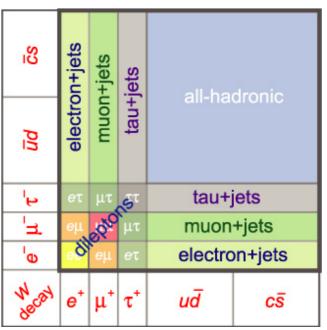


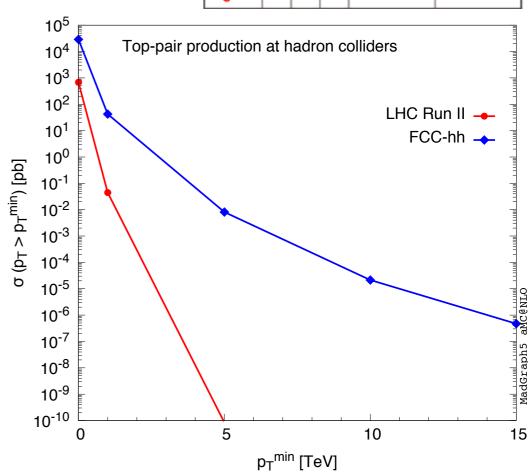
Top physics at future hadron colliders

Lepton and Future Colliders 2015

Trento

Marco Zaro LPTHE - Université Pierre et Marie Curie Paris - France



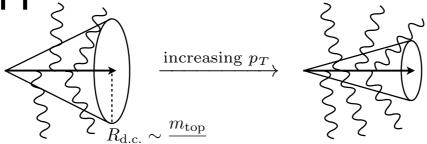


Top & FCC-hh facts

- A huge amount of top-quark pairs will be produced at a 100 TeV hadron collider: $\sigma_{NLO}\sim30$ nb (~40 x LHC run II)
 - 3 · 10¹⁰ top pair produced with 10ab⁻¹
 - Many tops will be boosted
- Can we detect all them?
- What can we do with them?
- Is it just tt?

Tagging top quarks at a FCC-hh

Larkoski, Maltoni, Selvaggi, arXiv:1503.03347


Challenges:

 Boosted objects radiate a lot, both ISR and FSR (before the decay). Jet-mass measurement affected:

$$m^2 \sim m_t^2 + p_T p_T^{ISR} R^2$$

In the very boosted regime ($p_T \sim 10 \text{TeV}$), $p_T^{ISR} \sim 5 \text{ GeV}$ can give large distortions for $R \sim 1$

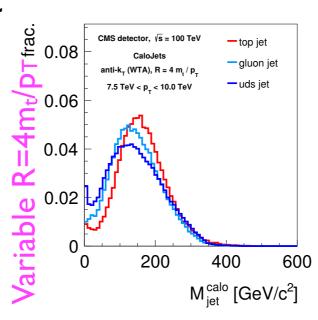
Grooming methods never studied in such an extreme regime FSR radiation suppressed inside dead cone: $R_{dc} \sim m_t/p_T$

 Decay products of a boosted object fall inside a very narrow cone: R~2mt/pT.

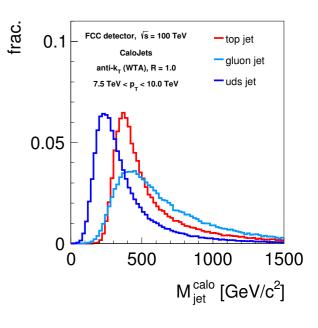
R~0.05 for p_T =7.5 TeV, comparable with the resolution of ATLAS/CMS E-M calorimeters.

