
Hunting for heavy composite Majorana neutrinos at the LHC

Roberto Leonardi, Orlando Panella

INFN and Università di Perugia

In collaboration with: Luisa Alunni Solestizi, Francesco Romeo, Livio Fanò

Search of Heavy Neutrinos in CMS

Excess over the SM expectation in the eejj channel.

iet

jet

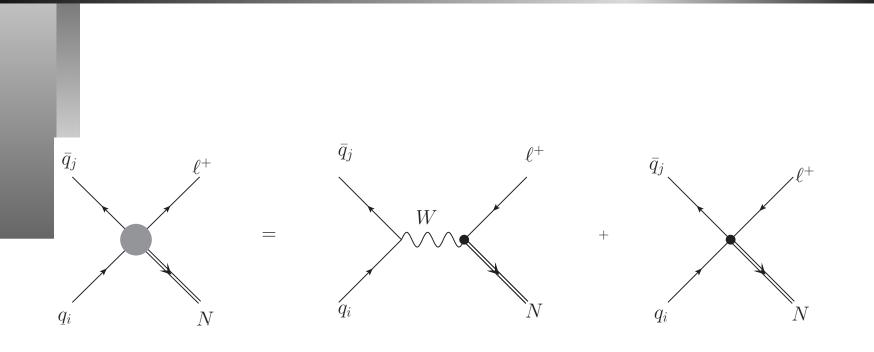
The Analysis was based on 19.7 fb^{-1} of intagrated luminosity and $\sqrt{s} = 8$ TeV. It reports a 2.8σ excess in the eejj invariant mass distribution in the interval $1.8TeV < M_{eejj} < 2.2TeV$

Composite models for quarks and

leptons

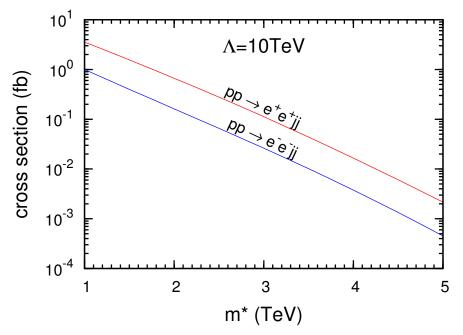
- The proliferation of standard model fermions can suggest a further composition
- If quarks and leptons are composite we expect:

 ⇒ Excited leptons and quarks
 ⇒ Contact interaction between four fermions: a residual interaction of an interaction between the constituent particles
 - Eichten, Lane e Peskin, Phys. Rev. B 50, 811 (1983)
 - Cabibbo, Maiani e Srivastava, Phys Lett. B 149, 459 (1984)
 - Baur, Spira e Zerwas, Phys. Rev. D 42, 815 (1990)

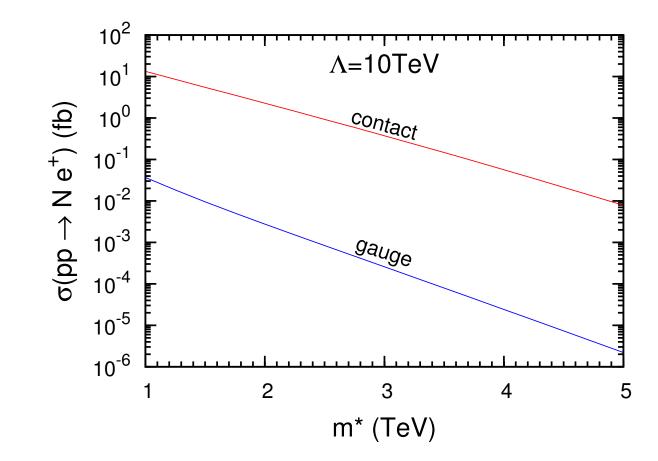

Pancheri and Srivastava, Phys. Lett. B 146 (1984).

