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Outline
✦ Top mass 
‣ Highlight of a few key issues 
‣ Dwell on some recent beautiful results 
‣ Implications for experiment 

✦ Top couplings 
‣ Rough status of what is known 
‣ and what we might eventually know
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Reviews e.g.:
Snowmass (2013) write-up A. Juste et al, arXiv: 1310.0799

S. Moch et al (2014) MITP workshop, arXiv:1405.481





The last of the mass problems?
‣ We thought we had solved it in the 17th century 
‣ (i) resistance force and (ii) gravitational coupling 

‣ New insight in 1905: condensed energy 
‣ Non-trivial for proton 

‣ Yet newer insight: coupling to condensate 

‣ Finally 
‣ Mass of confined particle? Conceptually solved, but practically subtle
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I. Newton (1687)

A. Einstein (1905)

R, Brout, F. Englert, P. Higgs,  Kibble, 
Hagen, Guralnik  (1964 -2012)

K. Wilson; Durr et al (2008)

Gravity holds 
universe together  

Does top make the 
universe fall apart? 



State of the Vacuum 
‣ Top quark dominant in loop corrections that make the Higgs 4-pt coupling evolve. Full 

two-loop analysis: 

‣ Depends on precise top quark mass 
‣ within 300 MeV or so 

‣ But no practical worries about universe expiring
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Figure 2: Upper: RG evolution of � (left) and of �� (right) varying Mt, ↵3(MZ), Mh by
±3�. Lower: Same as above, with more “physical” normalisations. The Higgs quartic coupling
is compared with the top Yukawa and weak gauge coupling through the ratios sign(�)

p
4|�|/yt

and sign(�)
p

8|�|/g2, which correspond to the ratios of running masses mh/mt and mh/mW ,
respectively (left). The Higgs quartic �-function is shown in units of its top contribution, ��(top
contribution) = �3y4t /8⇡

2 (right). The grey shadings cover values of the RG scale above the
Planck mass MPl ⇡ 1.2⇥ 1019 GeV, and above the reduced Planck mass M̄Pl = MPl/

p
8⇡.
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [107] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.35GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (59)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-
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Buttazzo et al (July 2013)



Consistent effective potential and the top mass

‣ Effective potentials are not gauge invariant 
‣ but their extrema are gauge invariant, and scale invariant 

‣ find that stability bound is gauge-dependent in perturbation theory 

‣ Consistent treatment to order ħ combines, at LO, tree-level with one-loop  
‣ Find 

‣ stability bound on top pole mass: 171.2 
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Andreassen, Frost, Schwartz..
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1-loop, traditional method

LO, consistent method

2 loops, traditional method (Landau gauge)
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FIG. 1. Gauge dependence of the absolute stability bound
with mpole

t = 173.34 GeV.

is satisfied. For values ofmh andmt close to the observed
SM values, there are two solutions to this equation: the
lower µX is where V (LO) has a maximum, and the higher
µX where the minimum occurs. In the SM these scales
are

µmax
X = 2.46⇥ 1010 GeV (6)

µmin
X = 3.43⇥ 1030 GeV. (7)

These numbers and results which follow use mpole
h =

(125.14± 0.24) GeV, combined from [27, 28].

For the potential at the next-to-leading order (NLO),
one contribution comes from the ~2 terms in the 1-loop
potential with � ⇠ ~ scaling:

V (1,NLO)(h) =
�1

256⇡2


⇠Bg

2
1

✓
ln

�h4(⇠Bg21 + ⇠W g22)

4µ4
� 3

◆

+⇠W g22

✓
ln

�3h12⇠2W g42(⇠Bg
2
1 + ⇠W g22)

64µ12
� 9

◆�
�h4 (8)

Another contribution V (2,NLO)(h) comes from the �0 and
ln� terms in 2-loop potential. In Landau gauge, these

terms are h4/4 times what is written as �
(2)
e↵ in Eq.

(C.4) of the published version of [2]. Finally, there is
the contribution, V (n>2,NLO)(h) from 3-loop and higher
order graphs proportional to inverse powers of �. Includ-
ing all these terms, the potential at each extremum will
be gauge-invariant. Conveniently, the higher-loop-order
graphs contributing at NLO vanish in Landau gauge
(⇠B = ⇠W = 0). Thus the gauge-invariant NLO value
of the potential at the minimum is simply

V NLO
min = V (LO)(µX) + V (2,NLO)(µX) (9)

To derive this, we consistently truncated to O(~2) and
used d

dhV
(LO) = 0 at h = µX . Note that this is the RG-

improved e↵ective potential: the resummation is implicit
in the solution for µX . At NNLO, an infinite number of
loops are relevant, even in Landau gauge [13].

FIG. 2. Gauge dependence of the instability scale ⇤I , defined
by V (⇤I) = 0, at 1-loop in the traditional approach. There
is no known way to make this scale gauge-invariant.

Using Eq. (9) we find that for absolute stability at
NLO, the Higgs pole mass must satisfy

mpole
h

GeV
> (129.40± 0.58) + 2.26 (

mpole
t � 173.34 GeV

1.12 GeV
)

(10)
This bound is around 275 MeV lower than the bound
from the traditional approach in Landau gauge (mpole

h >
129.67 GeV). The ±0.58 is pertubative and ↵s uncer-
tainty [2]. Since the Higgs mass is known better than
the top mass, it perhaps makes more sense to write the
bound as

mpole
t

GeV
< (171.22± 0.28) + 0.12 (

mpole
h � 125.14 GeV

0.24 GeV
)

(11)
Fig. 1 compares the gauge-dependence of the bound

at 1-loop to the LO, NLO and 2-loop bounds. For this
plot we have taken the U(1) and SU(2) R⇠ gauge pa-
rameters equal to ⇠t when µ = mt and included their
RGE evolution [29]. All bounds include 2-loop thresh-
olds and 3-loop running. We find that the bound at
LO is mpole

h > 129.69 GeV which is nearly identical to
the Landau gauge 1-loop bound in the traditional ap-
proach, mpole

h > 129.70 GeV. We do not plot the gauge-
dependence of the 2-loop bound since we have not com-
puted the gauge-dependent 2-loop potential or the daisy
contribution. That the bound seems to asymptote to a
finite value in unitary gauge (⇠ = 1) may be due to
much (but not all) of the gauge-dependence being in the
e4� prefactor in Eq. (3) which drops out of the V = 0
condition.
Fig. 2 shows the gauge dependence of the instability

scale ⇤I , defined by V (⇤I) = 0 [1, 2], and its Landau-
gauge value at 2-loops, including 3-loop resummation in
both cases. Since the instability scale is a field value, it is
not obviously physical. We know of no way to compute
it in a consistent and gauge-invariant manner.
Fig. 3 shows the value of Vmax computed by various

approaches. We find approximately exponential depen-
dence of Vmax (and also Vmin) on ⇠t in the traditional
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Consistent effective potential and the top mass

