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Main (open?) problem of theoretical physics: 
unify gravitation with quantum mechanics

Both theories have been confirmed by experiments 
with an incredible level of accuracy…

…but they are clearly incompatible!

Gravity Quantum 
mechanics

Quantum 
gravity

What is the bridging 
ingredient?

How can we identify it without 
the help of experiments?

?
Planck length
~ 1.6 x 10-35 m
~ 10-20 size of proton

~ 10-3 m ~ 10-15 m
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Why higher spins?

Einstein gravity is perturbatively non renormalisable


Matter couplings can worsen (e.g. scalar) or improve the 
UV behaviour (e.g. supersymmetry)

String Theory: quantum completion of Einstein gravity?

Rough idea of the mechanism:

Equations for the Mons seminar

November 28, 2012
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Why higher spins?

Einstein gravity is perturbatively non renormalisable


Matter couplings can worsen (e.g. scalar) or improve the 
UV behaviour (e.g. supersymmetry)

String Theory: quantum completion of Einstein gravity?

Veneziano amplitude and dual resonance models:

Equations for the Mons seminar

November 28, 2012
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HIGHER SPINS ⇔ QUANTUM GRAVITY

Infinitely many bad contributions can conspire to give a nice answer
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T E O R I A  R E L A T I V I S T I C A  D I  P A R T I O E L L E  

C O N  ) / [ O M E N T O  I N T R I N S E C O  A R B I T R A R I O  

N o r a  d i  ETTOaE ~AJORANA 

Sunto.  - L~autore stabilisce equazio~vi d'onda lineari nell'energia e relati- 
visticamente invarianti per particelle aventi momento angolare intrinseco 
co~nunque prefissato. 

La teoria di DIRAC dell'elettrone fa uso, come ~ noto, di una 
funzione d'onda a quattro componenti delle quali, quando si consi- 
derino movimenti lenti, due hanno valori trascurabili mentre le 
altre due obbediscono in prima approssimazione all'equazione di 
SC H RO D IN GER .  

In modo analogo una particella con momcnto angolare intrin- 
1 

seeo s s = 0, ~, 1, ,... ~ descritta nella meccanica quantistiea 

mediante un complesso di 2 s +  1 funzioni d'onda che soddisfano 
separatamente all'equazione di ScHRSDING~R. Tale rappresentazione 

naturalmente valida finch~ si trascurano gli effetti relativistiei, 
e cib ~ lecito per particelle mobili con velocit~ piccola di fronte a 
quella della luce. Un altro caso in cui la teoria elementare ~ ancora 
utilizzabile ~ ovviamente quello in cui la velocit~ della particella 
pur essendo comparabile con c rimane quasi eostante in direzione 
e grandezza, poich~ allora ~ possibile rieondursi allo studio di movi- 
menti lenti scegliendo opportunamente il sistema di riferimento. 

I1 caso invece in cui la velocits delle partieelle pur essendo quasi 
costante entro regioni sufficientemente estese del continuo spazio- 
tempo varia da ~na regione all' altra lentamente ma fra valori 
estremi lontani, sotto l'azione di eampi esterni deboli, non si lascia 
trattare immediatamente con l'equazione non relativistiea .di Scm~5- 
DINGER. 

Una generalizzazione relativistiea della teoria preeedente deve 
soddisfare suceessivamente alle condizioni seguenti al eres~ere del 
suo grado di a~curatezza: 

(a) La teoria permette lo sCudio di particelle aventi velocit~ 
quasi determinata 'in grandezza e direzione, dando risultati equi- 

Can one build higher spin gauge theories?

