N$ matrices, [-, -]: Lie br. (Ishibashi, Kawai, Kitazawa, Tsuchiya, '96)

10-dimensional Super-Yang-Mills (SYM) theory

reduction to 0 dimensions

$$S_{\rm IKKT} = \alpha \operatorname{tr} \left(-\frac{1}{4} \left[A_{\mu}, A_{\nu} \right]^2 - \frac{1}{2} \, \bar{\psi} \Gamma^{\mu} [A_{\mu}, \psi] + \beta \, \mathbb{I} \right)$$

$$\left. \begin{array}{c} \left\{ -, - \right] \rightarrow i\hbar\{-, -\} \\ \operatorname{tr}\left(\right) \rightarrow \int \mathrm{d}\sigma^2 \sqrt{g} \end{array} \right\}$$
 classical limit

 $S_{\text{Schild}} = \int_{\Sigma} \mathrm{d}^2 \sigma \sqrt{g} \alpha \left(\frac{1}{4} \{ X_{\mu}, X_{\nu} \}^2 - \frac{\mathrm{i}}{2} \bar{\psi} \Gamma^{\mu} \{ X_{\mu}, \psi \} \right) + \beta \sqrt{g}$ $(X_{\mu}(\sigma^0, \sigma^1), \sigma^{\alpha}: \text{ coords. on } \Sigma, \{ -, - \}: \text{ Poisson br. on } \Sigma)$

Definitions and Setup

Example: n-plectic manifolds

0-dimensional Models

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Non-commutative solutions

Postulate *quantization*: $X^m \mapsto \hat{X}^m = A^m$, $\rightsquigarrow \{X^m, X^n\} \mapsto i\hbar\{\widehat{X^m, X^n}\} = [\hat{X}^m, \hat{X}^n] = [A^m, A^n]$

Solution to IKKT	emergent geometry	Quant. ⁿ of
Heisenberg: $[\hat{X}^m, \hat{X}^n] = i\theta^{mn}\mathbb{1}$	Moyal Plane $\mathbb{R}^n_ heta$	\mathbb{R}^{n}
$\begin{pmatrix} \text{deformed} \\ \text{IKKT} \end{pmatrix} SU(2): \ [\hat{X}^m, \hat{X}^n] \sim \epsilon_k^{mn} \hat{X}^k$	Fuzzy sphere	S ²

- Expanding IKKT around a solution → YM-theory on non-commoutative space (Ishibashi, et al., '99)
- Same game is played for gravity (Steinacker, '11)

Definitions and Setup

Example: n-plectic manifolds

0-dimensional Models

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Non-commutative solutions

Postulate *quantization*: $X^m \mapsto \hat{X}^m = A^m$, $\rightsquigarrow \{X^m, X^n\} \mapsto i\hbar\{\widehat{X^m, X^n}\} = [\hat{X}^m, \hat{X}^n] = [A^m, A^n]$

Solution to IKKT	emergent geometry	Quant. ⁿ of
Heisenberg: $[\hat{X}^m, \hat{X}^n] = i\theta^{mn}\mathbb{1}$	Moyal Plane $\mathbb{R}^n_ heta$	\mathbb{R}^{n}
$\begin{pmatrix} \text{deformed} \\ \text{IKKT} \end{pmatrix} SU(2): \ [\hat{X}^m, \hat{X}^n] \sim \epsilon_k^{mn} \hat{X}^k$	Fuzzy sphere	S ²

- Expanding IKKT around a solution → YM-theory on non-commoutative space (Ishibashi, et al., '99)
- Same game is played for gravity (Steinacker, '11)

0-dimensional Models

Higher Chern-Simons models

Generalized AKSZ-construction

Space-time: $(T[1]\Sigma, d)$

Coords.:
$$(x^{\mu}, c^{\mu}(x) \sim dx^{\mu});$$

$$\xrightarrow{a}$$

 a^*

Coords.: $\xi^{A} = \{w^{a}, v^{i}, ...\}$ graded (1, 2, ...);

NQ-manifold: $(T[1]L[1], d_{CE});$

Q-str.: Chevalley-Eilenberg d_{CE} ;