‣ Together with testing for new physics in a consistent way they find

7

Andreassen, Frost, Schwartz..
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FIG. 3. Gauge dependence of the SM potential at its maxi-
mum with mpole

h = 125.14 GeV and mpole

t = 173.34 GeV.

approach at 1-loop. Decent fits are (12)
�
V 1-loop, trad.
max

�1/4 ⇡ (2.50⇥ 109 GeV)e�0.02⇠t+0.0003⇠2t

⇣
�V 1-loop, trad.

min

⌘1/4
⇡ (3.08⇥ 1029 GeV)e0.001⇠t�0.0001⇠2t

The consistent gauge-invariant values at NLO are

�
V NLO
max

�1/4
= 2.88⇥ 109 GeV (13)

��V NLO
min

�1/4
= 2.40⇥ 1029 GeV

Note that �Vmin corresponds to an energy density well
above the Planck scale. Thus, the potential at the mini-
mum will surely be e↵ected by quantum gravity and pos-
sible new physics not included in our calculation. Previ-
ous analyses have defined stability to be Planck-sensitive
if the instability scale ⇤I > MPl [1, 2]. As we have ob-
served, the instability scale is gauge dependent, so this
is not a consistent criterion. An alternative criterion is
that new operator, such as O6 ⌘ 1

⇤2
NP

h6 be comparable

to Vmin when h = hhi. Although O6 and Vmin are gauge-
invariant, the value of O6 at the field value h where the
minimum occurs is gauge dependent, so this condition
is also unsatisfactory. A consistent and satisfactory cri-
terion was explained in [13]: the new operator must be
added to the classical theory and its e↵ect on Vmin eval-
uated.

Adding O6 to the potential, we find that the the po-
tential is still negative at its minimum in the SM even
for operators with very large coe�cients. For example,
taking ⇤NP = MPl = 1.22 ⇥ 1019 GeV, we find that
µmin
X = 6.0 ⇥ 1017 GeV and Vmin = �(1.1 ⇥ 1017 GeV)4.

Comparing to Eq. (13) we see that the energy of the true
vacuum is very Planck-sensitive.

More generally, a good fit is given by

Vmin = �(0.01⇤NP)
4, ⇤NP & 1012 GeV (14)

When ⇤NP < 3.6⇥1012 GeV, Vmin becomes positive and
for ⇤NP < 3.1 ⇥ 1012 GeV the maximum and minimum
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FIG. 4. Boundaries of absolute stability (lower band, NLO)
and metastability (upper line, LO). The thickness of the
lower boundary indicates perturbative and ↵s uncertainty.
The theoretical uncertainty of the metastability boundary is
unknown. The elliptical contours are 68%, 95% and 99%
confidence bands on the Higgs and top masses: mpole

h =

(125.14±0.23) GeV and mpole

t = (173.34±1.12) GeV. Dotted
lines are scales in GeV at which V

min

can be lifted positive by
new physics.

disappear. Thus the stability of the Standard Model can
be modified by new physics at the scale 1012 GeV.
If we vary the Higgs and top masses in the Standard

Model, we can compute the boundary of absolute stabil-
ity. This bound is shown in Figs. 4 and 5. The dotted
lines show where Vmin becomes positive when in the pres-
ence of O6 for the indicated value of ⇤NP. Unexpectedly,
we find that three independent conditions (1) that Vmin

goes to zero, (2) that Eq. (5) have no solution, and (3)
that Vmin goes positive when ⇤NP = MPl all give nearly
identical boundaries in the mpole

h /mpole
t plane. Know-

ing that quantum gravity is relevant at MPl, we should
therefore be cautious about giving too strong of an in-
terpretation of the perturbative absolute stability bound
in the SM. We also show in this plot the metastability
bound, that the lifetime of our vacuum be larger than
the age of the universe. At lowest order this translates to
�( 1

R )�1 < �14.53 + 0.153 ln[RGeV] for all R [30]. Since
�(µ) is gauge invariant, so is this criterion. Although for
the Standard Model this approximation is probably suf-
ficient, it has not been demonstrated that the bound can
be systematically improved in a guage-invariant way [31].
In this paper, we have only discussed a single physical

feature of the e↵ective action: the value of the e↵ective
potential at its extrema. There is of course much more
content in the e↵ective action, especially when tempera-
ture dependence is included. Unfortunately, many uses
of the e↵ective action involve evaluating it for particu-
lar field configurations, a procedure that has repeatedly
been shown to be gauge-dependent. For example, the



Implications of a large mass
✦ Top decays before it hadronizes fully 
‣ the only “bare”(=undressed by QCD) quark 
‣ gives us access to its spin (i.e. LH and RH couplings) 

✦ For QCD interactions of the top, the natural scale to put in the running QCD 
coupling is mt. 
‣ good for perturbative approach 

✓ but not always good enough

8

�s(mt) � 0.1



Virtual top
✦ Virtual top make other things really happen  

‣ in a loop integral a fixed mass scale always occurs in the result  
‣ even more if there is no particle with (roughly) equal mass to compensate 

✦ Express the W mass in terms of 3 fundamental weak parameter, with loop 
corrections

9

M2
W =

⇤�⇥
2GF sin2 ⇥w

1
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W W
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Z Z
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Virtual top mass 
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Now impressive consistency
between top, Higgs, W mass

TOP2013 

Top Mass History 

June , 2013 G.Velev  4 

The top mass measurement was a huge success for Tevatron Physics! 
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Top mass
✦ Electron mass definition is“easy”: defined by pole in full propagator 

✓ If particle momentum satisfies pole condition (p2=m2),  can propagate to ∞ 
- ⇒ there is no real ambiguity what electron “pole” mass is 

✦ But: quarks are confined, so physical on-shell quarks cannot exist 
✓ Leads to non-perturbative ambiguity of few hundred MeV 

- (revealed by all-order pQCD!)

11



Heavy quark mass, definition(s)

Pole mass: pretend quarks are free and long-

Mass definitions differ in the choice of 

To make finite, substitute

MSbar mass: treat mass as a coupling 
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=
1

/p�m0 � ⌃(p,m0)
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
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✏
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m0 = mR

✓
1 +
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Pole mass issues
✦ Most natural definition for a free (stable) particle (electron, Z-boson) 

‣ gauge invariant and IR safe to all orders 
✦ But quarks are confined, so pole mass has intrinsic uncertainty of order ΛQCD  

‣ Full QCD has no pole at the top quark mass 
✓ Finite width of top does not “screen” this  

‣ Reproduced in perturbation theory 
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Smith, Willenbrock

Bigi, Shifman, Uraltsev, Vainshtein, 
Beneke, Braun, Smith, Willenbrock

Renormalon behaviour → 
order ΛQCD uncertainty

⌃(m,m) ⇡
X

n

↵n+1
s �n

0 n!