- Fermions' composition trough the weak isospin symmetry
- It don't refer to the internal dynamics
- analogy with strong isospin \rightarrow prediction of hadronic states before the discovery of quarks and gluons
- SM q, $\ell \in I_W = 0, 1/2$ and $W^{\pm}, Z^0, \gamma \in I_W = 0, 1$ \Rightarrow excited fermions $\in I_W \leq 3/2$

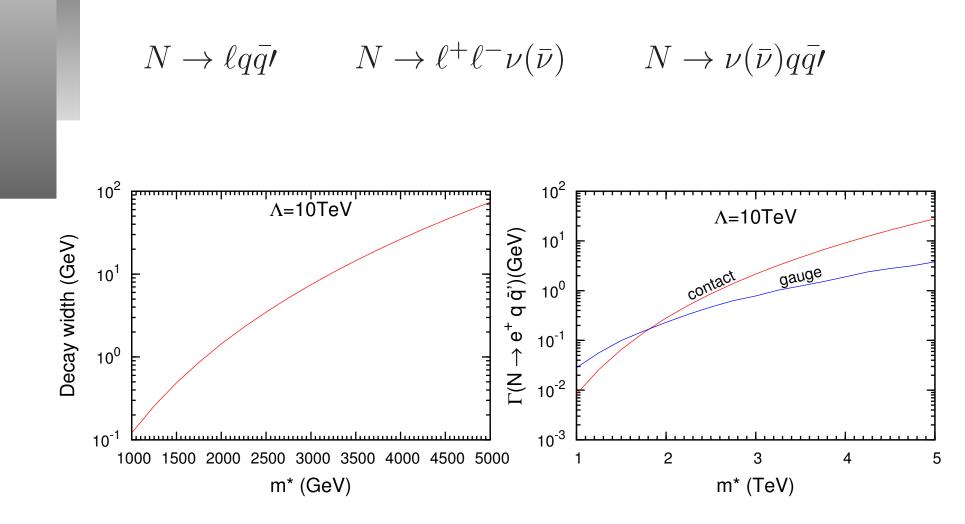
Multiplets of the model


I _w	Multiplet	Q	Y	Coupled tc	I _w	Multiplet	Q	Y	Coupled to
0	Ē	-1	-2	e _R through B ⁴	0	(i) U	2/3	4/3	uR throug B^{μ} and G^{μ}
1/2	$\boldsymbol{\epsilon} \equiv \begin{pmatrix} \mathbf{E}^{0} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	0	-1	$\mathfrak{L} = \begin{pmatrix} \mathbf{\nu} \mathbf{e} \\ \mathbf{e} \end{pmatrix}_{\mathbf{L}}$		(ii) D	-1/3	-2/3	d_R throug B^{μ} and G^{μ}
	$\boldsymbol{\epsilon} \equiv \begin{pmatrix} \\ \mathbf{E}^{-} \end{pmatrix}$	-1		through W ^µ and B ^µ	1/2	$\begin{pmatrix} \mathbf{U} \end{pmatrix}$	2/3	1/3	$q_L = \begin{pmatrix} u \\ d \end{pmatrix}_L$
1	$\boldsymbol{\epsilon} \equiv \begin{pmatrix} \mathbf{E}^{\mathbf{O}} \\ \mathbf{E}^{-} \\ \mathbf{E}^{} \end{pmatrix}$	0	-2	eg through W		$\Psi \equiv \begin{pmatrix} \mathbf{U} \\ \mathbf{D} \end{pmatrix}$	-1/3		through W B ^µ and G ^µ
	$\boldsymbol{\epsilon} \equiv \begin{pmatrix} \mathbf{E} \\ \mathbf{E}^{} \end{pmatrix}$	$-1 \\ -2$		through w	1	$ \begin{array}{c} \textbf{(i)} \\ \textbf{U} \equiv \begin{pmatrix} \textbf{U}_{+} \\ \textbf{U} \\ \textbf{D} \end{pmatrix} \end{array} $	5/3 2/3 -1/3	+4/3	uR through W
3/2	$\boldsymbol{\epsilon}_{\mathbf{M}} \equiv \begin{pmatrix} \mathbf{E}^{+} \\ \mathbf{E}^{0} \\ \mathbf{E}^{-} \\ \mathbf{E}^{} \end{pmatrix}$	$ \begin{array}{c} 1 \\ 0 \\ -1 \\ -2 \end{array} $	-1	$\varrho_{L} = \left(\stackrel{\nu_{e}}{e^{-}} \right)_{I}$ through W		$ \begin{array}{c} \mathbf{(ii)} \\ \mathbf{D} \equiv \begin{pmatrix} \mathbf{U} \\ \mathbf{D} \\ \mathbf{D}_{-} \end{pmatrix} \end{array} $		-2/3	d _R through W
		لا			3/2	(U+)	5/3	1/3	$q_L = \begin{pmatrix} u \\ d \end{pmatrix}_L$
						$\Psi_{\mathbf{M}} \equiv \begin{pmatrix} \mathbf{U}_{+} \\ \mathbf{U}_{\mathbf{D}} \\ \mathbf{D}_{-} \end{pmatrix}$	2/3 -1/3 -4/3		through W