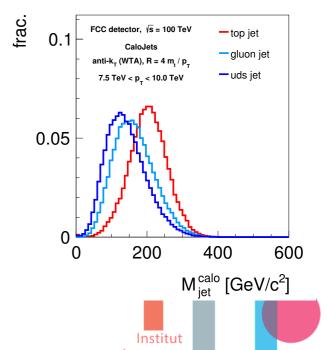
A variable-R jet algorithm

- Jet-mass degradation due to ISR can be reduced using a jet radius $R(p_T) = C m_t / p_T$
 - First cluster jets using anti-k_T with fixed R
 - Recluster the constituents of each jet with R(p_T)
 - Keep the hardest subjet as the top jet
 - Mass jet contamination now reduced to $m^2 = m_t^2 (I + C^2 p_T^{ISR}/p_T)$
 - Dead-cone effect also reduces contamination from FSR

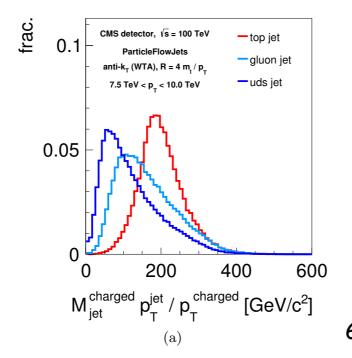


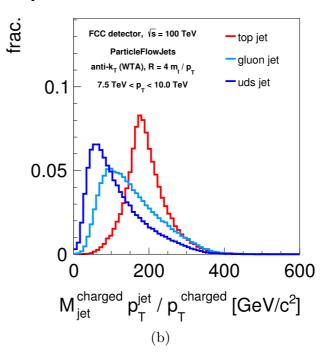
A variable-R jet algorithm: effects on jet-mass distribution


- Fixed-radius jets show poor mass discrimination between signal and background
- Using a p_T-dependent radius improves the picture, but effects due to calorimeter granularity appear
- Calo-only based analysis insufficient Cutting on the mass will degrade tagging efficiency


