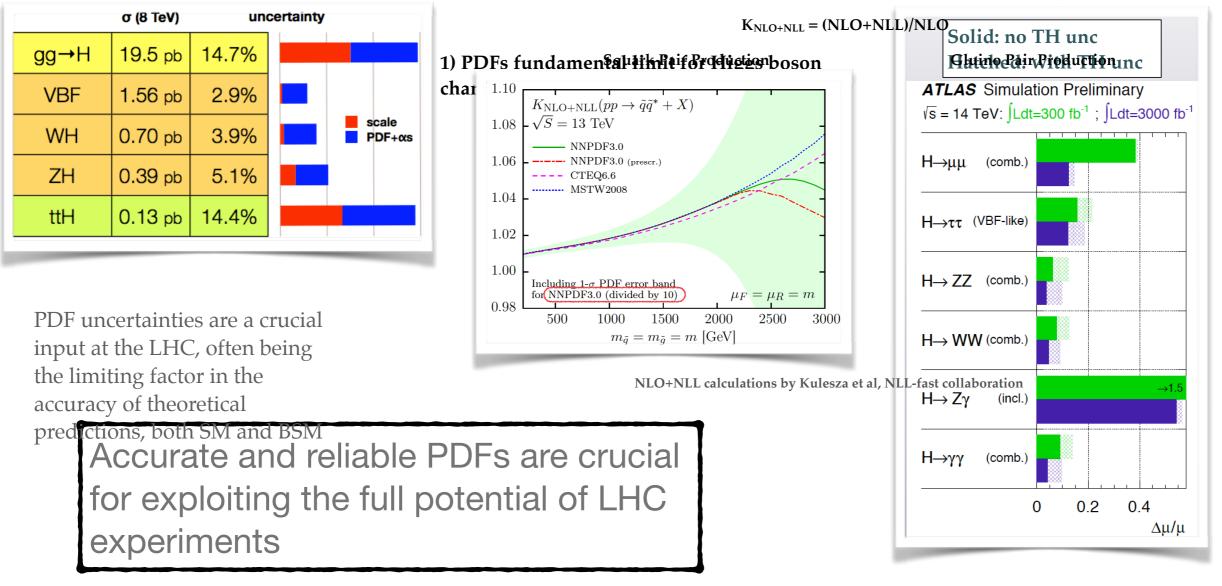
Parton Distribution Functions at (present and) Future Colliders

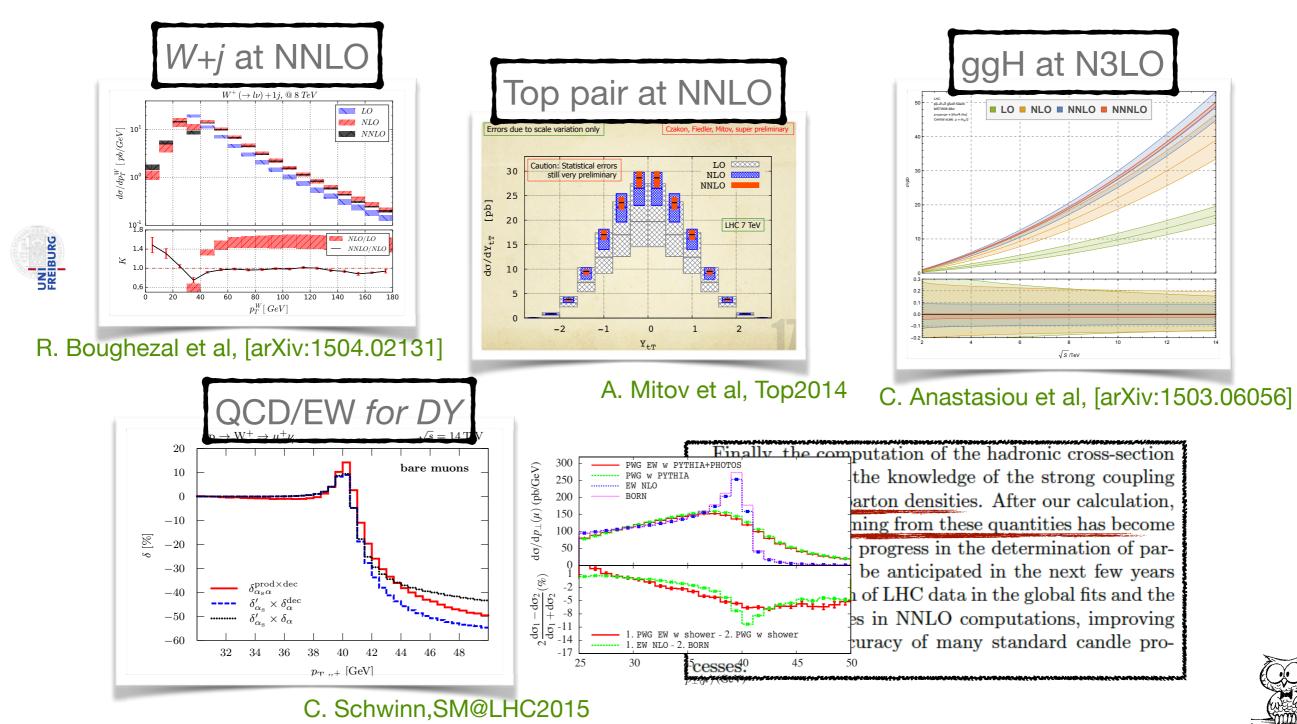

Alberto Guffanti Università degli Studi di Torino & INFN Torino

LFC15: physics prospects for Linear and other Future Colliders after the discovery of the Higgs ECT* Trento, September 7-11, 2015

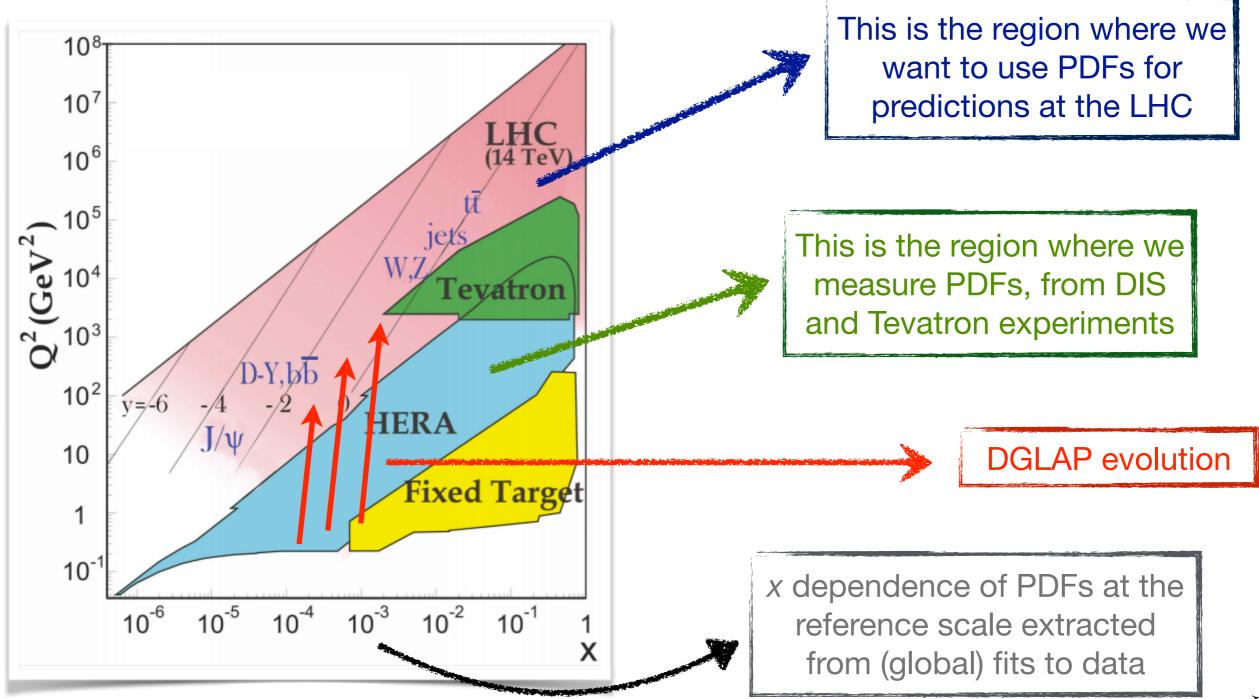
Motivation

Experimental push

 Uncertainties on Parton Distribution Functions (PDFs) are often the limiting factor in precision Standard Model studies and New Physics searches