Kronfeld



Heavy quark mass schemes
✦ Various definitions other than the pole and MSbar schemes have been made 
✦ PS  (potential subtracted) mass 
‣ Substract from the pole mass the IR part of the ttbar Coulomb potential 

✓ The two parts have the same IR sensitivity 

✓ V known to 3-loop   
✦ 1S  mass 
‣ Half the perturbative mass of (fictitious) 13S1 state

14

mPS = M � 1
2

Z

|q|<µf

d3q

(2⇡)3
V (q) Beneke

Hoang, Teubnerm1S = M + 1
2E

pt
1

Beneke, Kiyo, Schuller; 
Smirnov2, Steinhauser; Anzai, 

Kiyo, Zumino



Some mpole observations
✦ Perturbative (“asymptotic”) expansion of pole mass 

‣ -> uncertainty about 500 MeV (or less) 
‣ Uncertainty in pole mass about 300 MeV 
‣ resultant uncertainty in MSbar mass smaller than   

✓ → NNNNLO?

15

mpole = mMS � (1 + 0.047 + 0.01 + 0.003 + . . .)

mMS(3� loop)�mMS(2� loop)

Melnikov, van Ritbergen



MSbar vs pole mass at 4 loop
✦ Important progress: 4-loop relations between top quark masses 

‣ Use of various specialized codes (FORM, FIRE, FIESTA,..), many of the (master) loop 
integrals done numerically.  

‣ This is also sufficient, together with N3LO Coulomb potential, for 4-loop relations to PS 
and 1S masses 

✦ Result  

✦ Numerically: nice progression!! No sign of an impending renormalon
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Marquard, Smirnov, Smirnov, Steinhauser

M = cm(µ)m(µ)

3

RS′ masses has been suggested in which (in the case of the
bottom quark) the subtraction term is parameterized in

terms of α(3)
s . In this paper we will adopt the prescription

of Ref. [11]. Similarly to the PS mass also for the RS mass
a subtraction scale has to be specified which we again
choose as µf = 2 GeV for bottom and µf = 20 GeV for
top.
For the computation of the scalar and vector part of

the fermion propagator we use an automated setup which
generates all contributing amplitudes, processes them
with FORM3 [35] and provides scalar functions involving
several million different integrals encoded in functions
with 14 different indices which belong to 100 different
integral families.
The Laporta algorithm [36] is applied to each family

using FIRE5 [37] and crusher [38] which are written in
C++. Then we use the code tsort [39], which is part of the
latest FIRE version, to reveal relations between primary
master integrals following recipes of [40] and end up with
386 four-loop massive on-shell propagator integrals, i.e.
with p2 = M2.
We have performed the calculation allowing for a gen-

eral gauge parameter ξ keeping terms up to order ξ2 in
the expression we give to the reduction routines. We have
checked that ξ drops out after mass renormalization but
before inserting the master integrals.
For some master integrals, analytic results could be de-

rived using a straightforward loop-by-loop integration for
general space-time dimension. We also used analytical
results obtained for non-trivial four-loop on-shell mas-
ter integrals computed in our earlier paper Ref. [41]. In
some other cases one- and two-fold Mellin-Barnes repres-
entations can be derived which allow for a high-precision
numeric evaluation, at least up to 20 digits. For some
of the master integrals, we applied threefold MB repres-
entations which enabled us to obtain a precision of eight
digits.
For factorizable integrals, we obtained analytic results

from known two- and three-loop results. In particular,
we used Ref. [42] where the expansion in ϵ = (4 − d)/2
has been performed up to the order typical to four-loop
calculations. (d is the space-time dimension used to com-
pute the momentum integrals.)
We computed the remaining 332 integrals numerically

with the help of FIESTA [43–45]. FIESTA returns for each
ϵ coefficient a numerical result and the corresponding un-
certainty from the numerical integration. When inserting
the master integrals we keep track of all uncertainties and
combine them quadratically in the final expression. We
interpret the resulting uncertainty as a standard devi-
ation and multiply it by five in the final result for the
relation between the MS and OS quark mass. This is in
agreement with adding the uncertainties from the indi-
vidual contributions linearly.
We are now in the position to present numerical res-

ults for zm(µ) which have been obtained by setting the
number of colours to three (Nc = 3) and the number of
massless quarks (nl) to either 3, 4 or 5, corresponding to

the charm, bottom or top quark case, before combining
the uncertainties from the numerical integration of the
master integrals. Note that the coefficients up to three
loops are known analytically [18, 19]. We refrain from
listing the corresponding results but refer to Eq. (13) of
Ref. [46]. Analytical results are also available for the log-
arithmic four-loop contributions since they can easily be
obtained using renormalization group methods. In the
following we restrict ourselves to compact numerical res-
ults. At four loops we obtain for the coefficient of (αs/π)4

z(4)m

∣

∣

∣

nl=3
= −1744.8± 21.5− 703.48 lOS − 122.97 l2OS

− 14.234 l3OS − 0.75043 l4OS ,

z(4)m

∣

∣

∣

nl=4
= −1267.0± 21.5− 500.23 lOS − 83.390 l2OS

− 9.9563 l3OS − 0.514033 l4OS ,

z(4)m

∣

∣

∣

nl=5
= −859.96± 21.5− 328.94 lOS − 50.856 l2OS

− 6.4922 l3OS − 0.33203 l4OS , (11)

with lOS = ln(µ2/M2). We obtain the µ-independent
coefficients with an accuracy of 1.2% for nl = 3, 1.7% for
nl = 4) and 2.5% for nl = 5. In the numerical results
discussed below we will assume a relative uncertainty of
3% for all values of nl.
For convenience we also show the four-loop results for

cm which read

c(4)m

∣

∣

∣

nl=3
= 1691.2± 21.5 + 828.43 lMS + 189.65 l2

MS

+ 36.688 l3
MS

+ 4.8124 l4
MS

,

c(4)m

∣

∣

∣

nl=4
= 1224.0± 21.5 + 601.98 lMS + 134.10 l2

MS

+ 28.846 l3
MS

+ 3.9648 l4
MS

,

c(4)m

∣

∣

∣

nl=5
= 827.37± 21.5 + 408.88 lMS + 86.574 l2

MS

+ 22.023 l3
MS

+ 3.2227 l4
MS

, (12)

with lMS = ln(µ2/m2). In the remaining part of this
Letter we will concentrate on the top and bottom quark
mass.
As an application of the new results in Eqs. (11)

and (12) we study the relations between the various
threshold masses and the MS mass. We use the follow-
ing input values for the strong coupling constant and the
bottom and top quark masses:

α(5)
s (MZ) = 0.1185 [47] , mb(mb) = 4.163 GeV [6] ,

Mt = 173.34 GeV [48] . (13)

αs with four and six active flavours is obtained from α(5)
s

where for the decoupling scale we choose twice the heavy
quark mass [46, 49].
Let us have a closer look to the relation between the