Subject with a long history and, again, Italian pioneers…

E. Majorana, Nuovo Cimento 9 (1932) 335



Free massless higher spins

Example I: Maxwell


Field equations:


Gauge symmetry:
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Ê = 1

2

(A + Ã)
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Ê = 1

2

(A + Ã)
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        Particle of arbitrary spin s:


Gauge symmetry:


Gauge invariance requires:  
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1980’s: first positive results

Consistent cubic vertices in flat & (A)dS spaces
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Full non-linear interactions with 𝚲 ≠ 0
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 Key: more than two derivatives (when D > 3)
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Why such a long history?
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Including a spin-s field calls for both lower 
and higher spins


Good news: higher spins require gravity


Bad news: not easy to handle ∞ particles

The unconventional nature of HS interactions
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The interaction Lagrangian (4.8) can not be trans- 
formed away by a redefinition of the fields, as we 
have seen. This fact is also clear by inspection, a 
term such as the fourth one from the end in (4.8) can 
not be obtained by a field redefinition. Field rede- 
finitions can be used to cast (4.8) in an equivalent 
more elegant form. What interests us now is the first 
order term 6~ 02f~ which (4.8) produces in the gauge 
transformations. These terms are influenced by field 
redefinitions, but the first order commutator  be- 
tween such gauge transformations is unaffected by 
such field redefinitions. And, as this commutator  is 
what we are really after in the next section, we shall 
not now attempt to find the most elegant form for 
cp .  

Notice that the unique solution (unique up to 
trivial field redefinitions) (4.8) contains a fully anti- 
symmetric coefficient f,b~ reminiscent of a similar 
coefficient for the Yang-Mills theory. As (4.8) is the 
unique solution, there is no symmetric coupling, 
without indices a, b, c, of trilinear form analogous to 
the one for spin two. 

5. First Order Term 
for the Gauge Transformation Commutator 

In analogy with what we did for spin two, we con- 
struct the first order term in the gauge transfor- 
mation by starting with the operator constraint (4.7), 
obtaining the gauge transformation by partial inte- 

gration in a form 

a .~a __():a j _ c r ~ b a a f l  ~b 60 0o,,+gbi " F p a * - - t ' = p a , r  - - 1 5 * * l  pa~ ct# 

+ terms obtained by permutations of p, a, z). (5.1) 

Here /~1 is obtained from H 1 by partial integration. 
The singularity of s176 in (4.7) implies an ap- 
parent freedom in the solutions for / t l .  Correspond- 
ing to the two coefficients c 1 and c 2 for spin two, 
there are here t2 such "c coefficients", which are 
listed in appendix B. Leaving out, for the moment, 
these c coefficients, we find for the first order term 

_ _ o b e 5  . . . . .  ,5 ,ct ~pG 

, 'sb'c ' l p a - - W f e  b~ , 6 " l p a  
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obtained by the 6 permutations of p, a, z] 

(5.2) 

From (5.2) one may compute the commutator  of two 
gauge transformations, involving parameters {af 

--r {~P=0; %f--~#~, ~P=0 .  One finds:** 

[C, ,,~=~j [(2 .~,'5,, 
d ffb ):cae __f~ ~'b'5 Z-ce 

"ba ca b ~:c&e --2 Cv ,~ {~ ,'5+2 (va . . . .  
' 5 , ~ u , ~ +  8 '5.~..~ 

- 4 r  ~. .... ~ * + 4 C ~ . , ~ ' 5 ~  
, # ,v  ' sg - -  ,# V 

+(terms obtained from the 
preceding by interchanging 

{b ~__~ {c)_ 88 r/~. Trace of all preceding terms]. (5.3) 

* In  o r d e r  to  s h o w  as c lear ly  as poss ib le  w h e r e  der iva t ives  o c c u r  
we use  in (5.2) a n d  (5.3) the  n o t a t i o n  t h a t  every der iva t ive  index  
is p r e c e d e d  b y  a c o m m a ,  w h e r e a s  e l sewhere  all  indices  fo l lowing  
one  c o m m a  are  de r iva t ive  indices  
** The  express ion  is u n d e r s t o o d  to  be  s y m m e t r i z e d  in p a n d  v 
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3. T h e  S p i n  3 F r e e  F i e l d  L a g r a n g i a n  