2) Very large PDF uncertainties (>100%) for BSM heavy particle production

Motivation


Theoretical push

• Impressive progress in computation of higher order corrections (QCD & EW)

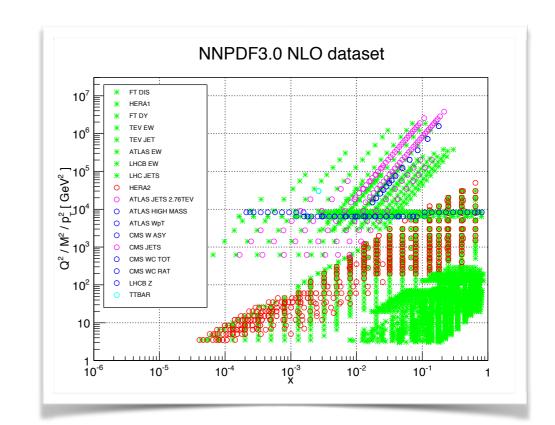
Parton Distribution Functions

Where do we measure them, where do we use them

(Unpolarized proton) PDF Determinations Overview

September 2015

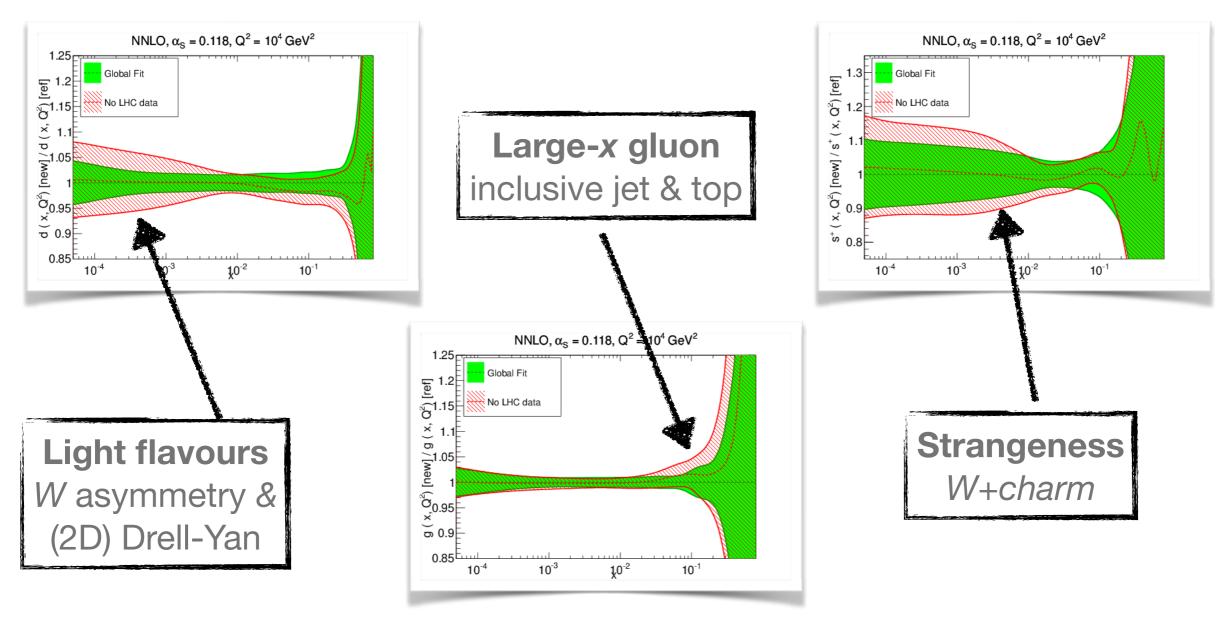
	Dataset	Pert. Order	HQ Treatment	۵	Param.	Uncert.
ABM12 [arXiv:1310.3059]	DIS Drell-Yan	NLO NNLO	FFN (BMSN)	Fit (multiple values available)	6 indep. PDFs Polynomial (25 param.)	Hessian (Δ
CT14 [arXiv:1506.07443]	Global	LO NLO NNLO	GM-VFNS (S-ACOT)	External (multiple values available)	6 indep. PDFs Polynomial (27 param.)	Hessian Tolerance
HERAPDF2.0 [arxiv:1506.06042]	DIS (HERA I+II)	NLO NNLO	GM-VFNS (TR)	External (multiple values available)	5 indep. PDFs Polynomial (14 param.)	Hessian (Δ
MMHT14 [arXiv:1410.3989]	Global	LO NLO NNLO	GM-VFNS (TR)	Fit (multiple values available)	7 indep. PDFs Polynomial (37 param.)	Hessian Dyn. Tolerance
NNPDF3.0 [arXiv:1410.8849]	Global	LO NLO NNLO	GM-VFNS (FONLL)	External (multiple values available)	7 indep. PDFs Neural Nets (259 param.)	Monte Carlo


[LHAPDF v6.1.5 - http://lhapdf.hepforge.org/]

Parton Distributions after LHC Run I

Dataset

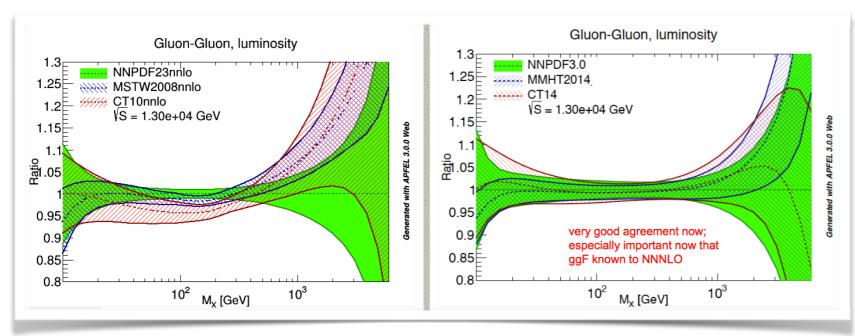
	NNPDF3.0	MMHT14	CT14(PREL)
SLAC P,D DIS	 ✓ 	~	X
BCDMS P,D DIS	 ✓ 	 ✓ 	 Image: A set of the set of the
NMC P,D DIS	 ✓ 	 ✓ 	 Image: A set of the set of the
E665 P,D DIS	×	 ✓ 	×
CDHSW NU-DIS	×	×	 Image: A set of the set of the
CCFR NU-DIS	×	 ✓ 	 Image: A set of the set of the
CHORUS NU-DIS	 ✓ 	 ✓ 	X
CCFR DIMUON	×	 ✓ 	 Image: A set of the set of the
NUTEV DIMUON	 ✓ 	 ✓ 	 Image: A set of the set of the
HERA I NC,CC	 ✓ 	~	 Image: A start of the start of
HERA I CHARM	 ✓ 	 ✓ 	 Image: A set of the set of the
H1,ZEUS JETS	×	 ✓ 	X
H1 HERA II	 ✓ 	×	×
ZEUS HERA II	 ✓ 	×	×
E605 & E866 FT DY	 ✓ 	✓	 Image: A start of the start of
CDF & DO W ASYM	×	 ✓ 	 Image: A start of the start of
CDF & D0 Z RAP	 ✓ 	 ✓ 	 Image: A set of the set of the
CDF RUN-II JETS	 ✓ 	 ✓ 	 Image: A set of the set of the
DO RUN-II JETS	×	 ✓ 	 Image: A set of the set of the
ATLAS HIGH-MASS DY	 ✓ 	 ✓ 	 Image: A start of the start of
CMS 2D DY	 ✓ 	 ✓ 	X
ATLAS W,Z RAP	 ✓ 	 ✓ 	V _
ATLAS W PT	 ✓ 	 ✓ 	X
CMS W ASY	 ✓ 	 ✓ 	 Image: A start of the start of
CMS W +c	 ✓ 	×	×
LHCB W,Z RAP	 ✓ 	 ✓ 	 Image: A set of the set of the
ATLAS JETS	 ✓ 	 ✓ 	 ✓
CMS JETS	 ✓ 	 ✓ 	 ✓
TTBAR TOT XSEC	 ✓ 	 	×
TOTAL NLO	4276	2996	3248
TOTAL NNLO	4078	2663	3045


Modern PDF sets include a substantial number of data from the LHC experiments.