CMS-like detector

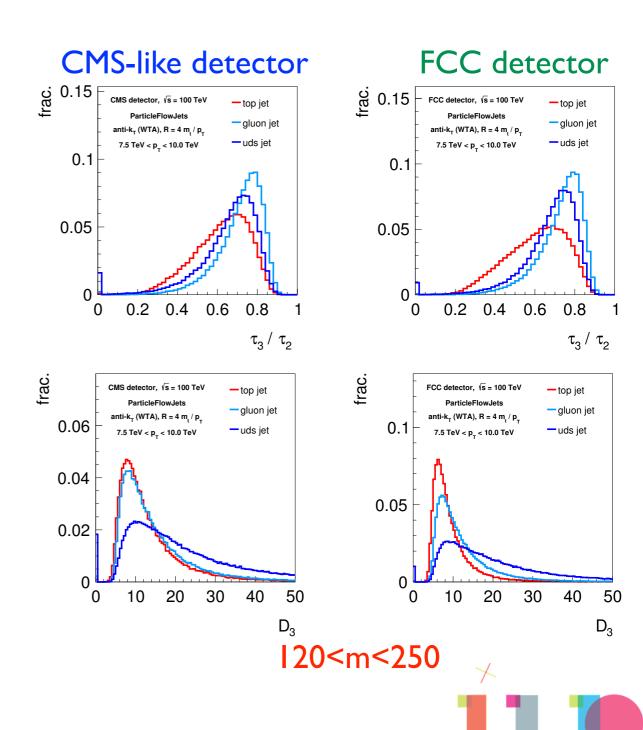
FCC detector



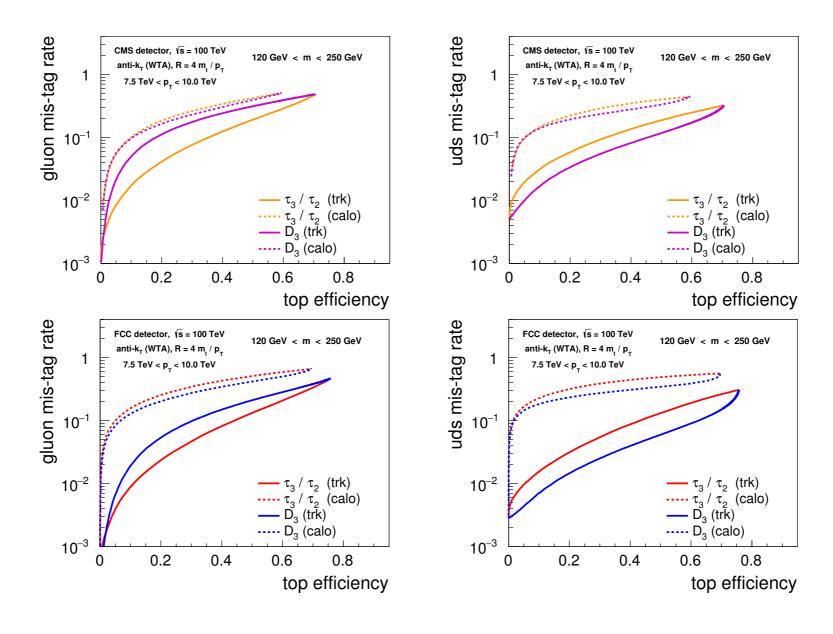


Improving the mass resolution with tracks

- Track-based information can help to achieve a better mass resolution
- Use charged tracks and reconstruct full jet mass as
 m = m^{ch} p_T/p_T^{ch}
- Mass discrimination much improved, even for detectors with poor calo granularity
- Further improvements based on jet substructure



Exploiting substructure information

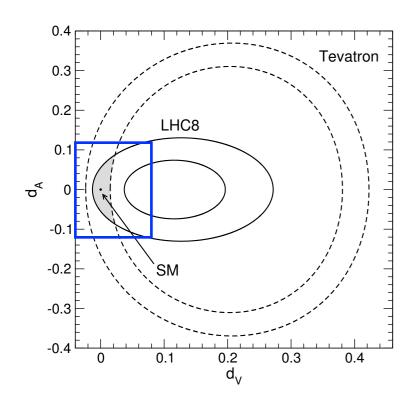

- Select 3-prongs-like jets using Nsubjettiness ratio T_{3,2} and ECF D₃
- N-subjettiness sensitive to top/ gluon discrimination, ECF to top/ uds
- @50% top efficiency:
 - mass cut + $T_{3,2} \rightarrow 83\%$ gluon rejection
 - mass cut + D₃ → 94% uds rejection

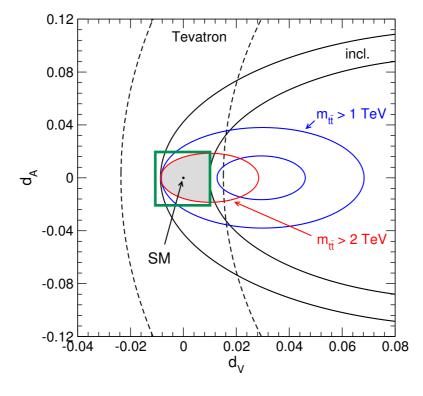
Performance: top efficiency vs mistag rate

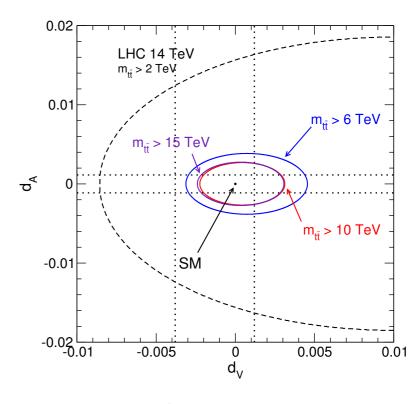
Exploring top properties #1: STREEN TO THE CHROMO-electric/magnetic moment

Aguilar-Saavedra, Fuks, Mangano, arXiv:1412.6654

 Top dipole moments are generated via loops in the SM, and are very small


$$\mathcal{L}_{\rm tg}\!=\!-g_s\bar{t}\gamma^\mu\frac{\lambda_a}{2}t\,G_\mu^a\!+\!\frac{g_s}{m_t}\bar{t}\sigma^{\mu\nu}\!\left(\!\frac{d_V\!+\!id_A\!\gamma_5}{2}\!\right)\!\frac{\lambda_a}{2}t\,G_{\mu\nu}^a$$
 chromo-electric