The Lagrangian for a free spin 3 field ~b~,  sym- 
metric in u,/3, 7, reads 

~ 0  1 2 3 2 3 2 3 = - ~ (~ r  + ~ E(~- CL~] + ~ (~ ~,) + ~ (a. 4): 
- 3 (,~ ,h~)(a. ,h) ~.  (3A) 

where a similar notation has been used in (2.1). This 
Lagrangian is gauge invariant under the transfor- 
mation 

where the summation goes over the three cyclic per- 
mutations and where the symmetric tensor ~ is 
traceless 

~ = 0 .  (3.3) 

The source constraint related to the gauge in- 
variance (3.2) reads 

~ 7 , T .  1 r P ) = 0 .  (3.4) 

which originates from the form of the wave equation 
differential operators which obey 

,~,(~o, + o = , -  8 8  ~== ~o, + . 6 )  = o. (3.5) 

4. T h e  C o n s t r u c t i o n  o f  a S p i n  3 S e l f  I n t e r a c t i o n  

Since we want to discuss a trilinear interaction for 
the fields ~ , ~ ,  the interaction should contain an 
odd number  of derivatives. When one derivative is 
taken no suitable ~1  is found, even if one allows for 
different spin 3 fields ~b~,~. 

The next simplest case contains three derivatives, 
which we allow to be distributed over the fields in 
any way. From the start the possibility of different 
fields ~b~,~ will be built in. A typical Lagrangian has 
the form 

~f , = f~bc ~(dp", 0 b, r f.b~ ~obc, (4.1) 

where a summation over a ,b  and c is carried out 
and the index a runs from 1 to N. 

It turns out that there exist 48 independent Lag- 
rangians, containing three derivatives. The Euler-La- 
grange equation for 5q now reads 

~5  ~ c95r ~5r 

- ~3~ ~ c3 ~ = 0 (4 .2)  

where 

~(' = ~'ao -}- g ~ ' 1  + g 2 ~qa2 + . . . .  (4.3) 

with a coupling constant which has the dimension of 
an inverse mass squared. Since s contains only one 
derivative on each field (4.2) reduces in that case to 
the standard Euler-Lagrange equation. 

In its generality the complete Lagrangian will be 
gauge invariant under a gauge transformation of the 
form 

a a a 2 a . .  (4 .4)  ,~qL~ =,5o q~ ~+g,5~ 4 ,~+g  ,52 4,~ + .. 
Equivalently there exist operators H"b~P such that i pat 

(tl a p~l B ~r (~ab ~r --  1 rl.B rl p ~r(~ab C~ + g --1M aboaral~ 

+ g2 H2,bo;~ +. . . )  ~ ~o~, = 0. (4.5) 

The operators H~ have the properties 

H ,b ~ _ H ~b a ~ H.~b ~p = 0. (4.6) i p a r - - - - i  par ~ F]c~B--t p a ' r  

In first order in g we now find the operator  con- 
straint for &o 

(qapqfla3ab ~z --  i qocfl qp allah ~r)  ~ 1 ,  ~b~ =z = 

- _ rr  ~b ~a 5~o, (4 .7)  

Again, as in section 2 for a free field solution the 
righthand side of (4.7) vanishes and the source con- 
straint for ~ remains. 

Since one has to verify that a solution for ~ 
does not represent a trivial ~o  which originates 
from a redefinition of the field all possible rede- 
finitions and corresponding interactions should be 
listed. The redefinitions are listed in appendix A. 
They lead to seventeen superfluous interactions. This 
knowledge is used to express the most general in- 
teraction Lagrangian in fewer than 48 parameters. 
The operator  constraint then gives a relation between 
the parameters. 

It turns out that for one type of field no solution 
exists, but that for three or more different types of 
fields a solution exists characterized by a fully anti- 
symmetric overall coefficient fabc .  