Parton Distributions after LHC Run I

Impact of LHC data

• Impact of LHC data (still) moderate but definitely noticeable



Parton Distributions after LHC Run I

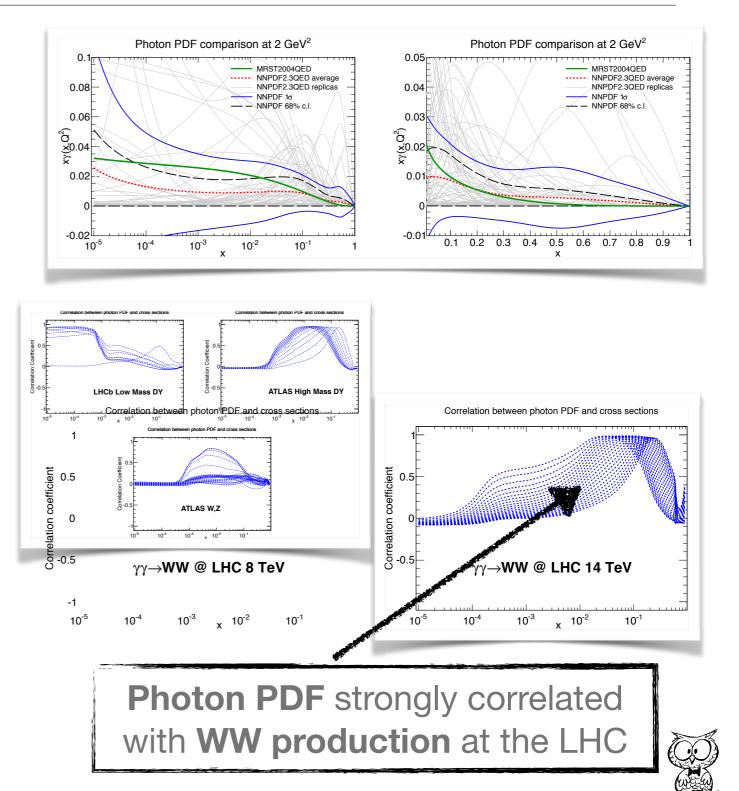
Improved agreement among global PDF sets

"Progress in convergence between the parton distribution functions will also be needed in order to reduce the theoretical uncertainties below the experimental measurement uncertainties"

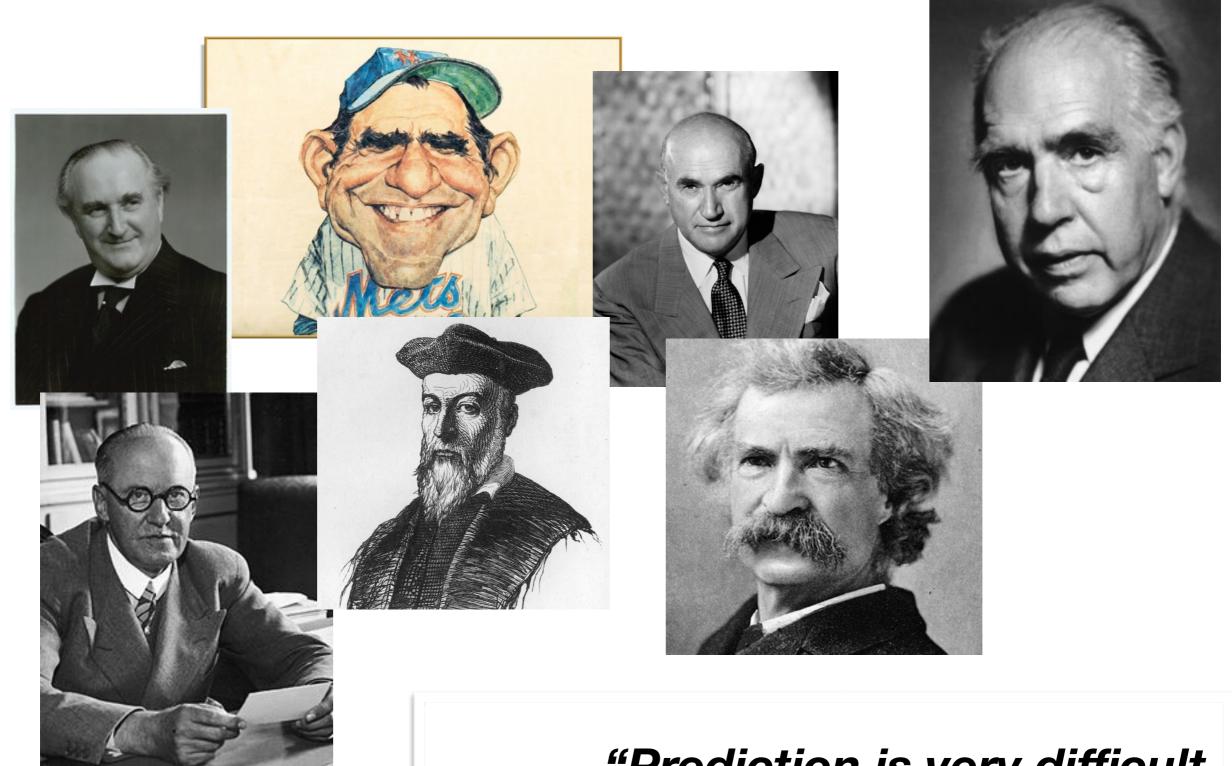
J. Ellis, [arXiv:1504.03654]

on, PDF4L	HC 2015

8 TeV	18.66
Almost per	fect agreement
among the r	newest releases
of global PI	DF sets for ggH


NPDF3.0			
18.77	CT14 18.65	MMHT2014	NNPDF3.0
42.9 7 8 TeV	18.66 pb	18.65 pb	18.77 pb
	-2.2%	-1.9%	-1.8%
	+2.0%	+1.4%	+1.8%
13 TeV	42.68 pb	42.70 pb	42.97 pb
	-2.4%	-1.8%	-1.9%
	+2.0%	+1.3%	+1.9%

Parton Distributions for LHC Run II


Parton Distributions with QED corrections (NNPDF2.3 QED)

- Precision LHC phenomenology, including EW effects, requires parton distributions with QED effects included in the evolution and a photon PDF
- NNPDF2.3 QED is the most recent PDF fit based on (N)NLO QCD + LO QED evolution and with a photon PDF determined from DIS and Drell-Yan (lowmass LHCb, W & Z peak and high-mass ATLAS) production [R. D. Ball et al, arXiv:1308.0598]
- LHC data are crucial for a reliable determination of the photon PDF

"Prediction is very difficult, especially if it's about the future."

(....)

"Prediction is very difficult, especially if it's about the future."

(....)