- Most stringent bounds from low-Q² ($|d_{V,A}| \le 10^{-3}$)
- In the SM $d_V^{Iloop}=0.007$, d_A negligible
- Weakly interacting NP at the TeV scale \rightarrow d_{V,A}~0.05
- The cross-section depends on $d_{V,A}$ as a polynomial \rightarrow cross-section measurements can be used to constrain the moments

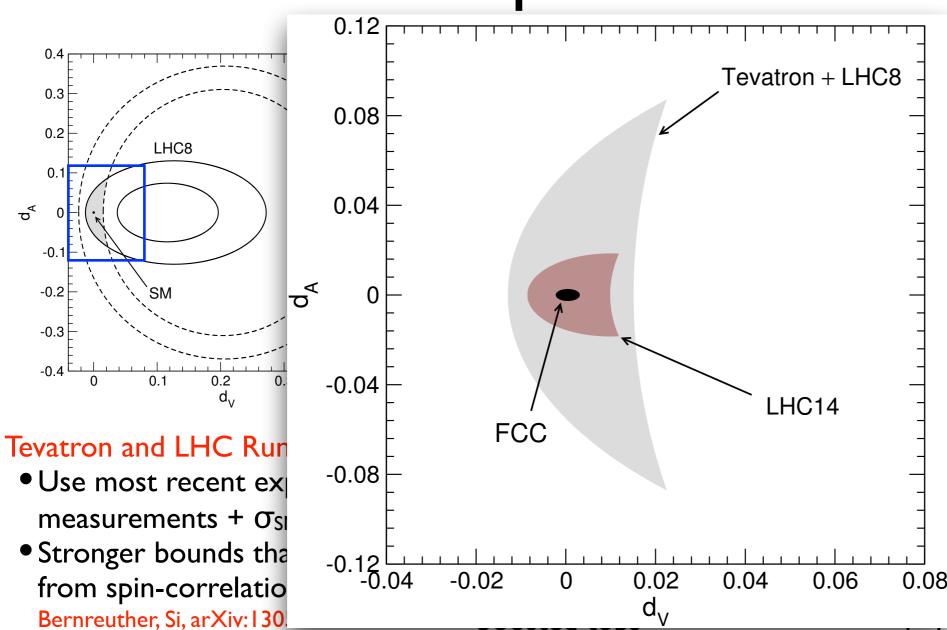

$$\sigma_{t\bar{t}}^{(8)}(\text{nb}) = \sigma_{\text{SM}}^{(8)}(\text{nb}) - 1.53 d_V + 10.1 d_V^2 - 23.0 d_V^3 +28.6 d_V^4 + 7.0 d_A^2 + 28.6 d_A^4 - 23.1 d_V d_A^2 + 57.3 d_V^2 d_A^2$$

Present and future constraints on dipole moments

Tevatron and LHC Run I

- Use most recent experimental measurements + σ_{SM} @NNLO
- Stronger bounds than those from spin-correlations
 Bernreuther, Si, arXiv:1305.2066
 CMS-PAS-TOP-14-005

LHC Run II (100fb⁻¹)


- Use information both on total xsect and on xsect at large invariant mass
- Use CMSTopTagger (WP3) for boosted tops

FCC (10ab⁻¹)

- Ask one muonic top + cut on muon energy to reject QCD background
- Very high invariant mass region
 (>15TeV) limited by statistics
- Compatible with current indirect limits

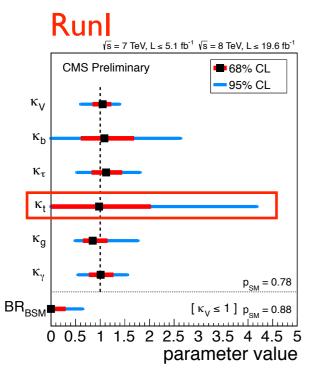
Present and future constraints on dipole moments