OS and MS top quark mass. For µ = mt we have

Mt = mt

(

1 + 0.4244αs + 0.8345α2
s + 2.375α3

s
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with lMS = ln(µ2/m2). In the remaining part of this
Letter we will concentrate on the top and bottom quark
mass.
As an application of the new results in Eqs. (11)

and (12) we study the relations between the various
threshold masses and the MS mass. We use the follow-
ing input values for the strong coupling constant and the
bottom and top quark masses:

α(5)
s (MZ) = 0.1185 [47] , mb(mb) = 4.163 GeV [6] ,

Mt = 173.34 GeV [48] . (13)

αs with four and six active flavours is obtained from α(5)
s

where for the decoupling scale we choose twice the heavy
quark mass [46, 49].
Let us have a closer look to the relation between the

OS and MS top quark mass. For µ = mt we have

Mt = mt

(

1 + 0.4244αs + 0.8345α2
s + 2.375α3

s

M = m
⇣
1 + 0.4244↵s + 0.8345↵2

s + 2.375↵3
s + (8.49± 0.25)↵4

s) + . . .
⌘

M = 163.643 + 7.557 + 1.617 + 0.501 + 0.195± 0.005 GeV



Impact on MSbar mass
✦ Study how a different threshold mass measurement leads to MSbar mass 

✦ 3-loop still gives 200-250 MeV shifts 
✦ 4-loop only gives further {44,8,20} MeV shifts 
‣ final remaining uncertainty estimate {23,7,11} MeV
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4

+(8.49± 0.25)α4
s

)

= 163.643+ 7.557 + 1.617 + 0.501

+ 0.195± 0.005 GeV , (14)

with αs ≡ α(6)
s (mt) = 0.1088. Note that the four-loop

term still gives a contribution of about 200 MeV which
is not negligible even with nowadays uncertainties from
TEVATRON and LHC [48]. The corresponding results
for the bottom quark read

Mb = mb

(

1 + 0.4244αs + 0.9401α2
s + 3.045α3

s

+(12.57± 0.38)α4
s

)

= 4.163 + 0.401 + 0.201 + 0.148

+ 0.138± 0.004 GeV . (15)

Here αs ≡ α(5)
s (mb) = 0.2268. Note that the four-loop

corrections in Eq. (15) are almost as large as the three-
loop term. On the other hand, the perturbative series
for the case of the top quark has a reasonable behaviour:
the three-loop coefficient is by a factor three smaller than
the two-loop one and the four-loop term is again smal-
ler by a factor 2.5. This suggests that with the help of
Eq. (14) the top quark mass can be determined with an
uncertainty below 200 MeV.
In practice it often happens that in a first step a

threshold quark mass is extracted from comparisons
of higher order calculations and experimental measure-
ments. Afterwards the threshold mass is converted to the
MS quark mass. In Tabs. I and II we show the results
for the scale invariant MS quark mass mq(mq) (q = b, t)
using one- to four-loop accuracy for the conversion.

input m
PS = m

1S = m
RS =

#loops 171.792 172.227 171.215

1 165.097 165.045 164.847

2 163.943 163.861 163.853

3 163.687 163.651 163.663

4 163.643 163.643 163.643

4 (×1.03) 163.637 163.637 163.637

Table I. mt(mt) in GeV computed from the PS, 1S and RS
quark mass using one- to four-loop accuracy. The numbers
in the last line are obtained by increasing the four-loop coef-
ficient in Eq. (12) by 3%.

In the case of the top quark (cf. Tab. I) the three-
loop corrections amount to about 200-250 MeV which re-
duces to {44, 8, 20}MeV at four loops for the {PS,1S,RS}
quark mass. A 3% uncertainty in the MS-OS relation
induces a shift of 6 MeV in mt(mt) which is in gen-
eral small as compared to the four-loop contribution.
Let us estimate the final uncertainty from the conver-
sion to the MS mass from the quadratic combination
of the 6 MeV with half of the four-loop contribution
(i.e. {44, 8, 20}×1/2MeV). This leads to {23, 7, 11}MeV
which should be added in quadrature to the remaining
uncertainties of the threshold mass.

input m
PS = m

1S = m
RS =

#loops 4.483 4.670 4.365

1 4.266 4.308 4.210

2 4.191 4.190 4.172

3 4.161 4.154 4.158

4 4.163 4.163 4.163

4 (×1.03) 4.159 4.159 4.159

Table II. mb(mb) in GeV computed from the PS, 1S and RS
quark mass using one- to four-loop accuracy. The numbers
in the last line are obtained by increasing the four-loop coef-
ficient in Eq. (12) by 3%.

The results for mb(mb) computed from the PS, 1S and
RS threshold masses are shown in Tab. II. The three-loop
corrections provide still sizable effects of up to 40 MeV
which reduces to at most 9 MeV at four loops. The uncer-
tainty in the four-loop MS-OS relation induces an error
of 4 MeV. Thus we arrive at a final error of {4, 6, 5} MeV
for the conversion from the {1S,PS,RS} mass. This is
not negligible, though in general much smaller than other
uncertainties involved in the quark mass extraction (see,
e.g., Refs. [50], [34] and [51] for recent determinations of
mb(mb) where in intermediate steps the 1S, RS and PS
has been used, respectively).
The results of Tabs. I and II can be used, in com-

bination with similar calculations for different values of
αs(MZ) and threshold masses, to construct the following
approximation formulae

mt(mt)

GeV
= 163.643± 0.023 + 0.074∆αs − 0.095∆PS

mt
,

mt(mt)

GeV
= 163.643± 0.007 + 0.069∆αs − 0.096∆1S

mt
,

mt(mt)

GeV
= 163.643± 0.011 + 0.067∆αs − 0.095∆RS

mt
,

mb(mb)

GeV
= 4.163± 0.004 + 0.007∆αs − 0.018∆PS

mb
,

mb(mb)

GeV
= 4.163± 0.006 + 0.008∆αs − 0.019∆1S

mb
,

mb(mb)

GeV
= 4.163± 0.005 + 0.004∆αs − 0.018∆RS

mb
(16)

with ∆αs = (0.1185 − αs(MZ))/0.001, ∆PS
mt

=
(171.792 GeV − mPS

t )/0.1, ∆1S
mt

= (172.227 GeV −
m1S

t )/0.1, ∆RS
mt

= (171.215 GeV − mRS
t )/0.1, ∆PS

mb
=

(4.483 GeV−mPS
b )/0.02,∆1S

mb
= (4.670 GeV−m1S

b )/0.02,
∆RS

mb
= (4.365 GeV−mRS

b )/0.02.
Let us finally compare in Tab. III our result for

the four-loop coefficient c(4)m to predictions obtained on
the basis of different assumptions. In general good
agreement is found, in particular with the results from
Refs. [34, 55, 56] which are all based on renormalon can-
cellation. For example, in Ref. [56], the four-loop coef-
ficient is extracted from the requirement of perturbative
stability of the combination 2mpole + VQCD where VQCD
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Top threshold mass
✦ Scan the ttbar threshold at linear collider by varying beam energy. The opening of the top channel leads 

to “smooth” theta-function 
✦ Distribution can be measured very precisely. with calculation using Schrodinger equation and appropiate 

short-distance mass 
✦ Also sensitive to top quark width, allows good measurement 
✦ Calculation non-relativistic effective field theory. Two small parameters: αs and v.  