This solution turns out to be 

~ l = f a b c  ~_~abc, 

where 

~ a b c  chbT&e ~)cq 

'/"6 'r e r/ fit  
a d)bect d)c~lfl, 76 

Cubic spin-3 self-interactions from 
Berends, Burgers, Van Dam (1984)

Berends, Burgers, Van Dam (1985)



One needs infinitely many particles


Including a spin-s field calls for both lower 
and higher spins


Good news: higher spins require gravity


Bad news: not easy to handle ∞ particles

The unconventional nature of HS interactions
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symmetric overall coefficient fabc .  
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One needs more than two derivatives


This calls for a new dimensionful constant 
(like α’)


Other option: use the cosmological constant

Berends, Burgers, Van Dam (1985)

Fradkin, Vasiliev (1987)
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Good news: higher spins require gravity
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~ 0  1 2 3 2 3 2 3 = - ~ (~ r  + ~ E(~- CL~] + ~ (~ ~,) + ~ (a. 4): 
- 3 (,~ ,h~)(a. ,h) ~.  (3A) 

where a similar notation has been used in (2.1). This 
Lagrangian is gauge invariant under the transfor- 
mation 

where the summation goes over the three cyclic per- 
mutations and where the symmetric tensor ~ is 
traceless 

~ = 0 .  (3.3) 

The source constraint related to the gauge in- 
variance (3.2) reads 

~ 7 , T .  1 r P ) = 0 .  (3.4) 

which originates from the form of the wave equation 
differential operators which obey 

,~,(~o, + o = , -  8 8  ~== ~o, + . 6 )  = o. (3.5) 

4. T h e  C o n s t r u c t i o n  o f  a S p i n  3 S e l f  I n t e r a c t i o n  

Since we want to discuss a trilinear interaction for 
the fields ~ , ~ ,  the interaction should contain an 
odd number  of derivatives. When one derivative is 
taken no suitable ~1  is found, even if one allows for 
different spin 3 fields ~b~,~. 

The next simplest case contains three derivatives, 
which we allow to be distributed over the fields in 
any way. From the start the possibility of different 
fields ~b~,~ will be built in. A typical Lagrangian has 
the form 

~f , = f~bc ~(dp", 0 b, r f.b~ ~obc, (4.1) 

where a summation over a ,b  and c is carried out 
and the index a runs from 1 to N. 

It turns out that there exist 48 independent Lag- 
rangians, containing three derivatives. The Euler-La- 
grange equation for 5q now reads 

~5  ~ c95r ~5r 

- ~3~ ~ c3 ~ = 0 (4 .2)  

where 

~(' = ~'ao -}- g ~ ' 1  + g 2 ~qa2 + . . . .  (4.3) 

with a coupling constant which has the dimension of 
an inverse mass squared. Since s contains only one 
derivative on each field (4.2) reduces in that case to 
the standard Euler-Lagrange equation. 

In its generality the complete Lagrangian will be 
gauge invariant under a gauge transformation of the 
form 

a a a 2 a . .  (4 .4)  ,~qL~ =,5o q~ ~+g,5~ 4 ,~+g  ,52 4,~ + .. 
Equivalently there exist operators H"b~P such that i pat 

(tl a p~l B ~r (~ab ~r --  1 rl.B rl p ~r(~ab C~ + g --1M aboaral~ 

+ g2 H2,bo;~ +. . . )  ~ ~o~, = 0. (4.5) 

The operators H~ have the properties 

H ,b ~ _ H ~b a ~ H.~b ~p = 0. (4.6) i p a r - - - - i  par ~ F]c~B--t p a ' r  

In first order in g we now find the operator  con- 
straint for &o 

(qapqfla3ab ~z --  i qocfl qp allah ~r)  ~ 1 ,  ~b~ =z = 

- _ rr  ~b ~a 5~o, (4 .7)  

Again, as in section 2 for a free field solution the 
righthand side of (4.7) vanishes and the source con- 
straint for ~ remains. 