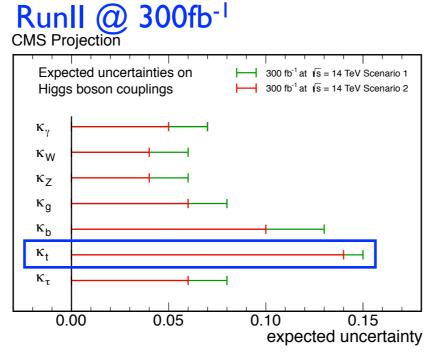
LHC 14 TeV $m_{t\bar{t}} > 2$ TeV $m_{t\bar{t}} > 6$ TeV $m_{t\bar{t}} > 10$ TeV

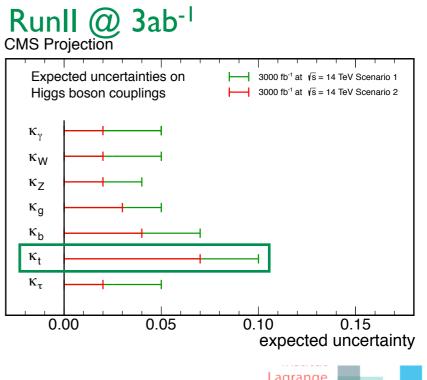
10ab⁻¹)

one muonic top + cut on on energy to reject QCD (ground

0.08y high invariant mass region 5TeV) limited by statistics


• Compatible with current indirect


CMS-PAS-TOP-14-005



Exploring top properties #2: The top Yukawa coupling

- The determination of the top Yukawa is of utmost importance for present and future colliders
- ttH is the only channel where yt can be directly measured
 - Not discovered at the Runl, looking forward for Runll
- Prospects from Runll: y_t known at 7-10% level, with 3ab-1
- Can we go down to 1% with the FCC?

Ratios can help...

Mangano, Plehn, Reimitz, Schell, Shao, arXiv: I 507.08169

- ttH and ttZ are quite similar processes, with rather large theoretical uncertainties (~10%).
 - Dominant production mode (gg) has identical diagrams Correlated QCD corrections, scale and α_S systematics

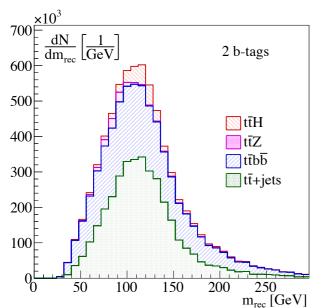
NLO QCD	$\sigma(t\bar{t}H)$ [pb]	$\sigma(t\bar{t}Z)$ [pb]	$\sigma(t\bar{t}H)/\sigma(t\bar{t}Z)$
13 TeV	$0.475^{+5.79\%+3.33\%}_{-9.04\%-3.08\%}$	$0.785^{+9.81\%+3.27\%}_{-11.2\%-3.12\%}$	$0.606^{+2.45\%+0.525\%}_{-3.66\%-0.319\%}$
100 TeV	$33.9^{+7.06\%+2.17\%}_{-8.29\%-2.18\%}$	$57.9^{+8.93\%+2.24\%}_{-9.46\%-2.43\%}$	$0.585^{+1.29\%+0.314\%}_{-2.02\%-0.147\%}$

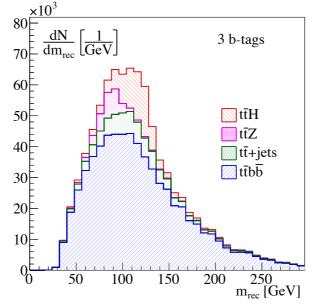
 Almost identical kinematics boundaries (mz~mH) Correlated PDF and m_t systematics