✦ Choice of top quark mass scheme matters..

18

Pole mass, bad
Threshold mass, good oang



N3LO for ttbar S-wave threshold production at e+e- collider 

✦ Now finally the full N3LO cross section, including the last non-logarithmic terms, is known 
‣ Heroic effort, and it was worth it! QCD calculation under control 

‣ Dramatic scale reduction N2LO → N3LO. Negative correction beyond the peak.  
‣ QCD uncertainty on top quark mass can go below 50 MeV.  

✓ But are also non-QCD effects to study: EW, Higgs, Beamstrahlung, non-resonant terms..
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FIG. 1. Scale dependence of the cross section near thresh-
old. The NLO, NNLO and N3LO result is shown in blue, red
and black, respectively. The renormalization scale is varied
between 50 and 350 GeV.

the total cross section is shown as a function of the center-
of-mass energy

√
s. The previous NLO and NNLO pre-

dictions are also shown for comparison to the new N3LO
result (black, solid). The bands are obtained by varia-
tion of the renormalization scale in the specified range.
After the inclusion of the third-order corrections one ob-
serves a dramatic stabilization of the perturbative predic-
tion, in particular in and below the peak region. In fact,
the N3LO curve is entirely contained within the NNLO
one. This is different above the peak position where a
clear negative correction is observed when going from
NNLO to N3LO. For example, 3 GeV above the peak
this amounts to −8%. This arises from the large negative
three-loop correction to the matching coefficient cv [22].
The theoretical precision of the third-order QCD result

FIG. 2. Scale dependence (hatched area) of the N3LO cross
section relative to the reference prediction. Overlaid are pre-
dictions for two different values of Γt, again normalized to the
reference prediction. See text for details.

as measured by the residual scale dependence is high-
lighted in Fig. 2, which shows R(µ) normalized to a ref-
erence prediction defined at µ = 80GeV. The width of
the shaded band corresponds to an uncertainty of about
±3% with some dependence on the center-of-mass energy√
s. The figure also shows the sensitivity to the top-quark

width. The two solid lines refer to the cross section with
Γt changed by ±100MeV to 1.43 and 1.23GeV, respec-
tively, computed with µ = 80GeV and normalized to
the reference prediction. Decreasing the width implies
a sharper peak, i.e. an enhancement in the peak region,
and a suppression towards the non-resonant region below
the peak. A few GeV above the peak the cross section
is largely insensitive to the width. Increasing the width
leads to the opposite effects. This pattern is clearly seen
in Fig. 2, which also demonstrates that a ±100MeV de-
viation from the width predicted in the Standard Model
leads to a cross section change near and below the peak
far larger than the uncertainty from scale variation.

We now turn to the question to what accuracy the
top quark mass can be determined. Even if we focus
only on the theoretical accuracy, a rigorous analysis re-
quires accounting for the specifics of the energy points
of the threshold scan and the correlations. However, a
good indication is already provided by looking at the po-
sition and height of the resonance peak. Fig. 3 shows this
information at LO, NLO, NNLO and N3LO, where the
outer error bar reflects the uncertainty due to the renor-
malization scale and αs variation, added in quadrature,
and the inner error bar only takes the αs uncertainty
into account. The central point refers to the value at
the reference scale µ = 80GeV. There is a relatively big
jump from LO to NLO of about 310 MeV, approximately
150 MeV from NLO to NNLO, which reduces to only
64 MeV from NNLO to N3LO. Furthermore, the NNLO
and N3LO uncertainty bars show a significant overlap.

FIG. 3. Position and height of the cross section peak at LO,
NLO, NNLO and N3LO. The unbounded range of the LO
error bars to the right and up are due to the fact that the
peak disappears for large values of the renormalization scale.

Beneke, Kiyo, Marquard, 
Penin, Piclum, Steinhauser



Mass by proxy
‣ Of course, one does not need to reconstruct the top quark from its decays. Needs to 

solve implicit equation 

‣ using an observable σ that is optimally sensitive to mt. 
‣ Adjust mt to fit data best. 

‣ When extracting ttbar cross section, IR sensitive region is minute fraction of total 
result. 
‣ Pole mass should be fine here; can interpret “mtop” in MC as pole mass, with small error  

(unlike e+e-) 
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�exp({Q}) = �th(mt, {Q})

Figure 5: Ellipses for the 1σ uncertainties in the [MH ,m
pole
t ] plane

with Higgs mass MH = 125.6 ± 0.4 GeV and αs(MZ ) = 0.1187
confronted with the areas in which the SM vacuum is absolutely sta-
ble, meta-stable and unstable up to the Planck scale. (Figure from
ref. [47]).
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Figure 6: The LO, NLO and NNLO QCD predictions for the tt̄ total
cross section at the LHC (

√
s = 8 TeV) as a function of the top-

quark mass in the MS scheme mt(mt) at the scale µ = mt(mt) with the
ABM12 PDFs. (Figure from ref. [26]).

much improved when using the MS mass in contrast to
the pole mass mpole

t .
These findings are illustrated in figs. 6 − 9. The the-

ory predictions for inclusive top-quark pair production
with the MS and the pole mass are compared in figs. 6
and 7. The result in terms of the MS mass mt(mt) dis-
plays a much improved convergence as the higher order
corrections are successively added. The corresponding
scale dependence is shown in figs. 8 and 9 and the pre-
dictions with the MS mass exhibit a much better scale
stability of the perturbative expansion. It is also inter-

σpp -->tt  [pb] at LHC8          -
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Figure 7: Same as fig. 6 for the top-quark mass in the on-shell scheme
mpole

t at the scale µ = mpole
t . (Figure from ref. [26]).
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Figure 8: The scale dependence of the LO, NLO and NNLO QCD
predictions for the tt̄ total cross section at the LHC (

√
s = 8 TeV)

for a top-quark mass mt(mt) = 162 GeV in the MS scheme with
the ABM12 PDFs and the choice µ = µr = µ f . The vertical
bars indicate the size of the scale variation in the standard range
µ/mt(mt) ∈ [1/2, 2]. (Figure from ref. [26]).

esting to observe, that the point of minimal sensitiv-
ity where σLO ≃ σNLO ≃ σNNLO is located at scales
µ = O(mt(mt)), i.e., it coincides with the natural hard
scale of the process for the MS mass in fig. 8, whereas
it resides at fairly low scales, µ ≃ mpole

t /4 ≃ 45 GeV for
the pole mass predictions in fig. 9.