Since one has to verify that a solution for ~ 
does not represent a trivial ~o  which originates 
from a redefinition of the field all possible rede- 
finitions and corresponding interactions should be 
listed. The redefinitions are listed in appendix A. 
They lead to seventeen superfluous interactions. This 
knowledge is used to express the most general in- 
teraction Lagrangian in fewer than 48 parameters. 
The operator  constraint then gives a relation between 
the parameters. 

It turns out that for one type of field no solution 
exists, but that for three or more different types of 
fields a solution exists characterized by a fully anti- 
symmetric overall coefficient fabc .  

This solution turns out to be 

~ l = f a b c  ~_~abc, 

where 

~ a b c  chbT&e ~)cq 

'/"6 'r e r/ fit  
a d)bect d)c~lfl, 76 

Cubic spin-3 self-interactions from 
Berends, Burgers, Van Dam (1984)

One needs more than two derivatives


This calls for a new dimensionful constant 
(like α’)


Other option: use the cosmological constant

Is a cosmological constant necessary?

Berends, Burgers, Van Dam (1985)

Fradkin, Vasiliev (1987)



If you have a problem, simplify it!

Higher-spin interactions are not easy to handle: it would 
be very useful to extract info from a simplified setup!

Time-honoured trick: 
reduce the number of 
dimensions of spacetime 

Goal: look for a simpler, 
but still non-trivial theory 



D = 2+1: a “theoretical laboratory” for gravity

D = 2+1: no irreps of arbitrary helicity for the little group 
of massless particles ⇒ no spin in the usual sense


Still… look at Fronsdal equations:
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D = 2+1: a “theoretical laboratory” for gravity

D = 2+1: no irreps of arbitrary helicity for the little group 
of massless particles ⇒ no spin in the usual sense


Still… look at Fronsdal equations:

We can consider Fronsdal equations in D = 2+1


No wave solutions for s > 1 (no local d.o.f.)


Nothing really new: no gravitons in D = 2+1, yet black holes exist
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1

What can we learn from this apparently too simple 
example? And how?



Gravity in D = 2+1

Einstein-Hilbert action

Field equations

No dynamics, but thermodynamics!

Formulae used in the Keynote
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← constant curvature!



Gravity in D = 2+1

Einstein-Hilbert action

No dynamics, but thermodynamics!

Formulae used in the Keynote
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A couple of useful tricks…


.


so(2,2) ≃ so(1,2) ⊕ so(1,2) ≃ sl(2,R) ⊕ sl(2,R)
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2
✏abc !µ

b,c



Gravity in D = 2+1

Einstein-Hilbert action

No dynamics, but thermodynamics!
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Einstein-Hilbert action

No dynamics, but thermodynamics!
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Achúcarro, Townsend (1986); Witten (1988)



“Higher-spin” Chern-Simons action

Chern-Simons action

Back to the metric (and Fronsdal)

particle in a symmetric tensor of rank s. The advantage with respect to Vasiliev’s strategy
is the simplification of the field content; the price to pay is, at present, the lack of an
organising principle for the non-linearities required by a consistent theory. To unravel
this puzzle one can begin by building perturbatively the first interaction vertices; this
has led, for instance, to a classification of cubic vertices for arbitrary massless particles
in both Minkowski and (A)dS backgrounds of dimension D ≥ 4 [6–10].1 On the other
hand, a complete metric-like reformulation of Vasiliev’s equations is not known, while the
existence of other models that are consistent beyond the cubic order is still controversial
(see e.g. [12–14, 11, 15]).