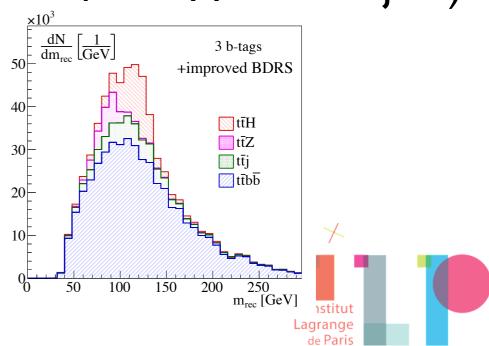
100TeV	$rac{\sigma(tar{t}H)}{\sigma(tar{t}Z)}$		$rac{\sigma(tar{t}H)}{\sigma(tar{t}Z)}$
MSTW2008	$0.585^{+1.29\%+0.0526\%}_{-2.02\%-0.0758\%}$	default	$0.585^{+1.29\%}_{-2.02\%}$
CT10	$0.584^{+1.27\%}_{-1.99\%}^{+0.189\%}_{-0.260\%}$	$\mu_0 = m_t + m_{H,Z}/2$	$0.580^{+1.16\%}_{-1.80\%}$
NNPDF2.3		$m_t = y_t v = 174.1 \text{ GeV}$	$0.592_{-2.00\%}^{+1.27\%}$
NNPDF 2.5	$0.584^{+1.29\%+0.0493\%}_{-2.01\%-0.0493\%}$	$m_t = y_t v = 172.5 \text{ GeV}$	$0.576^{+1.27\%}_{-1.99\%}$
09-2015		$m_H = 126.0 \; { m GeV}$	$0.575^{+1.25\%}_{-1.95\%}$

Is a 1% measurement of y_t possible at the FCC?

- Exploit tTZ measurements and uncertainties correlation in the ratio tTH/tTZ
- Exploit harder spectra at 100TeV than at 13TeV (boosted regime) to enhance S/B
- Use improved HepTopTagger2/BDRS Higgs tagger
 - Add information from N-subjettiness
 - Use OptimalR mode, to reduce the jet size until some decay subjets are dropped

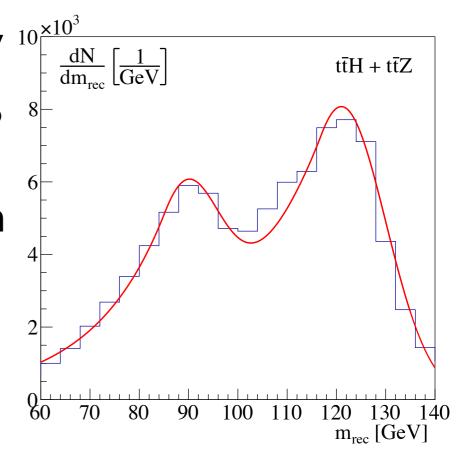





Signal and background processes and selection

- Leading backgrounds to be simulated are $t\overline{t}b\overline{b}$, $t\overline{t}Z$, $t\overline{t}$ +jets
- Simulated semileptonic top decay, Higgs and Z decay to bb
- Require:
 - One isolated lepton, $|y_1| < 2.5$, $p_T(I) > I 5 GeV$
 - Two fat jets (C/A, R=I.8, p_T>200GeV)
 - One HepTopTagged jet
 - One BDRS Higgs Tagged jet, with 2 b-tags inside

• An extra b-tag in the "rest" of the event (to suppress tt+jets)