For the distribution in the invariant mass mtt̄ of the
top quark pair the same findings can be seen in figs. 10
and 11. For the MS mass predictions the convergence
is improved. Also the overall shape of the distribu-
tion changes in comparison to case of the pole mass,
the peak becomes more pronounced, while the posi-
tion of the peak remains stable against radiative correc-
tions. This is essential for precision determinations of

S. Moch / Nuclear and Particle Physics Proceedings 261–262 (2015) 130–139 135

[Mangano at TOP2013]
LO

NLO
�(vm

top

< x)
�

tot

The impact of Coulomb corrections 
(which first appear at NLO) is confined to 
values of v that contribute very little to the 
total cross section

⇒ no evidence that the relation between mpole(top) and total tt cross 

section in pp(bar) collisions is subject to the same IR problems that 
enter as main systematics in the extraction of mtop from the threshold 
scan in e+e– 



Experimental mass determinations

✦ What do experiments do? 
‣ Template method: compare observables in 

data with MC templates generated with 
different masses 

‣ Matrix element method: build event likelihood 
for full (LO) top quark matrix element, with full 
kinematics 

‣ “Ideogram”, and other methods

21

In theory there is no difference between theory and practice; in practice there is

P. Uwer, talk at SM@LHC, quoting Yogi Berra



Mlb  in leptonic top-quark decays
[R. Chierici, A. Dierlamm

CMS Note 2006/058], Karchilava

22

Interesting idea : infer top mass from 
correlation with e/mu and J/Psi invariant 

mass



What top mass is measured?
✦ Most involve MC’s that are LO, so they could never tell the difference between 

different mass definitions. 
✦ So what mass do hadron colliders determine? 
‣ Pole mass? “Pythia” mass?  

✓ Typically the path from data to a value for m involves a Monte Carlo, itself driven by a 
mass parameter.  

✓ Path goes via (shower) cuts, efficiencies, hadronization models etc

23



Monte Carlo top mass
✦ MC mass does not depend on observables. Related to soft radiation for that MC.  
✦ Hadronization affects the MC mass value 
‣ Has aspects of top (or B)-meson mass! 

‣ Use methods from B-meson physics to extract field theory mass. But uncertainty order 
1 GeV. 

✦ To relate to field theory mass, would need mass-sensitive observable, that can also 
be computed in MC 
‣ Calculation beyond LO (LL)   

✓ controlled errors. Factorize observable to control top mass in each factor. 

‣ Hadron level observables 
✦ E.g. massive thrust, DIS for massive quarks, ttbar at high pT
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Heavy Quark Mass in the MC 

mMC
t = mMSR

t +�MSR
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Proxy mass: determing the MSbar mass
✦ How to determine the MSbar mass? 
‣ Problem: on-shell condition of final state top leads tot the pole mass 

✦ By proxy 
‣ compute cross section using pole mass 
‣ replace pole mass by MSbar mass 
‣ Now fit to data, extract MSbar mass Langenfeld, Moch, Uwer
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MSbar mass extraction
✦ Accuracy limited by mt sensitivity and PDF uncertainties 
✦ Other proposals for mass-sensitive observables:  
‣ (moments of) the invariant mass distribution  
‣ tt+1 jet rate 
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MSbar mass extraction
✦ In spite of MLM’s argument MSbar has better progression 

‣ and better scale dependence 
✦ Same holds for the distribution invariant mass mtt.  
✦ From a correlated fit including the LHC and Tevatron ttbar cross section, to also gluon 

PDF and αs. 

‣ leading to the pole mass value
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Figure 5: Ellipses for the 1σ uncertainties in the [MH ,m
pole
t ] plane

with Higgs mass MH = 125.6 ± 0.4 GeV and αs(MZ ) = 0.1187
confronted with the areas in which the SM vacuum is absolutely sta-
ble, meta-stable and unstable up to the Planck scale. (Figure from
ref. [47]).
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Figure 6: The LO, NLO and NNLO QCD predictions for the tt̄ total
cross section at the LHC (

√
s = 8 TeV) as a function of the top-

quark mass in the MS scheme mt(mt) at the scale µ = mt(mt) with the
ABM12 PDFs. (Figure from ref. [26]).

much improved when using the MS mass in contrast to
the pole mass mpole

t .
These findings are illustrated in figs. 6 − 9. The the-

ory predictions for inclusive top-quark pair production
with the MS and the pole mass are compared in figs. 6
and 7. The result in terms of the MS mass mt(mt) dis-
plays a much improved convergence as the higher order
corrections are successively added. The corresponding
scale dependence is shown in figs. 8 and 9 and the pre-
dictions with the MS mass exhibit a much better scale
stability of the perturbative expansion. It is also inter-
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Figure 7: Same as fig. 6 for the top-quark mass in the on-shell scheme
mpole

t at the scale µ = mpole
t . (Figure from ref. [26]).
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Figure 8: The scale dependence of the LO, NLO and NNLO QCD
predictions for the tt̄ total cross section at the LHC (

√
s = 8 TeV)

for a top-quark mass mt(mt) = 162 GeV in the MS scheme with
the ABM12 PDFs and the choice µ = µr = µ f . The vertical
bars indicate the size of the scale variation in the standard range
µ/mt(mt) ∈ [1/2, 2]. (Figure from ref. [26]).

esting to observe, that the point of minimal sensitiv-
ity where σLO ≃ σNLO ≃ σNNLO is located at scales
µ = O(mt(mt)), i.e., it coincides with the natural hard
scale of the process for the MS mass in fig. 8, whereas
it resides at fairly low scales, µ ≃ mpole

t /4 ≃ 45 GeV for
the pole mass predictions in fig. 9.

For the distribution in the invariant mass mtt̄ of the
top quark pair the same findings can be seen in figs. 10
and 11. For the MS mass predictions the convergence
is improved. Also the overall shape of the distribu-
tion changes in comparison to case of the pole mass,
the peak becomes more pronounced, while the posi-
tion of the peak remains stable against radiative correc-
tions. This is essential for precision determinations of
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Some other LHC mass proxies
✦ In dilepton channel, can use shapes of various observables sensitive to top mass 
‣ study with NLO+PS+MadSpin 
‣ single-inclusive or mildly correlated (1,4,5) stable under above effects 

✓ 2,3 not -> be careful with using NNLO with stable tops 

‣ about 0.8 GeV theory error in studied scenario, with aMC@NLO
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Label Observable

1 pT (ℓ+)

2 pT (ℓ+ℓ−)

3 M(ℓ+ℓ−)

4 E(ℓ+) + E(ℓ−)

5 pT (ℓ+) + pT (ℓ−)

Table 1: The set of observables used in this paper, and their labelling conventions.