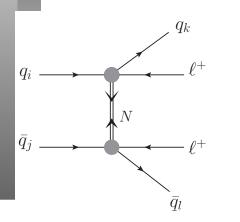
Contact and gauge interactions

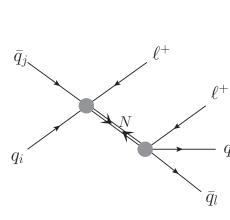

$$\mathcal{L}_{\mathsf{G}} = \frac{gf}{\sqrt{2}\Lambda} \,\bar{N} \,\sigma_{\mu\nu} \,\ell_L \,\,\partial^{\nu} W^{\mu} \,+ h.c.$$
$$\mathcal{L}_{\mathsf{CI}} = \frac{g_*^2}{\Lambda^2} \,\bar{q}_L \gamma^{\mu} q'_L \,\bar{N}_L \gamma_{\mu} \ell_L$$

We consider a Majorana neutrino The same-sign dilepton is a peculiar final state for Majorana neutrinos We choose the positive same-sign dilepton due to its larger cross section

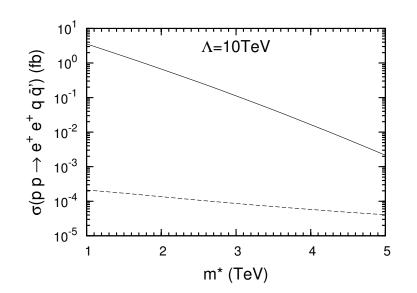

Production of the heavy Majorana neutrino

 $pp \to N\ell$



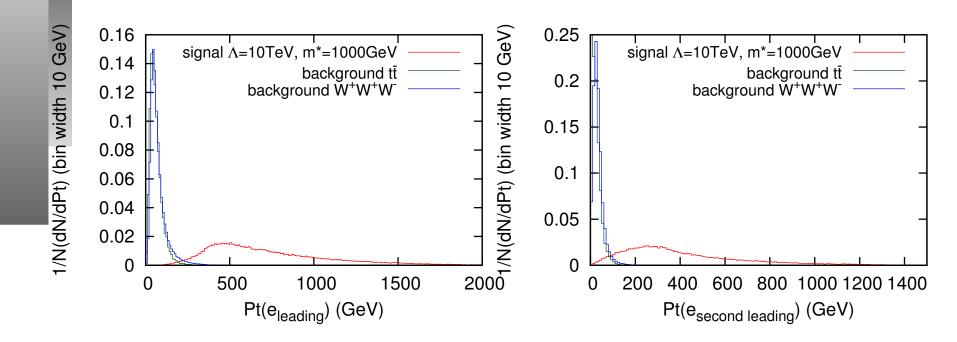

The contact interaction is the dominant one

Decays of the heavy Majorana neutrino



Processes under examination

Exchange of virtual heavy Majorana neutrino (left), ⁺ resonant production of heavy _{qk}Majorana neutrino (right)