Invariant polynomials: $\omega = d_{CE} \xi^{A} \omega_{AB} d_{CE} \xi^{B}$

$$\alpha = \xi^{A} \omega_{AB} \mathrm{d}_{\mathsf{CE}} \xi^{B}$$

Coords.: $(x^{r}, c^{r}(x) \sim dx^{r})$

Q-str.: de Rham d;

$$\begin{array}{ll} \mathsf{Fields:} & a^*(w^a) := A^a_\mu \mathrm{d} x^\mu, \\ & a^*(v^i) := B^i_{\mu\nu} \mathrm{d} x^\mu \wedge \mathrm{d} x^\nu, \\ & \mathsf{etc.} \end{array}$$

▲□▶▲圖▶▲≣▶▲≣▶ = 差 - 釣A@

ge Theory

Definitions and Setup

Example: n-plectic manifolds

0-dimensional Models

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Higher Chern-Simons models

• General *n*-algebra C.S.-model:

$$S_{\mathsf{CS}} = \int_{\Sigma} \left(\left(\langle \phi, \mathrm{d}_{\Sigma} \phi \rangle \right) + \sum_{k=1}^{n+1} \frac{(-1)^{k(k+1)/2}}{(k+1)!} \langle \mu_k(\phi, \dots, \phi), \phi \rangle \right)$$

with equations of motion:

$$\frac{\overleftarrow{\partial} S_{\mathsf{CS}}}{\partial \phi^A} = (-2\mathrm{d}_{\Sigma}\phi^B\omega_{BA}) + \sum_{k=1}^{n+1} \frac{(-1)^{k(k+1)/2}}{k!} \mu_k(\phi,\ldots,\phi)^B\omega_{BA} = 0$$

Definitions and Setup

Example: n-plectic manifolds

0-dimensional Models 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Higher Chern-Simons models

• 4-dimensional, Lie 2-algebra C.S.-theory:

$$S_{\text{AKSZ}} = \int_{\Sigma} \left[\left(-B, \mathrm{d}A + \frac{1}{2}\mu_2(A, A) - \frac{1}{2}\mu_1(B) \right) - \frac{1}{4!} \left(A, \mu_3(A, A, A) \right) \right]$$

with equations of motion:

$$0 = (dA) + \frac{1}{2}\mu_2(A, A) - \mu_1(B) = \mathcal{F} ,$$

$$0 = (dB) + \mu_2(A, B) - \frac{1}{6}\mu_3(A, A, A) = \mathcal{H} .$$

Definitions and Setup

Example: n-plectic manifolds

0-dimensional Models

Solving Lie *n*-algebra C.S.-theory

To minimize 0-dimensional reduced higher C.S.-theory:

$$\sum_{k=1}^{n+1} \frac{(-1)^{k(k+1)/2}}{k!} \mu_k(\phi, \dots, \phi)^B \omega_{BA} = 0$$

i.e. higher Maurer-Cartan equations \equiv nill higher fake curvatures!

Use "*n*-Heisenberg algebra" on *n*-plectic \mathbb{R}^{n+1} :

$$\pi_1 \sim d$$
, $\pi_k(\xi_{i_1}, \dots, \xi_{i_k}) = (-1)^{k(k+1)/2} \iota_{X_{i_1}} \cdots \iota_{X_{i_k}}(\operatorname{dvol})$,

for Hamiltonian (n-1)-forms $\xi_{i_0} = \frac{1}{n!} \varepsilon_{i_0 \cdots i_n} x^{i_1} dx^{i_2} \wedge \cdots \wedge dx^{i_n}$ and (n-k)-forms $\phi_{i_1 \cdots i_k} \sim \epsilon_{i_1 \cdots i_{n+1}} x^{i_{k+1}} dx^{i_{k+2}} \wedge \cdots \wedge dx^{i_{n+1}}$

- Can obtain different spaces by adding deformations to the model;
- Expaning 0-dim. action around solutions, yields C.S.-theory on non-commutative background.

Outline	Higher Gauge Theory	Definitions and Setup O	Example: <i>n</i> -plectic manifolds	0-dimensional Models ○○○○○○●
---------	---------------------	-----------------------------------	--------------------------------------	---------------------------------

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