Future of PDFs

LHC running schedule

Future of PDFs

LHC running schedule

More data from LHC

• LHC data (both from Run I and Run II) to provide substantial constraints on PDFs in the (near) future

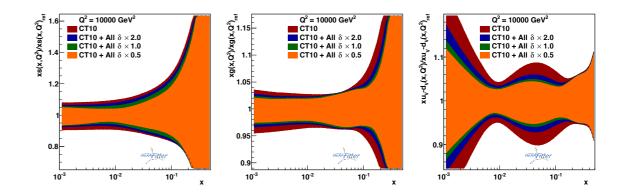
Run I data not yet included in PDF fits

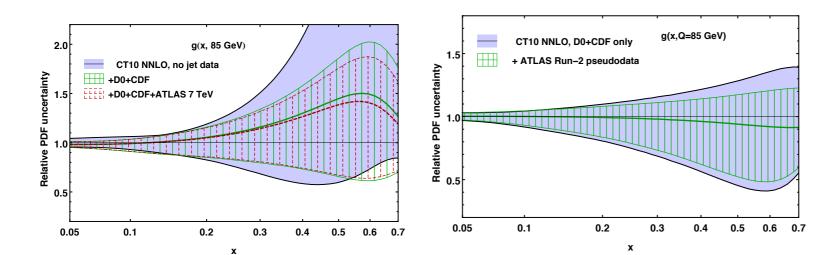
t Muon Sol						
Compa	CMS					
Measurement	$\sqrt{s}, \mathcal{L}_{\text{int}}$	Motivation	Reference	Used in PDF		
				or α_S fits		
High and low mass Drell-Yan	7 TeV, 5 fb^{-1}	Sect. 3.4.	[36]	[21,118]		
High and low mass Drell-Yan	8 TeV, 20 fb $^{-1}$	Sect. 3.4.	[45]	_		
Drell-Yan AFB	7 TeV, 5 fb^{-1}	Sect. 3.4.	[176]	-		
W asymmetry	7 TeV, 36 pb^{-1}	Sect. 3.3.	[177]	-		
W e asymmetry	7 TeV, 880 pb^{-1}	Sect. 3.3.	[178]	-		
$W \mu$ asymmetry	7 TeV, 4.7 fb^{-1}	Sect. 3.3.	[26]	[26,118]		
W, Z production and rapidity	7 TeV, 3 pb ⁻¹	Sect. 3.3.	[179]	-		
W, Z inclusive production	7 TeV, 36 pb^{-1}	Sect. 3.3.	[180]	-		
W, Z inclusive production	8 TeV, 19 pb^{-1}	Sect. 3.3.	[181]	_		
$Z p_T$ and rapidity	7 TeV, 36 pb^{-1}	Sect. 3.5.,3.3.	[182]	_		
$Z p_T$ and rapidity	8 TeV, 19.7 fb ⁻¹	Sect. 3.5.,3.3.	[132]	-		
Inclusive jets	7 TeV, 5 fb^{-1}	Sect. 3.1.	[25, 183]	[21, 48, 91]		
Dijets	7 TeV, 5 fb^{-1}	Sect. 3.1.	[25]	_		
Three-jets	7 TeV, 5 fb^{-1}	Sect. 3.1.	[184]	[184]		
Three-jets/Di-jets ratio	7 TeV, 5 fb^{-1}	Sect. 3.1.	[49]	[49]		
W+charm	7 TeV, 5 fb^{-1}	Sect. 3.6.	[29]	[26, 31, 91]		
Z+beauty	7 TeV, 5 fb $^{-1}$	Sect. 3.6.	[185]	_		
γ inclusive production	7 TeV, 36 pb^{-1}	Sect. 3.2.	[186]	[28]		
γ +jets	7 TeV, 2.1 fb^{-1}	Sect. 3.2.	[187]	_		
$t\bar{t}$ inclusive	7 TeV, 2.3 fb ⁻¹	Sect. 3.7.	[188]	[32, 33, 139]		
$t\bar{t}$ differential	7 TeV, 5.0 fb^{-1}	Sect. 3.7.	[189]	[33]		
$t\bar{t}$ inclusive	8 TeV, 1.14 fb^{-1}	Sect. 3.7.	[190]	[32]		
$t\bar{t}$ inclusive	8 TeV, 2.8 fb^{-1}	Sect. 3.7.	[191]	[32]		
$t\bar{t}$ inclusive	8 TeV, 2.4 fb^{-1}	Sect. 3.7.	[192]	[33]		
$t\bar{t}$ differential	8 TeV, 19.7 fb $^{-1}$	Sect. 3.7.	[193]			

LHCb					
Measurement	$\sqrt{s}, \mathcal{L}_{\text{int}}$	Motivation	Reference	Used in PDF fits	
W, Z muon rap dist	7 TeV, 1.0 fb^{-1}	Sect. 3.3.	[201]	[21, 22]	
$Z \rightarrow ee$ rap dist	7 TeV, 0.94 fb ⁻¹	Sect. 3.3.	[199]	[21,22]	
$Z \rightarrow ee$ rap dist	8 TeV, 2.0 fb ⁻¹	Sect. 3.3.	[203]	_	
W + b/c	7,8 TeV, 3.0 fb ⁻¹	Sect. 3.6.	[207]	_	
$c\bar{c}$ production	7 TeV, 15 nb ⁻¹	Sect. 3.8.	[35]	[34,43]	
$b\bar{b}$ production	7 TeV, 0.36 fb^{-1}	Sect. 3.8.	[210]	[34]	
Exclusive J/ψ production	7 TeV, 1.0 fb^{-1}	Sect. 3.9.	[143]	_	
Exclusive Υ production	7, 8 TeV, 3.0 fb^{-1}	Sect. 3.9.	[211]	_	

[PDF4LHC Report, arXiv:1507.00556]