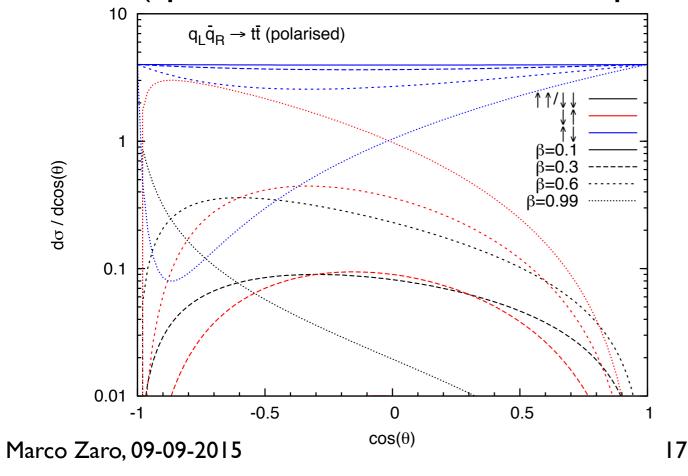
Signal extraction

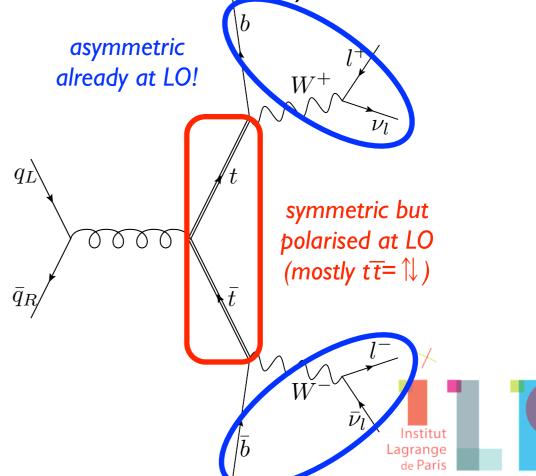
- Subtract the background by interpolating the two sidebands regions $m_{bb} \in [0,60]$ GeV U [160, 300] GeV
- In the signal region ($m_{bb} \in [104, 136]$ GeV one expects 44700 signal events, with S/B ~0.33 (at $20ab^{-1}$)
- Assuming perfect background subtraction the stat. error on signal is N_S =0.013 N_S
- $N_H/N_Z=2.80\pm0.03$, with systematic and theoretical uncertainties cancelling in the ratio

Exploring top properties #3: Top asymmetry and polarisation in ttW

Maltoni, Mangano, Tsinikos, MZ, arXiv: 1406.3262

- Top asymmetry and polarisation can provide useful (indirect) informations on the nature of new physics
- A measurement of the top asymmetry does not seem feasible at the FCC, because $t\bar{t}$ is essentially produced via gg only
- ttW production can be an alternative
 - $q\overline{q}$ induced at LO, has a rather large asymmetry at NLO
 - A_ttt=0.45, A_tttW=2.24 @LHC RunII
 - A_ttt=0.12, A_tttW=1.85 @FCC
 - Top quarks are highly polarised





Polarised top production

- The radiation of a W boson from the initial line has the effect of polarising the light quarks for details see Parke, Shadmi, hep-ph:9606419
 - $t\overline{t}W$ is totally analogous to polarised $q\overline{q} \rightarrow t\overline{t}$ scattering
 - $t\bar{t}$ pair is highly polarised ($\uparrow\downarrow$ dominates at threshold)
 - The top decay products are asymmetric already at LO (spin-correlations have to be preserved in the simulation)

Decay product asymmetries and prospects for LHC and FCC measurements

		8 TeV	13 TeV	14 TeV	33 TeV	100 TeV
$tar{t}$	$\sigma(\mathrm{pb})$	$198^{+15\%}_{-14\%}$	$661^{+15\%}_{-13\%}$	$786^{+14\%}_{-13\%}$	$4630^{+12\%}_{-11\%}$	$30700^{+13\%}_{-13\%}$
	$A_c^t(\%)$	$0.72^{+0.14}_{-0.09}$	$0.45^{+0.09}_{-0.06}$	$0.43^{+0.08}_{-0.05}$	$0.26^{+0.04}_{-0.03}$	$0.12^{+0.03}_{-0.02}$
$tar{t}W^\pm$	$\sigma({ m fb})$	$210^{+11\%}_{-11\%}$	$587^{+13\%}_{-12\%}$	$678^{+14\%}_{-12\%}$	$3220^{+17\%}_{-13\%}$	$19000^{+20\%}_{-17\%}$
	$A_c^t(\%)$	$2.37^{+0.56}_{-0.38}$	$2.24^{+0.43}_{-0.32}$	$2.23^{+0.43}_{-0.33}$	$1.95_{-0.23}^{+0.28}$	$1.85_{-0.17}^{+0.21}$
	$A_c^b(\%)$	$8.50^{+0.15}_{-0.10}$	$7.54_{-0.17}^{+0.19}$	$7.50^{+0.24}_{-0.22}$	$5.37^{+0.22}_{-0.30}$	$3.36^{+0.15}_{-0.19}$
	$A_c^e(\%)$	$-14.83_{+0.95}^{-0.65}$	$-13.16^{-0.81}_{+1.12}$	$-12.84^{-0.81}_{+1.11}$	$-9.21^{-0.87}_{+1.05}$	$-4.94^{-0.63}_{+0.72}$

