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Introduction

Black holes: a great laboratory for gravity…

…and in particular for string theory!

•Microstate counting [Strominger, Vafa ’95]

•AdS/CFT: unitarity of black hole evolution

•Bound states/multicenter solutions [Denef ’00]

•Fuzzball conjecture [Mathur]



In this talk we will review some recent progress
in supersymmetric AdS4 black holes

[Cacciatori, Klemm ’09]

[Dall’Agata, Gnecchi ’10]
[Hristov, Vandoren ’10]

They have interesting AdS/CFT interpretations,
that can even lead to their microstate counting

[Hristov, AT, Zaffaroni ’13]

[Benini, Hristov, Zaffaroni ’15]

Many of these can be naturally embedded in M/string theory
[Halmagyi, Petrini, Zaffaroni ’11]

[Katmadas, AT ’15]



Plan

•Black holes in AdS4

•AdS/CFT interpretation

•M-theory



I. Black holes in AdS

ds2 = �U2dt2 + U�2dr2 + r2d�2
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extremal Reissner–Nordström

ds2 = �U2dt2 + U�2dr2 + r2d�2
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the extremal case is



ds2 = �U2dt2 + U�2dr2 + r2d�2

How do we put them in AdS?

AdS4 itself looks nice
in these coordinates:
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Schwarzschild Reissner–Nordström
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� < 0



Reissner–Nordström

what happens if we impose supersymmetry?

� = 0

� < 0

ds2 = �U2dt2 + U�2dr2 + r2d�2

either BPS or extremal

[Romans ’92]let’s try in minimal supergravity

[gauged, so that it has an AdS4 vacuum]

extremal Reissner–Nordström
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but non-BPS

1/2 BPS
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there is in fact a third possibility Q = M � P = 0
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naked singularities

magnetically charged:
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1/2 BPS
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no horizons



Can we get genuine AdS black holes [not naked singularities!]
which are supersymmetric?  

•Still in minimal supergravity: [Caldarelli, Klemm ’98; 
Kostelecky, Perry ’95]

•make them rotate

• dirty trick: hyperbolic horizon!

Several coordinates in AdS: 

global
[the ones we used so far]

time

DW �� RWime� S2 R2

Poincaré

R2/Z2 = T 2

hyperbolic

H2

H2/� = �g�2



hyperbolic

H2

in this coordinate patch
one can have a 

1/4 BPS, magnetic black hole

the horizon and spatial ∞ are 
a Riemann surface

fine, but a bit funny…

H2/� = �g�2



•Include more matter: situation does not improve eg.[Sabra ’99]

•Finally, missing ingredient: making scalars flow [Cacciatori, Klemm ’09]

see also [Dall’Agata, Gnecchi ’10]
[Hristov, Vandoren ’10]
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horizon!

original example: minimal + 3 vector multiplets

SUHSRWHQWLDO F =
�

X0X1X2X3

Fayet–Iliopoulos gauging: gravitinos charged under graviphoton

QRQWULYLDO�SRWHQWLDO� � $G6 YDFXXP



II. AdS/CFT interpretation

time

black hole
R � S2

ERXQGDU\

So we have a genuine black hole 
in global AdS

what is its holographic interpretation?



•Crucial element: magnetic fields at ∞ FI � gIYROS2

They become background external fields
for some global symmetries in the CFT3

�eA0
IJI �&)7� = ZEXON(AI � A0

I)

VXSHUFKDUJH � VDWLV¿HV 0 = �A
µ � = �µ� µJDXJH�¿HOG A FDQFHOV VSLQ�FRQQHFWLRQ¶

•In particular, the graviphoton always has charge -1
R-symmetry current 

twisting



The 1/4 BPS solutions look like 

$G64 $G62 � S2

[infinity] [near-horizon]

the field theory dual should be

WZLVWHG 6&)73

RQ R � S2

[UV]

6&)71 RQ R

[IR]



More generally: [Hristov, AT, Zaffaroni ’13]

6&)73 RQ�FXUYHG M3 SUHVHUYHV�VXV\ M3 DGPLWV�QXOO�RU�WLPHOLNH
FRQIRUPDO .LOOLQJ�YHFWRU

ĬELOLQHDU�RI�VXSHUFKDUJH �ĭ

)RU M3 = R � S2�

z = FRPSOLFDWHG�LQ�JHQHUDO
ĬRQH�VLPSOH�H[�� z = �t + ��ĭ

F = 0 F = � 1
2YROS2

z = �t

ĬLQWHUSRODWLQJ�IDPLO\� z = �t + a��ĭ

1/2 BPS
naked sing.

1/4 BPS

[interpolating: rotating BH]



the field theory dual should be

WZLVWHG 6&)73

RQ R � S2

[UV]

6&)71 RQ R

[IR]

• similar to Maldacena-Nuñez twisted compactifications

• WKH�6&)73 FDQ�EH�REWDLQHG�LQ�VRPH�FDVHV�XVLQJ�WKH 0ĥWKHRU\�OLIW

[next part of this talk!]