W, Z rapidity7 TeHigh mass Drell-Yan7 TeLow mass Drell-Yan7 Te	, year of data, \mathcal{L}_{int} eV, 2010, 36 pb ⁻¹ eV, 2011, 4.9 fb ⁻¹ eV, 2011+2010, 1.6 fb ⁻¹ +35 pb ⁻¹	Motivation Sect. 3.3.	Reference [123]	PDF fits
High mass Drell-Yan7 TeLow mass Drell-Yan7 Te	eV, 2011, 4.9 fb ⁻¹ eV, 2011+2010, 1.6 fb ⁻¹ +35 pb ⁻¹		[123]	51 C 01 00 00 C 12
Low mass Drell-Yan 7 Te	eV, 2011+2010, 1.6 fb ⁻¹ +35 pb ⁻¹	Sec. 24	[]	[16,21,22,27,91]
		Sect. 3.4.	[37]	[21, 22, 130]
		Sect. 3.4.	[145]	-
Z A _{FB} 7 Te	eV, 2011, 4.8 fb $^{-1}$	Sect. 3.4.	[14]	-
W+charm production 7 Te	eV, 2011, 4.6 fb ⁻¹	Sect. 3.6.	[30]	[30]
W+beauty production 7 Te	eV, 2010, 35 pb ⁻¹	Sect. 3.6.	[146]	-
W+beauty production 7 Te	eV, 2011, 4.6 fb ⁻¹	Sect. 3.6.	[147]	-
Z+beauty production 7 Te	eV, 2010, 36 pb ⁻¹	Sect. 3.6.	[148]	-
	eV, 2011, 4.6 fb ⁻¹	Sect. 3.6.	[149]	-
	eV, 2010, 40 pb ⁻¹	Sect. 3.5.	[150]	-
	eV, 2011, 4.7 fb^{-1}	Sect. 3.5.	[131]	-
$W p_T$ 7 Te	eV, 2010, 31 pb ⁻¹	Sect. 3.5.	[151]	[22]
Z+jets 7 Te	eV, 2010, 36 pb ⁻¹	Sect. 3.5.	[152]	-
Z+jets 7 Te	eV, 2011, 4.6 fb ⁻¹	Sect. 3.5.	[153]	-
W+jets 7 Te	eV, 2010, 36 pb ⁻¹	Sect. 3.5.	[154]	-
W+jets 7 Te	eV, 2011, 4.6 fb ⁻¹	Sect. 3.5.	[155]	-
	eV, 2011, 4.6 fb ⁻¹	Sect. 3.5.	[156]	-
	eV, 2010, 37 pb ⁻¹	Sect. 3.1.	[157]	[21, 22, 91]
Inclusive jets 7 Te	eV, 2011, 4.5 fb ⁻¹	Sect. 3.1.	[158]	-
Inclusive jets (+ 7 TeV ratio) 2.76	6 TeV, 2010, 0.2 pb ⁻¹	Sect. 3.1., 3.10.	[24]	[21, 22, 24]
	eV, 2010, 37 pb ⁻¹	Sect. 3.1.	[157]	-
	eV, 2011, 4.6 fb ⁻¹	Sect. 3.1.	[159]	-
	eV, 2011, 4.5 fb ⁻¹	Sect. 3.1.	[160]	-
	eV, 2010, 35 pb ⁻¹	Sect. 3.2.	[161]	-
	eV, 2011, 4.6 fb ⁻¹	Sect. 3.2.	[162]	[122]
	eV, 2010, 37 pb ⁻¹	Sect. 3.2.	[163]	-
	eV, 2010, 2.9 pb ⁻¹	Sect. 3.7.	[164]	[21]
	eV, 2010, 35 pb ⁻¹	Sect. 3.7.	[165]	[21]
	eV, 2010, 35 pb ⁻¹	Sect. 3.7.	[166]	[21]
	eV, 2011, 0.70 fb ⁻¹	Sect. 3.7.	[167]	[21,22]
	eV, 2011, 2.05 fb ⁻¹	Sect. 3.7.	[168]	[21]
	eV, 2011, 1.67 fb ⁻¹	Sect. 3.7.	[169]	[21]
	³ TeV, 2012, 24.9 fb ⁻¹	Sect. 3.7.	[170]	[22]
	eV, 2011, 2.05 fb ⁻¹	Sect. 3.7.	[171]	-
	eV, 2011, 4.6 fb ⁻¹	Sect. 3.7.	[172]	-
$WW, Z \to \tau \tau, t\bar{t}$ xsec 7 Te	eV, 2011, 4.6 fb ⁻¹	Sect. 3.3.	[173]	-


Run II measurements

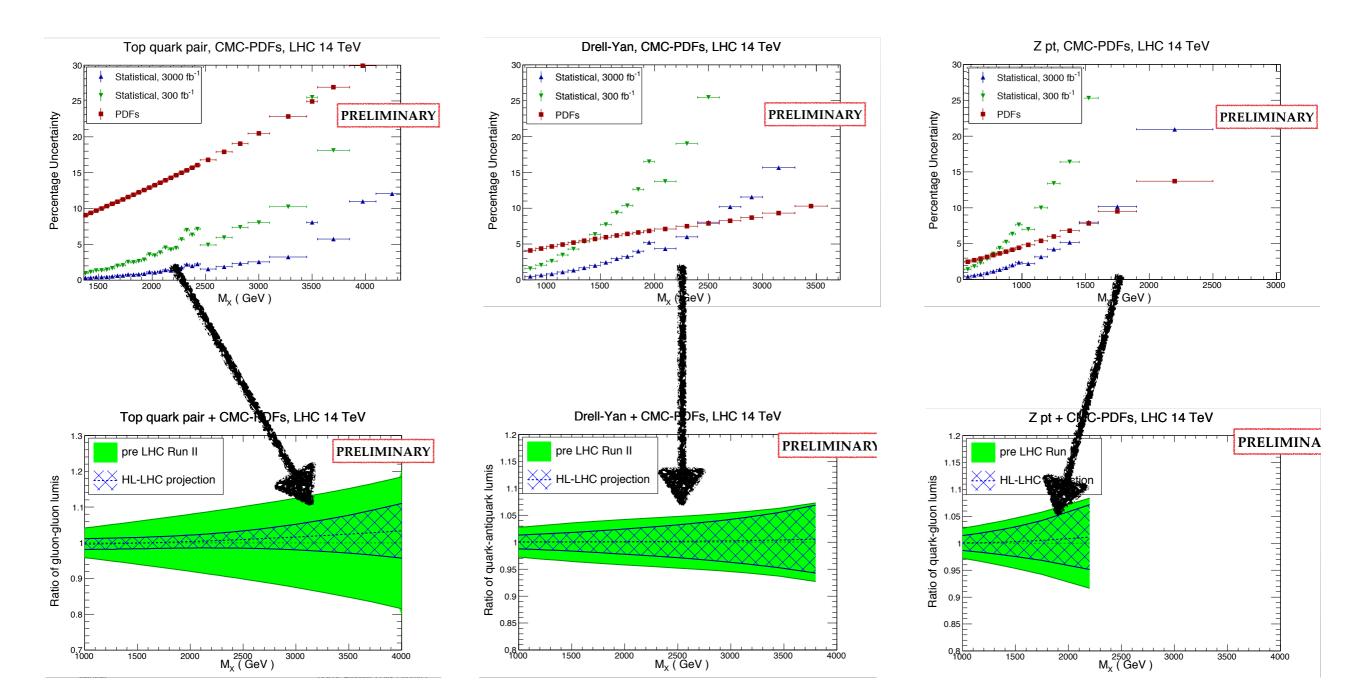

[PDF4LHC Report, arXiv:1507.00556]

Profiling analysis to estimate the impact of (some) Run II data on quark combinations

Study performed using the HeraFitter tool

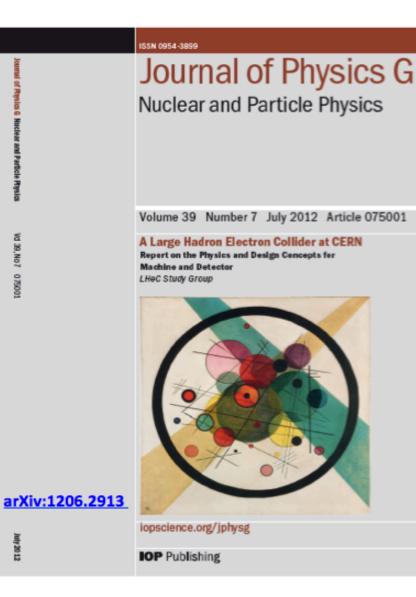
	$R_{W/Z}$	$R_{ m t\bar{t}/Z}$	A_ℓ	y_Z
Kinematic range			$p_{t,\ell} > 25 \text{GeV}, \eta_\ell < 2.5$	
Number of bins	1	1	10	12
Baseline accuracy per bin	1%	2%	$\approx 1.5\%$	$\approx 1.5\%$

Run II jet data to further improve constraints on large-*x* gluon


HL-LHC

Based on an exercise by J. Rojo

- Most PDF relevant measurements at LHC are systematics limited, difficult to quantify how uncertainties will improve
- **Notable exception**: high-mass tails of distributions, probing PDFs at large-*x*
- Preliminary studies based on pseudodata for three representative processes, constraining different parton-parton luminosities
 - **Top quark pair** production (gluon-gluon luminosity)
 - High-mass Drell-Yan (quark-antiquark luminosity)
 - Z transverse momentum distribution (quark-gluon luminosity)
- Generate pseudodata using CMC-PDFs (combination of MMHT14, CT14 and NNPDF3.0)
- Add ~2-3% systematic uncertainty on top of expected statistical one