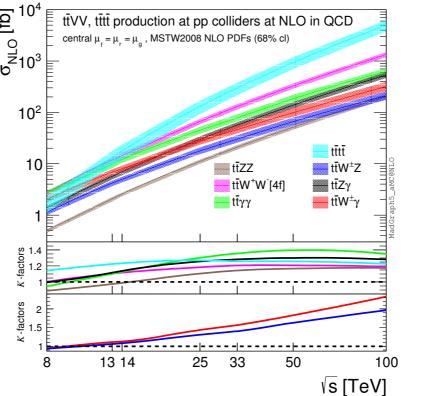
Expected sensitivity on asymmetries (optimistic estimate)

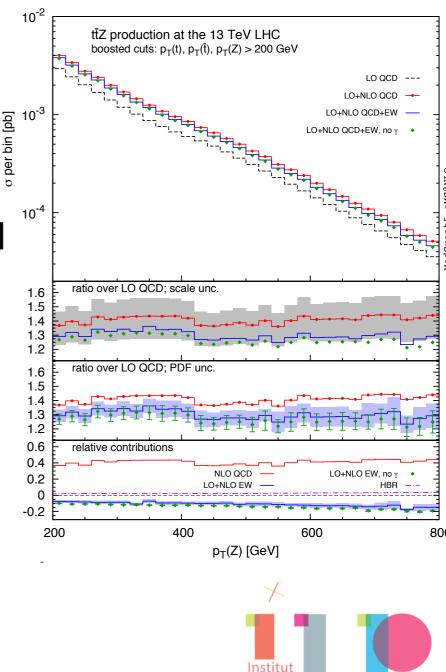
tŧW: δΑ/Α	t	b	e/µ
8TeV 40fb	209%	58%	33%
14TeV 300fb	45%	13%	8%
14TeV 3ab	14%	4%	2%
100TeV 3ab	3%	2%	1%

tt + vector bosons: A quick update

NLO Electroweak corrections to ttH/Z/W recently computed in

Frixione, Hirschi, Pagani, Shao, MZ, arXiv:1504.03446


Rather small at 100 TeV


• 2% ttH, 5% ttZ, 10%ttW

 Can be important in boosted or very boosted scenarios, and in tails of distributions

• All tt+V, tt+VV, tttt processes studied and simulated at NLO+PS accuracy in Maltoni, Tsinikos, Pagani, arXiv:1507.05640

Conclusions

- Top quark physics will be one of the key topics at the FCC
- ullet New techniques are being developed to improve tagging capability at large p_T
- The huge amount of top quarks will allow us to measure top properties with incredible precision
- Much more to come!

Backup: substructure observables

- N-subjettines: $\tau_N^{(\beta)} = \sum p_{Ti} \min \left\{ R_{i1}^\beta, \dots, R_{iN}^\beta \right\}$ Thaler, Van Tilburg, arXiv:1011.2268 & 1108.2701
 - I, N are the candidate subjets
 - It is ~0 if there are N jets or less
 - It is >> 0 if there are at least N+1 subjets
 - Ratio of $T_{N+1}/T_N \sim 0$ when there are N+1 subjets

• Energy correlation functions (ECFs): Larkoski, Salam, Thaler, arXiv:1305.0007
$$ECF(N,\beta) = \sum_{i_1 < i_2 < \ldots < i_N \in J} \left(\prod_{a=1}^N p_{Ti_a}\right) \left(\prod_{b=1}^{N-1} \prod_{c=b+1}^N R_{i_b i_c}\right)^{\beta}$$

- N+1 ECF goes to 0 if there are only N subjets
- The dimensionless ratio $ECF(N+I)ECF(N-I) / ECF(N)^2$ goes to 0 if there are N subjets