In spite of closely related goals, the frame- and metric-like formulations have evolved
rather independently. For few exceptions see e.g. [16–18] and refs. therein. With both ap-
proaches having their own advantages and drawbacks, an exchange of ideas is nonetheless
expected to shed light on both sides. The goal of this paper is to start to establish a firm
connection between them in three space-time dimensions, where higher-spin gauge the-
ories take a remarkably simple form compared to their higher-dimensional counterparts.
We focus on the gravitational coupling of a symmetric tensor of rank 3. In the frame-like
language this is described by a SL(3,R) × SL(3,R) Chern-Simons (CS) theory when a
negative cosmological constant is present (see e.g. [19] and the previous works [20, 21]).
In appendix C we will add a few comments on the generalisation to SL(N,R)×SL(N,R)
CS theories, which contain fields of spin 2, 3, . . . , N .

The frame-like theory is well understood, with and without cosmological constant: one
has to complement the gravity dreibein and spin connection with two one-forms which
play a similar role for the spin-3 field. The gauge connections can then be packed into
two sl(3,R)-valued forms (A = 1, . . . , 8 and a, b = 0, 1, 2)

e = eµ
A JA dxµ =

(
eµ

aJa + eµ
ab Tab

)
dxµ , (1.1a)

ω = ωµ
A JA dxµ =

(
ωµ

aJa + ωµ
ab Tab

)
dxµ , (1.1b)

where JA denotes the full set of sl(3,R) generators. The gravity dreibein eµa and
spin connection ωµ

a are associated with the generators Ja of the principally embedded
so(2, 1) ≃ sl(2,R) ↪→ sl(3,R). The remaining five generators Tab (with T[ab] = ηab Tab = 0)
are associated to the spin-3 “vielbein” and “spin connection”. One can then consider the
action2

I =
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∫
tr

(
e ∧ R +

1

3ℓ2
e ∧ e ∧ e

)
, with R = dω + ω ∧ ω . (1.2)

The trace is in the fundamental of sl(3,R), G is Newton’s constant and ℓ the AdS radius.

1The classification of cubic interactions for arbitrary fields is discussed in a frame-like language in [11].
2For ℓ2 > 0 (corresponding to a negative cosmological constant) one can rewrite (1.2) as the difference

of two sl(3,R) CS actions. A cosmological constant is however not necessary in D = 3, and for ℓ2 ≤ 0
one can interpret (1.2) as a CS action as well (see e.g. [22] for more details).
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Formulae used in Keynote
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2

Y
]

[
e = ¸

2(A ≠ Ã)
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Blencowe (1989);  A.C., Pfenninger, Fredenhagen, Theisen (2010)

All higher-spin fields have been packed up into two 
objects, e and ω


Change their expansion and obtain a plethora of 
higher-spin theories!



What one gains with the restriction to D = 2+1?

No more need for infinitely many fields


Only “spins” s = 2 and s = 3 in the previous example


Very compact formulation of the dynamics


One can use all tools that have been developed to study            
Chern-Simons theories in the last 40 years


Main advantage: higher spins keep most of their 
peculiarities (that follow from gauge symmetry), 
but they are much closer to gravity in D = 2+1


One can try to extend what is known for gravity 
and look for surprises



Amazing surprises at hand!

Asymptotic symmetries: infinitely many conserved 
charges for each spin related by a gargantuan symmetry 
(W-algebras)


Strong constraint for holography: boundary theories are highly 
constrained; reconstruct the quantum theory from 2D conformal 
field theories?

Black holes can be built


Solutions with an horizon? OK!


The metric now “changes under 
higher-spin gauge transformations


They can “destroy” the horizon! 

Higher spin geometry?



The higher-spin way to quantum gravity

If one scrutinises String Theory through the lens of QFT, 
one can question whether quantum consistency 
necessarily requires packing up infinitely many particles 
into a string


Can one build models of quantum gravity adding higher-
spin particles besides the graviton, but without resorting 
to the beautiful, but perhaps redundant structures of 
String Theory?


Guiding principle: gauge symmetry


We have a wonderful “theoretical laboratory” to test these 
ideas: work in D = 2+1 and enjoy the simplifications 