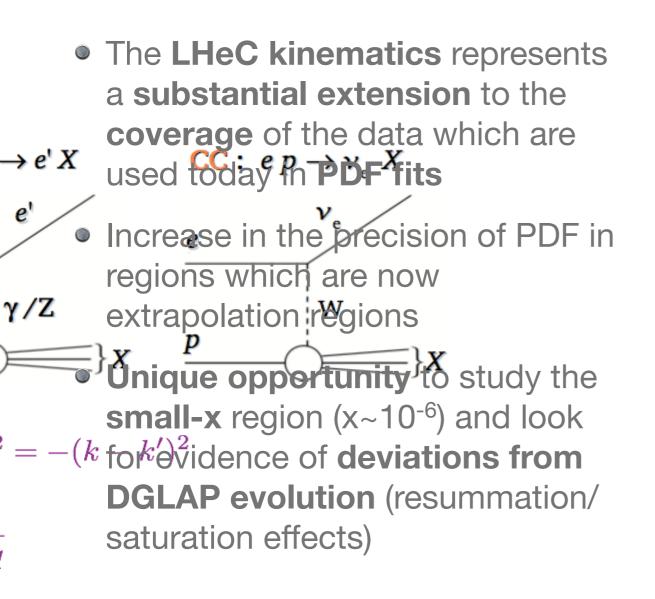

HL-LHC studies

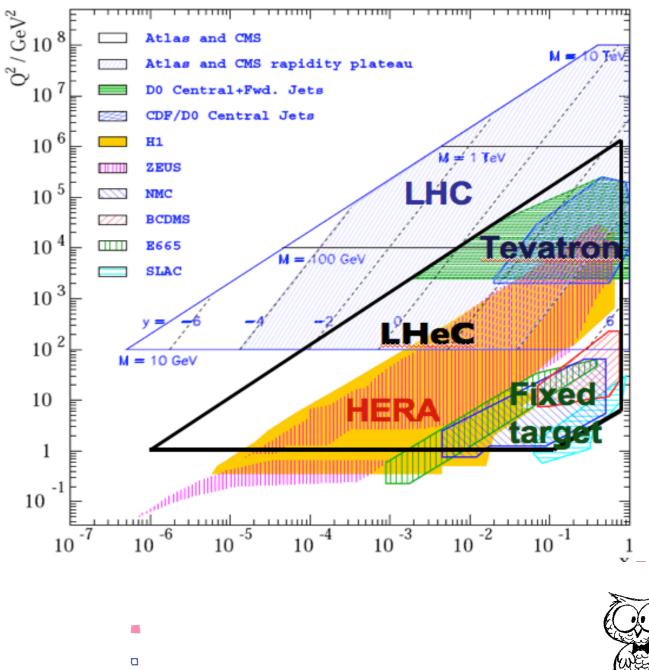
LHeC - Lepton-Hadron collision at the LHC

http://cern.ch/lhec

J.L.Abelleira Fernandez^{16,23}, C.Adolphsen⁵⁷, P.Adzic⁷⁴, A.N.Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², B.Allanach⁷³, S.Alekhin^{17,54}, P.Allport²⁴, V.Andreev³⁴, R.B.Appleby^{14,30}, E.Arikan³⁹, N.Armesto^{53,a}, G.Azuelos^{33,64}, M.Bai³⁷, D.Barber^{14,17,24}, J.Bartels¹⁸, O.Behnke¹⁷, J.Behr¹⁷, A.S.Belyaev^{15,56}, I.Ben-Zvi³⁷, N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogaz³⁶, C.Bracoi⁶, J.Bracinik⁰⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,b}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷, H.Bürkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, A.Caldwell⁷⁰, V.Cetinkaya⁰¹, V.Chekelian⁷⁰, E.Ciapala¹⁶, R.Ciftci⁰¹, A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoun⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterri¹⁶, P.Inezza²⁷, M.D'Onofrio²⁴, A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶, S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹, H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸, A.Glazov¹⁷, R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴, A.Guffant¹³, V.Guzy^{19,36}, C.Gwenlan⁴⁴, T.Har⁵⁰, Y.Haug³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸, M.Jacquet⁴², B.Jeanneret¹⁶, E.Jensen¹⁶, J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶², K.Kimura⁵⁸, R.Klees⁷⁵, M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak², M.Korostelev²⁴, A.Kosmick¹⁶, P.Kostka¹⁷, H.Kowalski¹⁷, M.Kraemer⁷⁵, G.Kramer¹⁸, D.Kuchle¹⁶, M.Kuze⁵⁸, T.Lapi^{21,c}, P.Laycock²⁴, E.Levichev⁴⁰, S.Levonian¹⁷, V.N.Litvinenko³⁷, A.Lombard¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶, A.Milanese¹⁶, J.G.Milhano⁷⁶, S.Moch¹⁷, I.IMorozov⁴⁰, Y.Muttoni¹⁶, S.Myers¹⁶, S.Naudi⁵⁵, Z.Nergiz³⁹, P.R.Newman⁶⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶, C.Pascaud⁴², H.Paukkunen⁵⁵, E.Perez¹⁶, T.Pieloni²³, E.Pilicef⁵², B.Pire⁴⁵, R.Placa

Present LHeC Study group and CDR authors


About 200 Experimentalists and Theorists from 76 Institutes


Supported by CERN, ECFA, NuPECC

The LHeC project

LHeC simulated dataset

Scenario B

- Integrated Luminosity: e[±]p=50 fb⁻¹
- $E_p = 7$ TeV, $E_e = 50$ GeV, Pol = ± 0.4
- Kinematic coverage: $2 < Q^2 < 5 \cdot 10^5 \text{ GeV}^2$; $2 \cdot 10^{-6} < x < 0.8$

Uncertainties

- Full simulation of Neutral and Charged current measurements
- Including Statistical, Uncorrelated and Correlated Systematic uncertaities
- Based on H1 best values
- Typical uncertainties
 - Stat.: from ~0.1% (low Q², NC) to ~10% (CC, x = 0.7)
 - Uncorr. Syst.: 0.7 %

source of uncertainty	error on the source or cross section
scattered electron energy scale $\Delta E_e'/E_e'$	0.1 %
scattered electron polar angle	0.1 mrad
hadronic energy scale $\Delta E_h/E_h$	0.5 %
calorimeter noise (only $y < 0.01$)	1-3 %
radiative corrections	0.5%
photoproduction background (only $y > 0.5$)	1%
global efficiency error	0.7 %

• Corr. Syst.: typically 1-3% (up to 9% for high-x CC)

PDF determination setup

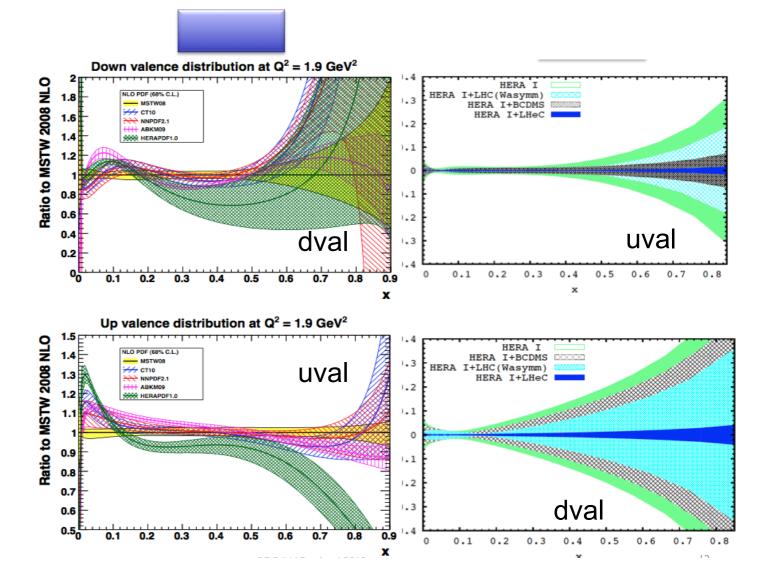
• Data

- Hera I combined dataset
- BCDMS fixed target proton/duteron DIS
- ATLAS W asymmetry data (adjusted uncertainties: stat/unc. syst: 0.5%, total:1%)
- LHeC simulated data Scenario B ($e^{\pm}p$ NC/CC red. cross sections, pol = \pm 0.4)