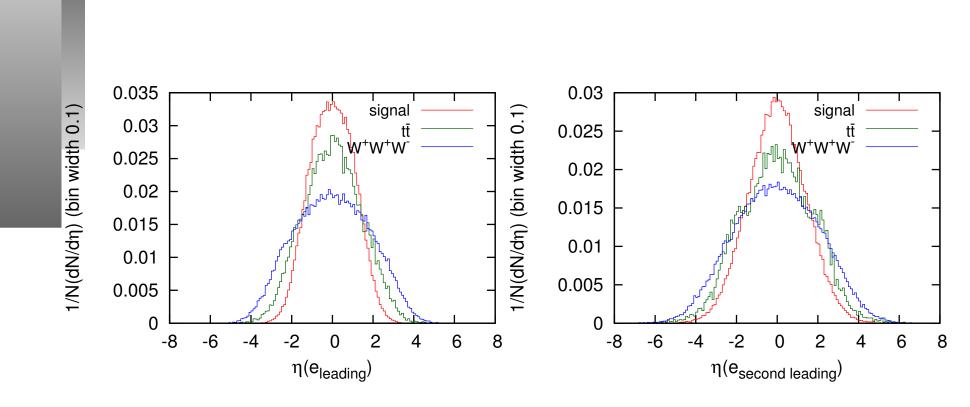


The resonant production is the dominant process

- In SM the lepton number is conserved, so processes like the our ($\Delta L = 2$) are not allowed
- However in the SM there are several processes that can produce same sign leptons in association with jets
- the main backgrounds are:
 - $pp \to t\bar{t} \to \ell^+ \ell^+ \nu \nu jets$
 - $pp \rightarrow W^+W^+W^- \rightarrow \ell^+\nu\ell^+\nu jj$

Kinematical distributions:

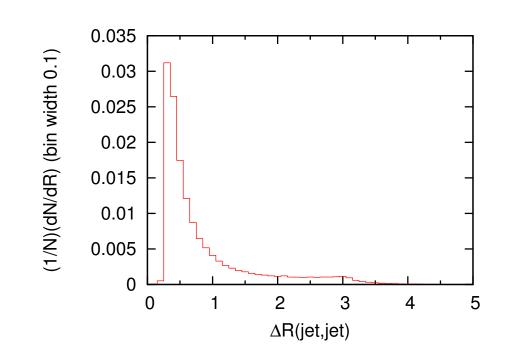
Transverse momentum



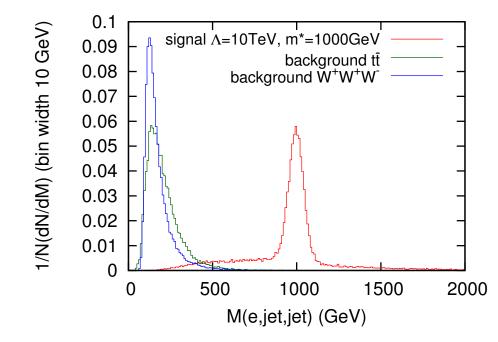
We can reduce drastically the background with the cuts:

• $p_T(e_{\text{leading}}^+) \ge 200 \,\text{GeV}$

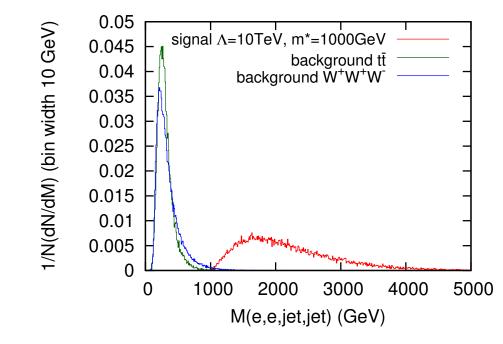
•
$$p_T(e^+_{\text{second-leading}}) \ge 100 \,\text{GeV}$$


Kinematical distributions: pseudorapidity

The pseudorapidity is not very selective


Kinematical distributions:

 $\Delta R(jet, jet)$


- A large fraction of the events have two jets with very small separation
- In the reconstruction process we will have merging

Kinematical distributions: M(e,j,j)

The invariant mass of the second leading electron plus the two jets give informations about the mass of heavy neutrino