• REWDLQLQJ�WKH�6&)71 LV KDUG

• KRZHYHU� ORFDOL]DWLRQ FRPSXWDWLRQ�LQ�6&)73 � LQGH[�RI�6&)71

•This reproduces the entropy       

 in the original Cacciatori-Klemm black hole 

[Benini, Hristov, Zaffaroni ’15]



Completely different from AdS5 black holes [Gutowski, Reall ’04]

•correspond to states in the CFT

•have to rotate

• counting microstates is hard [index ≠ partition function] 
[Kinney, Maldacena, 
Minwalla, Raju ’05]

Also different from non-susy black holes
interpreted as introducing temperature. [Witten ’98]



III. M-theory

original example: minimal + 3 vector multiplets

SUHSRWHQWLDO F =
�

X0X1X2X3

Fayet–Iliopoulos gauging

��YHFWRUV� 8(1)4 � 62(8)

[Cacciatori, Klemm ’09]

0ĥWKHRU\�UHGXFWLRQ�RQ S7

� JDXJHG N = 8 VXSHUJUDYLW\
[de Wit, Nicolai ’82]

•the SCFT3 in this case is ABJM [Aharony, Bergman,
Jafferis, Maldacena’08]

• WKH�YDFXXP�DW�LQ¿QLW\�LV�$G64 � S7



one can also use gauged supergravities 
obtained from other 7d spaces

[Cassani, Koerber, Varela ’12]•and to consistent truncations

•some cosets give rise to AdS4 vacua 68(2)3

8(1)2 �
8(3)
8(1) �

62(5)
62(2)

[Halmagyi, Petrini, Zaffaroni ’13]•so black hole solutions in these models
can be lifted to M-theory solutions.



But there are many more AdS4 solutions…

near-horizon limits 
of M2-branes

8d cone
M7

• but for these no reduction has been worked out [let alone a consistent one]

$G64 � M7

e.g. a recent one: 3folds with 2-torus action 
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[Süß ’13; Datar,Székelyhidi ’15]

• )RU�H[DPSOH� M7 6DVDNLĥ(LQVWHLQ � N = 2

many examples! S1 �
�

�� M7

��
M6

Kähler-Einstein

many are being found right now
because of recent proof of “stability condition”

[Chen, Donaldson, Sun ’12]



In 4d ‘symmetric models’, 
elegant reformulation of scalar BPS equations 

[Katmadas ’14]

ĬMVFDODUV = G/Hĭ

[schematically]
scalars gaugings charges

�rH � I �
4(H, H, P ) + �

• I4� TXDUWLF�LQYDULDQW�RI G

•This formalism can be used to find analytic solutions [Katmadas ’14, 
Halmagyi ’14]



• )RU 0LQNRZVNL EODFN�KROHV� HQWURS\ S �
�

I4(�, �, �, �)

• experience from Minkowski suggests:

I4

‘Hitchin
functional’

I+LW
4

S �
�

I+LW
4 (f, f, f, f)

•redoing the computation directly in IIA/IIB:

F55 = YROS2 � f

UHSUHVHQWV�FKDUJHV �

[eg. even form in IIA]

[Hsu, Maloney, AT ’14]



Hitchin functional IRU�HYHQ�IRUPV (�, �) � �(�0�6 � �2 � �4

+�4 � �2 � �6�0)

QAB � (f, �ABf)

�A =

�
dxm� 1 � A � 6

�m 7 � A � 12

[contraction]

[wedge]

[[ (f, dxm � dxn � f)

(f, dxm � �nf)

(f, �mdxn � f)

(f, �m�nf)

I+LW
4 (f, f, f, f) � QABQAB

• introduced by Hitchin precisely to solve an attractor-like equation

• f = 5H(µSXUH�VSLQRU¶) � Q � µJHQ� FRPSOH[�VWUXFWXUH¶

[Hitchin ’02]

• H[DPSOH� (T 2)3�
f = f0 + fiji + f̃ij̃i + f6YRO j1 = dx1 � dx2 HWF�

j̃1 = �dx1 � dx2 HWF�

I4 = 4f6f1f2f3 + 4f̃6f̃1f̃2f̃3

+(f0f6 � fif̃i)2 � �ijkf jfk�ilmf̃ lf̃m



EoM + supersymmetry directly in M-theory [Katmadas, AT ’15]

S1 �
�

�� M7

��
M6

internal space

ĬLWV S1 DOVR�¿EUHG�RYHU�VSDFHWLPHĭ

AdS black hole

• $QVDW]�
=

• UHGXFHG�HYHU\WKLQJ�WR ÀRZ HTXDWLRQV�RQ M6

�rH � (I+LW
4 )�(H, H, P ) + �

using [Gauntlett, Pakis ’02]•flux almost completely determined

eB+iJ

RQ M6

flux+ fibration data
OHJV�DORQJ S2QR�OHJV�DORQJ S2



this seems to indicate that AdS black holes should be ubiquitous

• we also went back to 4d…

we were able to show the flow equations 
beyond ‘symmetric models’

• QR�FRVHW�VWUXFWXUH�ZDV�DVVXPHG�RQ M6



Conclusions

AdS4 black holes
are a new and exciting arena

They can be lifted to M-theory quite naturally

They have a “twisted compactification” CFT 
interpretation that leads in some cases to 

microstate counting