• Theory setup

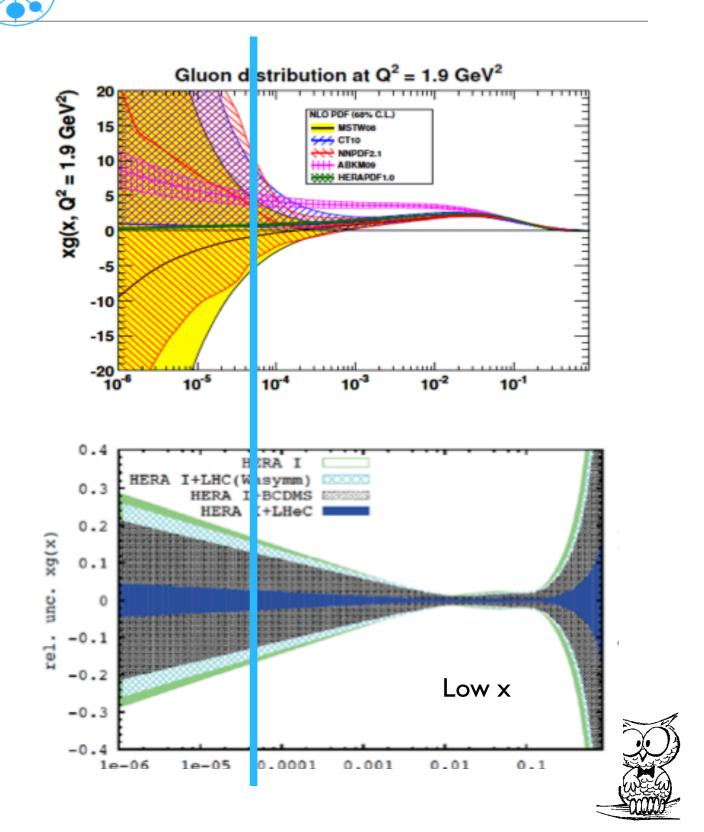
- HERAPDF1.0 settings
- NLO DGLAP, Thorne-Roberts scheme for HQ treatment
- Fitted PDFs
 - $u_v, d_v, g, U = u+c, D = d+b$
 - strange sea distribution proportional to non-strange sea
- One small-x exp. for sea and one valence
- Valence and Momentum sum rules imposed

$$egin{array}{rll} xg(x)&=&A_g x^{B_g}(1-x)^{C_g}(1+D_g x)\,,\ xu_v(x)&=&A_{u_v} x^{B_{u_v}}(1-x)^{C_{u_v}}(1+E_{u_v} x^2)\,,\ xd_v(x)&=&A_{d_v} x^{B_{d_v}}(1-x)^{C_{d_v}}\,,\ xar{U}(x)&=&A_{ar{U}} x^{B_{ar{U}}}(1-x)^{C_{ar{U}}}\,,\ xar{D}(x)&=&A_{ar{D}} x^{B_{ar{D}}}(1-x)^{C_{ar{D}}}\,. \end{array}$$

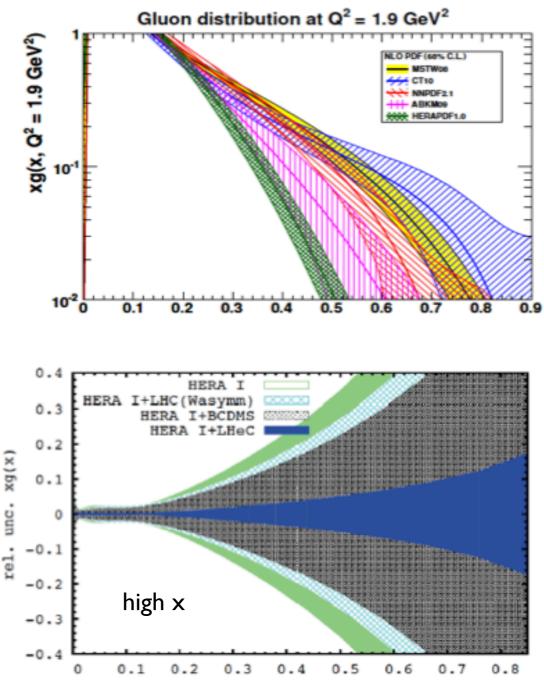


PDF constraints from LHeC - valence sector

- Knowledge of PDFs at large x currently limited by
 - Luminosity barrier
 - Challenging systematics
 - Nuclear/higher twist effects
- LHeC data could help reduce the uncertainties on large-x valence distributions to
 - 2% for u_v at x=0.8
 - 4% for d_v at x=0.8
- Crucial to study the d/u ratio at large x

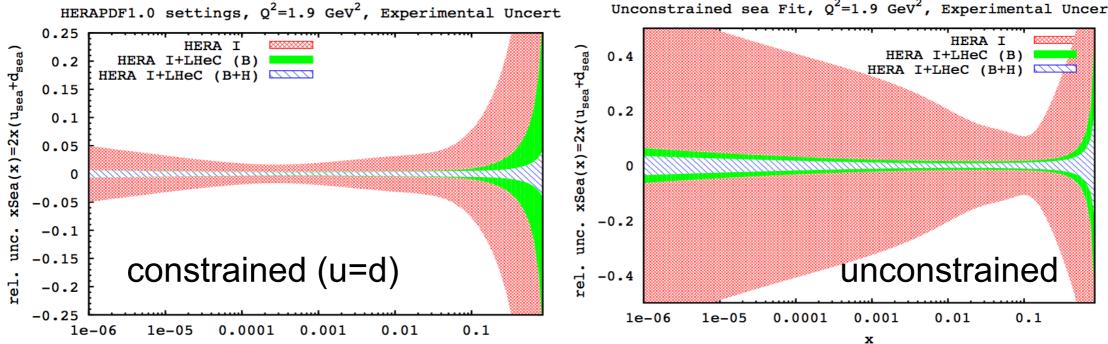


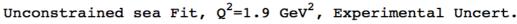
PDF constraints from LHec - small-x gluon


- Sensitivity of HERA data stops at x~5.10⁻⁴
- Uncertainties on small-x gluon driven by the parametrization
- LHeC data extend down to x~10⁻⁶, allowing for detailed studies of possible deviation from DGLAP evolution and evidence for BFKL resummation or saturation effects
- LHeC sensitivity to small-x gluon improved by use of F_L data (not considered in the present study)

PDF constraints from LHeC - large-x gluon

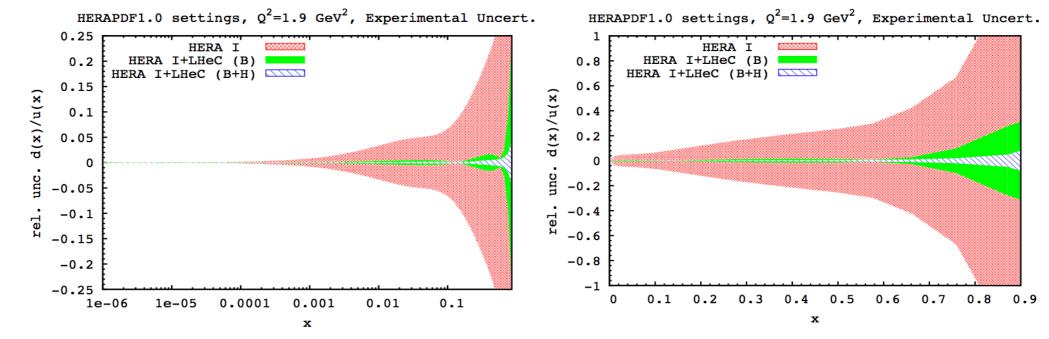
- Large-x gluon uncertainty in PDF fits quite large, mostly due to limited statistics (constrained by inclusive jet data)
- Related by evolution to large-x sea quarks (DGLAP evolution of valence distribution decouples)
- LHeC can disentangle the sea from the valence at large-x through measurements of CC reduced cross sections, F₂, F₂^{yZ}, xF₃
- Crucial for searches of high-mass resonances in BSM scenarios (gluino pair production)