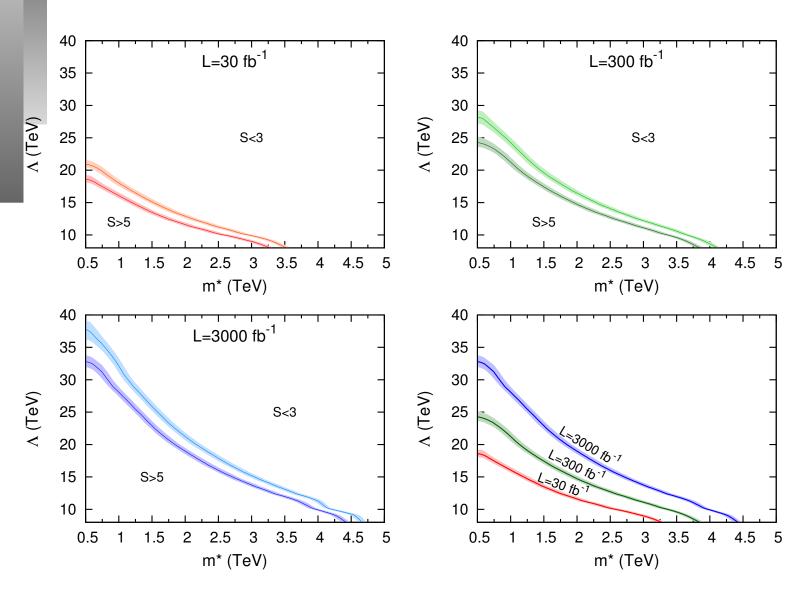
Kinematical distributions: M(e,e,j,j)

The eejj invariant mass can easily accomodate the excess in the interval observed by CMS

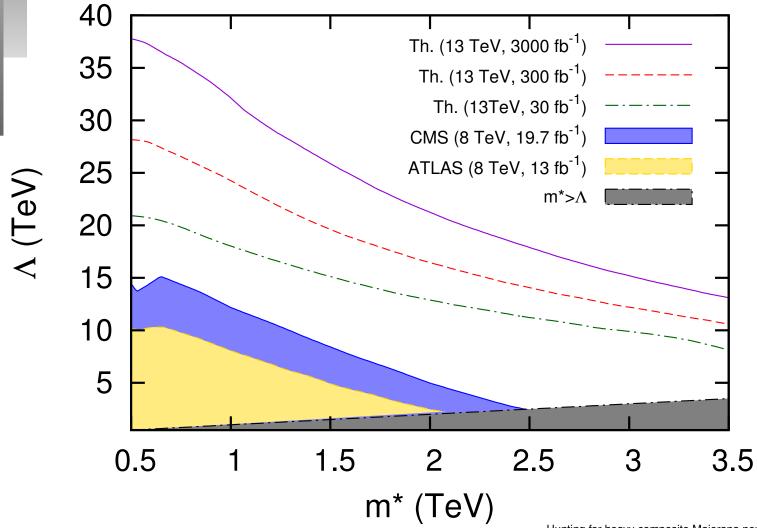
→ LHE files generation by CalcHEP for signal and background

- Scan in parameters space:
 - $\Lambda \in [8, 40]$ TeV with step of 1 TeV
 - $m^* \in [500, 5000]$ GeV with step of 250 GeV
- 100000 events for each LHE file

⇒ DELPHES simulates the particles reconstruction by the detector considering


- efficiency
- geometrical acceptance

- Selection criteria:
 - Presence of two e^+
 - Kinematical cuts:


 $p_T(e^+_{\text{leading}}) \ge 200 \,\text{GeV}, \, p_T(e^+_{\text{second-leading}}) \ge 100 \,\text{GeV}$

- Determination of reconstruction efficiencies
- Determination of expected number of events for signal and background: $N_s = L\sigma_s\epsilon_s$, $N_b = L\sigma_b\epsilon_b$
- Determination of statistical significance: $S = \frac{N_s}{\sqrt{N_h}}$
- Determination of contour plots in the parameter space (Λ , m^*) at S = 3 and S = 5

Contour plots

Contour plots

Conclusions

- We have performed a phenomenological study about a heavy neutrino in view of the recent observation by CMS of the excess in eejj channel
- We considered the composite model scenario and an excited Neutrino of Majorana type
- We found that the invariant mass distribution of the second leading electron and the two jets is higly correlated to the heavy neutrino mass
- We provide the contour plots of Statistical significance at 3and 5-sigma and compare them to the experimental data of Run-I, showing a great potential of discovery or improving the current bounds in eejj signature from a heavy composite Majorana neutrino