• Owing to this inclusiveness, the observable is minimally sensitive to the modelling of

long-distance effects. This feature increases the reliability of the theoretical predic-

tions.

The set of observables considered in this paper and their labelling conventions are given

in table 1: pT (ℓ+) is the single-inclusive transverse momentum of the positively-charged

lepton; pT (ℓ+ℓ−) and M(ℓ+ℓ−) are the transverse momentum and the invariant mass, re-

spectively, of the charged-lepton pair; finally, E(ℓ+) + E(ℓ−) and pT (ℓ+) + pT (ℓ−) are the

scalar sums of the energies and transverse momenta of the two charged leptons, respec-

tively. We point out that the latter two sums are computed event-by-event; in other words,

observables #4 and #5 are not constructed a-posteriori given the single-inclusive energy

and transverse momentum distributions of the leptons.

The extraction of the top quark mass utilises the sensitivity of the shapes of kinematic

distributions to the value of mt. It is cumbersome to work directly with differential distri-

butions. Instead, we utilise their lower Mellin moments, whose precise definition is given

in sect. 2.1. The idea of the method proposed in this paper is to predict the mt depen-

dence of the moments, and then to extract the value of mt by comparing the predicted and

measured values of those moments. The procedure is detailed in sect. 2.2.

The use of moments for the extraction of the top mass has been suggested previously

in the context of the so-called J/Ψ method [11], or in connection with variables supposed

to minimise the dependence on the jet-energy scale [12, 13]. To our knowledge, the most

up-to-date theoretical treatment of this technique is in ref. [14]. All these papers consider

only the first moment (of various distributions); in the case of mt extraction from different

observables, the results are either not combined [14], or limited to two observables [13].

These choices may lead to issues, as we shall discuss in sects. 2.3, 3.2.2, and 3.2.4. In the

case of the dilepton channel, ref. [14] also employs one of the observables considered in this

paper (E(ℓ+)+E(ℓ−)); owing to the different choices made for cuts, jet algorithm, collider

energy, and PDFs, we have refrained from making a direct comparison with those results.

We also point out that in ref. [14] the simultaneous variation of the factorisation and

renormalisation scales has been adopted, which leads to smaller scale uncertainties than

those we find in this paper (where the two scales are varied independently, see sect. 3).

Finally, we remark that other discrete parameters of kinematic distributions, such as

medians and maxima, might also be used for a top mass extraction. We have chosen to

– 5 –

• NLO study for <mBl>, possibly via J/psi, and other parton 
shower independent proxies

• 1.5 GeV uncertainty. Partons showers do in general quite 
well in estimating uncertainties

Biswas, Melnikov, Schulze
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Figure 2: Result of the linear fit to ⟨mBl⟩
NLO is shown, with all kinematic cuts on the final state particles applied.

See text for details.

3. Dilepton channel

In the previous Section we saw that top quark decays to final states with identified hadrons
provide an interesting way to determine the top quark mass. In this Section we study inclusive
final states. We focus on the case where the top and the anti-top quarks decay semileptonically,
e.g. t → W+b → l+νb. We study the kinematic distribution of an invariant mass of a b-jet
and a lepton, and the distributions of the sum of energies of the two leptons and the two b-jets.
We employ the NLO QCD corrections to top quark pair production and decay, as computed in
Ref. [13]. Throughout this Section, the center-of-mass energy of proton collisions is 14 TeV.

We begin by summarizing the kinematic cuts that are employed to identify dilepton tt̄ events [4].
Leptons are required to be central |ηl| < 2.5 and have large transverse momentum pl

⊥
> 25 GeV.

There should be missing energy in the event, Emiss
⊥

> 40 GeV. The jet transverse momentum cut
is p⊥,j > 25 GeV. We employ the k⊥ jet algorithm with R = 0.4.

3.1. Invariant mass of a lepton and a b-jet

It is pointed out in Ref. [4] that an average value of the invariant mass squared of a b-jet and a
lepton m2

lb and an average value of the the angle between the lepton and the b-jet in the W boson
rest frame, can be used to construct an estimator of the top quark mass. The estimator reads

M2
est = m2

W +
2⟨m2

lb⟩
1− ⟨cos θlb⟩

. (39)

To see that this is a good estimator, we note that for the top quark decay computed at leading
order in perturbative QCD and without any restrictions on the final state Mest equals to mt

⟨m2
lb⟩ =

m2
t −m2

W

2
(1− ⟨cos θlb⟩) , ⟨cos θlb⟩ =

m2
W

m2
t + 2m2

W

⇒ M2
est = m2

t . (40)

In reality Mest is not equal to mt for a variety of reasons including i) kinematic cuts required to
identify the dilepton events; ii) effects of higher order QCD corrections; iii) impossibility to choose
the “correct” pair of a lepton and a b-jet and iv) the experimental issues with b-jet misidentification
and the jet energy resolution. The computation reported in Ref. [13] allows us to calculate M2

est

within the framework of perturbative QCD, accounting for the points i)-iii) exactly.
We point out that the computation of NLO QCD corrections to pp → tt̄ process reported in

[13] includes exact spin correlations, one-loop effects in top quark decays and allows arbitrary
constraints to be imposed on top quark decay products. These features are crucial for reproducing
experimental procedures. Indeed, experimentally, it is not possible to determine the charge of the
b-jet. Hence, it is unclear which of the two b-jets should be combined with the chosen, definite-
sign, lepton. For the purpose of mlb reconstruction, one pairs the lepton with the b-jet that gives
the smallest mlb value [4]. The parameter ⟨cos θlb⟩ in Eq. (39) is not measured and should be
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Top SM couplings
✦ to W boson: flavor mixing, lefthanded 
‣ gW  ∼ 0.45 

✦ to Z boson: parity violating 
‣ gZ  ∼ 0.14 

✦ to photon: vectorlike, has charge 2/3 
‣ et  ∼ 2/3 

✦ to gluon: vectorlike, non-trivial in color 
‣ gs ∼  1.12 

✦ to Higgs: Yukawa type 
‣ yt  ∼  1

gs
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Top physics: check structure and strength of all these couplings
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tt+W,Z,γ
✦ Photon  
‣ NLO + PS calculation 
‣ dominated by gluon fusion 
‣ Control sample/background for ttH, H→γγ 

‣ Z 
‣ NLO + PS calculation 
‣ not yet “seen”  

‣ W 
‣ NLO + PS calculation 
‣ ttW at LHC has little sensitivity to tWb coupling 

✓ Use single top production here
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Top self-analyzes its spin
✦ 100% correlation of charged lepton with top spin 
‣ Top self-analyzes its spin 
‣ Charged leptons easy to measure 

✦ For spin-up top the polar angle distribution is 

✦ Due to chiral structure of tWb coupling
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completeness relation for the top quark spinors will now be u(⇤)
t ū(⇤)

t = 1
2 ( �pt +mt)(1 � �5 �St). Following

exactly the same steps the corresponding amplitude is

↵|M(t(⇤) ⇧ be+⇤e)|2� = 64G2
f |Vtb|2

M4
w

(q2 �M2
w)

2 +M2
w�

2
w

mt|◆pē|(1� cos ⇥e+)(pb · pn) (2.19)

Summarizing this process and using a more general notation it follows that

• for t(⇥), the corresponding vector appearing in the squared amplitude is p̃(⇥)t ⌅ 1
2 (pt � mtS) and

↵|M(t(⇥) ⇧ be+⇤e)|2� ⌥ (1 + cos ⇥e+) and

• for t(⇤), the corresponding vector appearing in the squared amplitude is p̃(⇤)t ⌅ 1
2 (pt + mtS) and

↵|M(t(⇤) ⇧ be+⇤e)|2� ⌥ (1� cos ⇥e+).