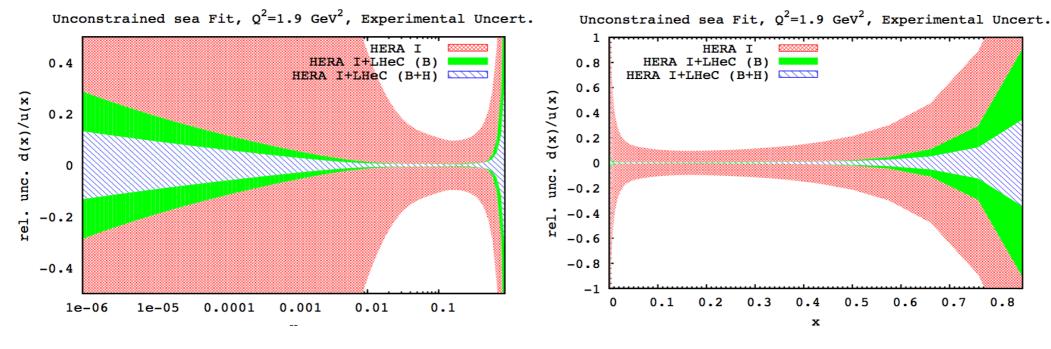




Releasing standard assumptions (u=d at small-x)

- Due to lack of constraining data standard PDF fits assume d=u at small-x \bigcirc
- HERA data do not constrain flavour separation at small-x, uncertainties grow \bigcirc substantially when theoretical assumptions are released
- LEC data provide enough experimental constraints to keep uncertainties on small-x light flavour under control

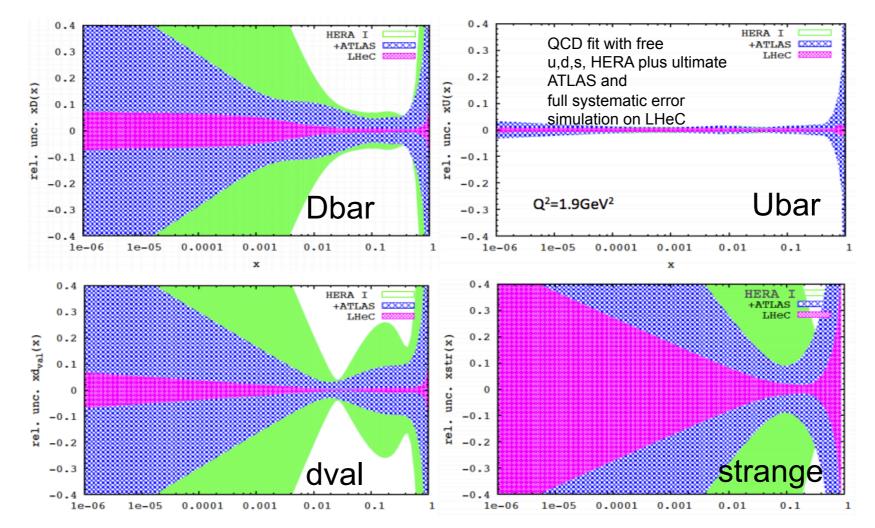




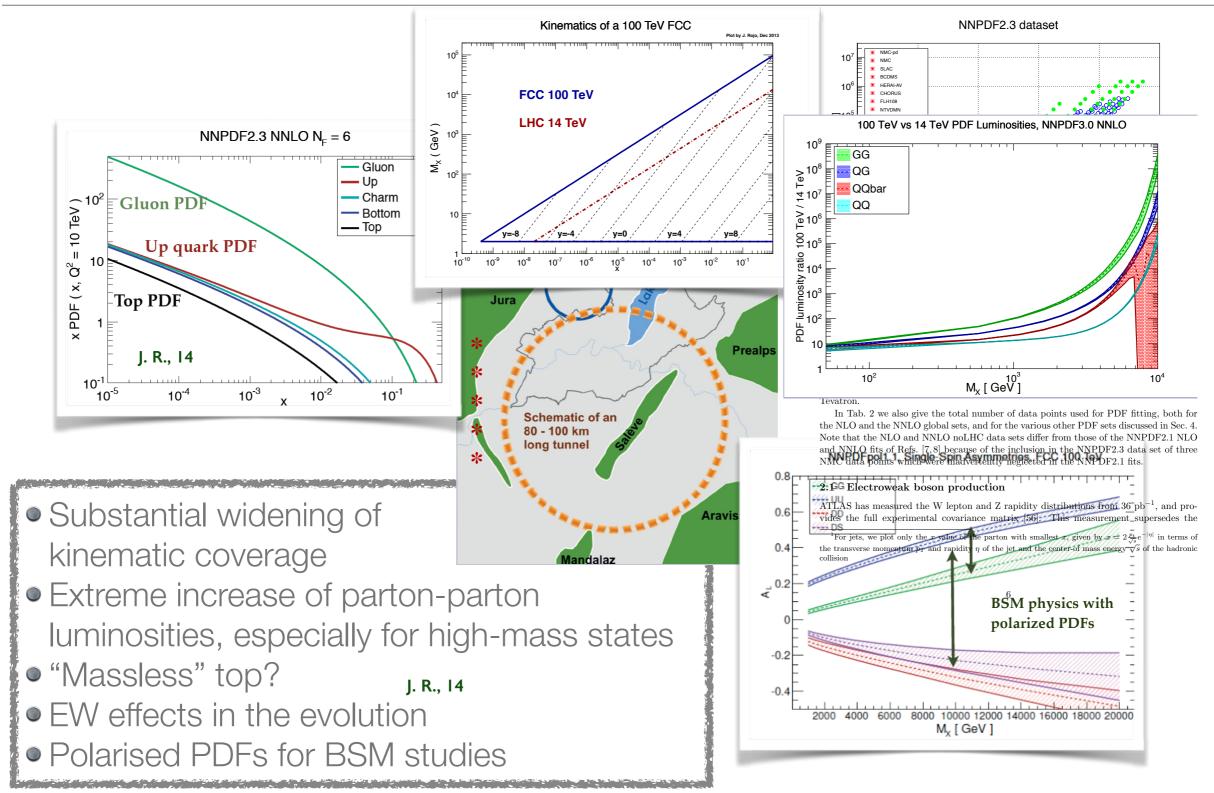
Releasing standard assumptions (d/u ratio)

Constrained decomposition:

Unconstrained sea decomposition:



The "ultimate" proton-only fit


- Combined fit to HERA, LHC and LHeC data has the potential to deliver a PDF set with very small, reliable, uncertainties even when releasing most of the standard assumptions (u=d at small-x, free strange parametrization)
- Only on high-energy, proton data: no higher-twist or nuclear corrections

PDFs at a 100 TeV collider

A whole new playground

Conclusions & Outlook

- Parton Distribution Functions will remain a crucial ingredient of our theoretical predictions as long as we will be dealing with hadron colliders ...
- Uncertainties on PDFs are, often, the limiting theoretical uncertainty on precision measurements at the LHC (M_W is one example)
- LHC (Run I) measurements are already providing constraints on some PDF combinations and more will come in the future
- Future machines, in particular LHeC, offer unique possibilities for PDF determinations
- A 100 TeV collider would be a whole new playground for PDF studies, with a plethora of new effects playing an important role (top PDFs, EW corrections/ evolution,)