The top quark momentum is decomposed into a sum of two auxiliary momenta.

pt = p̃(⇥)t + p̃(⇤)t (2.20)

Using the definition of he covariant spin vector Sµ = (
|◆p|
m

,
E◆p

m|◆p| ), it is easy to check that it is normalized

such that SµSµ = �1. Therefore the introduced auxiliary momenta are massless. Furthermore in the

top quark rest frame, with pt(mt,0), the spatial parts of p̃(⇤)t and S are parallel, while the spatial parts

of p̃(⇥)t and S are antiparallel (fig. 7C).
Returning to the process in discussion (fig. 6), from equations (2.18), (2.19), one can derive the

normalized decay rate as a function of the angle ⇥.

1

�Total

d�(⇥)

d(cos ⇥e+)
=

↵|M(t(⇥) ⇧ be+⇤e)|2�
↵|M(t(⇥) ⇧ be+⇤e)|2�+ ↵|M(t(⇤) ⇧ be+⇤e)|2�

⌃ 1

�T

d�(⇥)

d(cos ⇥e+)
=

1

2
(1 + cos ⇥e+)

(2.21)

The degree of correlation of the decay product to the spin appears in equation (2.21) in the coe⌅cient of
the cos ⇥e+ . Therefore one can conclude that the angle of the emission of the charged lepton is maximally
correlated to the top quark spin. In other words, a plot of the normalized decay rate with respect to
cos ⇥e+ (eq. 2.21) would be a straight line with slope ⇥

4 . The preferred positron emission axis is the

spatial part of p̃(⇤)t (in this case cos ⇥e+ = 1 ⇧ maximum decay rate).
Using equation (2.17) and the corresponding one for top quark spin down, as well as equation (2.20),

one can derive the amplitude for the unpolarized semi leptonic top quark decay10.

↵|M |2� = 1

2

�
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2
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M4
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2 +M2
w�

2
w

⇧
(p̃(⇥)t · pē)(pb · pn) + (p̃(⇤)t · pē)(pb · pn)

⌃⌅
⌃

⌃ ↵|M |2� = 64G2
f |Vtb|2

M4
w

(q2 �M2
w)

2 +M2
w�

2
w

(pt · pē)(pb · pn) (2.22)

By comparing equations (2.7) and (2.22), it is clear that the top and c quark decay amplitudes di⇥er
only to the fact that in the top quark decay the intermediate boson W+ can be real, as expected.

One may notice that in both equations (2.21) and (2.22) the mixed terms in the total amplitude are
neglected. The accurate decomposition of the amplitude to spin up and down top quark is

↵|M |2� = 1

2

�
↵|M(t(⇥) ⇧ be+⇤e) +M(t(⇤) ⇧ be+⇤e)|2�

⇥
=

1

2
{↵|M(t(⇥) ⇧ be+⇤e)|2�+ ↵|M(t(⇤) ⇧ be+⇤e)|2�+

+ ↵M(t(⇥) ⇧ be+⇤e)M
�(t(⇤) ⇧ be+⇤e)�+ ↵M(t(⇤) ⇧ be+⇤e)M

�(t(⇥) ⇧ be+⇤e)�} (2.23)

10At this point one must average over initial spins.
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Spin correlations for single top in MC@NLO

✦ Top is produced polarized by EW interaction 
‣ 100% correlation between top spin and charged lepton direction 

✦ Angle of lepton with appropriate axis is different per channel 
✦ Method included “a posteriori”. Also used in POWHEG

Frixione, EL, Motylinski, Webber

Beam direction Hardest, non-b jet
Robust correlation in NLO event generation

(Method to infer inclusive cross section?)

θ

Aioli, Nason, Oleari, Re
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ttH
✦ Should become very interesting for the new run 
✦ σtth (14) ≃ 4.6 x σtth (8) 
✦ NLO calculations for signal 
‣ plus PS   

✓ and spin correlations  

‣ plus EW 
✦ and e.g. ttbb backgrounds to NLO(+PS)
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Figure 4: Summary of Higgs analysis sensitivities wth 300 fb�1and 3000 fb�1at
p

s = 14 TeV for a SM
Higgs boson with a mass of 125 GeV. Left: Uncertainty on the signal strength. For the H ! ⌧⌧ channels
the thin brown bars show the expected precision reached from extrapolating all tau-tau channels studied
in the current 7 TeV and 8 TeV analysis to 300 fb�1, instead of using the dedicated studies at 300 fb�1

and 3000 fb�1 that are based only in the VBF H ! ⌧⌧ channels. Right: Uncertainty on ratios of partial
decay width fitted to all channels. The hashed areas indicate the increase of the estimated error due to
current theory systematic uncertainties.

uncertainties included. The right-hand figure compares the 300 fb�1 and 3000 fb�1 results with
no theory uncertainties included.

4.1.1 Sensitivity to the Higgs self-coupling

An important feature of the Standard Model Higgs boson is its self-coupling. The tri-linear self-
coupling �HHH can be measured through an interference e↵ect in Higgs boson pair production.
At hadron colliders, the dominant production mechanism is gluon-gluon fusion. At

p
s = 14

TeV, the production cross section of a pair of 125 GeV Higgs bosons is estimated at NLO to be2

34+18%
�15%(QCD scale)±3%(PDFs) fb. Figure 6 shows the three contributing diagrams in which the

2The cross section is calculated using the HPAIR package [15]. Theoretical uncertainties are provided by Michael Spira in
private communication.
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Δ𝑐𝑐 /𝑐𝑐 ≈ 10%
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Backgrounds difficult, but expect
10% accuracy in Yukawa coupling by 2030



Conclusions
✦ Major progress at N3LO and N4LO for mass definition and threshold scan.  
✦ Steady progress on proxy masses, and understanding MC masses. 
✦ Top mass may be the last, but not the easiest theoretical problem to solve 
‣ Goes to the heart of data-theory comparison 

✦ With new LHC run, EW couplings of top will be tested 
✦ Theory seems ready for Yukawa coupling tests
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