Measuring $\mathrm{a}_{\mu}{ }^{\text {HLO }}$ in the spacelike region

C.M.C. Calame ${ }^{1}$, M. Passera ${ }^{2}$, L. Trentadue ${ }^{3}$, G. Venanzoni ${ }^{4}$
${ }^{1}$ Universita' di Pavia, Pavia, Italy
${ }^{2}$ INFN, Sezione di Padova, Padova, Italy
${ }^{3}$ Universita' di Parma, Parma, Italy and Sezione INFN Milano Bicocca, Milano, Italy ${ }^{4}$ INFN, Laboratori Nazionali di Frascati, Frascati, Italy
[based on Phys.Lett. B746 (2015) 325-32]

LFC15: Physics prospects for Linear and other Future Colliders after the discovery of the Higgs

α_{em} running and the Vacuum Polarization

- Due to Vacuum Polarization effects $\alpha_{\mathrm{em}}\left(\mathrm{q}^{2}\right)$ is a running parameter from its value at vanishing momentum transfer to the effective q^{2}.
$>$ The "Vacuum Polarization" function $\Pi\left(\mathrm{q}^{2}\right)$ can be "absorbed" in a redefinition of an effective charge:

$$
\begin{gathered}
e^{2} \rightarrow e^{2}\left(q^{2}\right)=\frac{e^{2}}{1+\left(\Pi\left(q^{2}\right)-\Pi(0)\right)} \quad \alpha\left(q^{2}\right)=\frac{\alpha(0)}{1-\Delta \alpha} ; \quad \Delta \alpha=-\Re e\left(\Pi\left(q^{2}\right)-\Pi(0)\right) \\
\Delta \alpha=\Delta \alpha_{1}+\Delta \alpha^{(5)}{ }_{\text {had }}+\Delta \alpha_{\text {top }}
\end{gathered}
$$

> $\Delta \alpha$ takes a contribution by non perturbative hadronic effects ($\Delta \alpha^{(5)}{ }_{\text {had }}$) which exibits a different behaviour in time-like and spacelike region

Running of $\alpha_{e m}$

Behaviour characterized by the opening of resonances

$\Delta \alpha_{\text {had }}^{(5)}\left(M_{Z}^{2}\right)=-\frac{\alpha M_{Z}^{2}}{3 \pi} \operatorname{Re} \int_{4 m_{\pi}^{2}}^{\infty} d s \frac{R(s)}{s\left(s-M_{Z}^{2}-i \varepsilon\right)}$

Very smooth behaviour

Measurement of α_{em} running

- A direct measurement of $\alpha_{e m}\left(q^{2}\right)$ in space/time like region can prove the running of α_{em}
- It can provide a test of "duality" (fare way from resonances)
- It has been done in past by few experiments at $\mathrm{e}^{+} \mathrm{e}^{-}$colliders by comparing a "well-known" QED process with some reference (obtained from data or MC)

$$
\left(\frac{\alpha\left(q^{2}\right)}{\alpha\left(q_{0}^{2}\right)}\right)^{2} \sim \frac{N_{\text {signal }}\left(q^{2}\right)}{N_{n o r m}\left(q_{0}^{2}\right)}
$$

Measurement of α_{em} running

$\mathrm{e}+\mathrm{e}$ - collider TRISTAN at $\sqrt{ } \mathrm{s}=57.8 \mathrm{GeV}$,

Spacelike

VENUS

$10<\sqrt{-t}<54 \mathrm{GeV}$
$\mathrm{e}+\mathrm{e}$ - collider LEP at $\sqrt{ } \mathrm{s}=189 \mathrm{GeV}$, using Bhabha events

OPAL

Measurement of α_{em} running

$\mathrm{e}+\mathrm{e}$ - collider TRISTAN at $\sqrt{ } \mathrm{s}=57.8 \mathrm{GeV}$, $\quad \mathrm{e}+\mathrm{e}$ - collider LEP at $\sqrt{ } \mathrm{s}=189 \mathrm{GeV}$, using $\underbrace{\text { ®® }}_{\overbrace{0}^{2}}$ Bhabha events

[^0] FU゙UTURE

Spacelike

$\mathrm{a}_{\mu}{ }^{\mathrm{HLO}}$ calculation, traditional way: time-like data

$$
a_{\mu}^{H L O}=\frac{1}{4 \pi^{3}} \int_{4 m_{\pi}^{2}}^{\infty} \sigma_{e^{+} e^{-} \rightarrow \text { hadr }}(s) K(s) d s
$$

$$
a_{\mu}=(g-2) / 2
$$

$$
a_{\mu}^{H L O}=\frac{\alpha}{\pi^{2}} \int_{0}^{\infty} \frac{d s}{s} K(s) \operatorname{Im} \Pi_{\text {had }}(s) \sigma_{\text {drc-mate }}(s)=\frac{4 \pi}{s} \operatorname{Im} \Pi_{\text {had }}(s) 21 \mathrm{~m} m \subset m=\mid m\left\langle\left.\right|^{2}\right.
$$

$$
K(s)=\int_{0}^{1} d x \frac{x^{2}(1-x)}{x^{2}+(1-x)\left(s / m^{2}\right)} \sim \frac{1}{s}
$$

Traditional way: based on precise experimental (time-like) data:

$$
a_{\mu}^{\text {had }}=(689.7 \pm 4.4) \cdot 10^{-10}
$$

Main contribution in the low energy region $\delta \mathrm{a}_{\mu}{ }^{\exp } \rightarrow 1.510^{-10}=0.2 \%$ on $\mathrm{a}_{\mu}{ }^{\mathrm{HLO}}$ (from 0.7\% now)

NEW G-2 at FNAL and JPARC

New results on $\mathrm{a}_{u}{ }^{\mathrm{HLO}}$

- BES

- New; $1 / 3^{\text {rd }}$ data; $\pi \pi$ results ${ }^{*}$ consistent with others (arxiv:1507.08188)

- VEPP-2000

- New results this year at $\sim 0.6 \%$ on $\pi \pi$
- Aim at $\sim 0.3 \%$ by 2017 (the ultimate goal)

$a_{\mu}{ }^{H L O}$ evaluation in spacelike region: alternative approach

$$
a_{\mu}=(g-2) / 2
$$

$a_{\mu}^{H L O}=-\frac{\alpha}{\pi} \int_{0}^{1}(1-x) \Pi_{\text {had }}\left(-\frac{x^{2}}{1-x} m_{\mu}^{2}\right) d x$

$x=$ Feynman parameter
See also G.Fedotovich, proceedings of PHIPSI08

$$
t=\frac{x^{2} m_{\mu}^{2}}{x-1} \quad 0 \leq-t<+\infty
$$

$$
x=\frac{t}{2 m_{\mu}^{2}}\left(1-\sqrt{1-\frac{4 m_{\mu}^{2}}{t}}\right) ; \quad 0 \leq x<1
$$

$$
\Delta \alpha_{\text {had }}(t)=-\Pi_{\text {had }}(t) \quad \text { for } t<0
$$

$$
a_{\mu}^{\text {HLO }}=-\frac{\alpha}{\pi} \int_{0}^{1}(1-x) \Delta \alpha_{h a d}\left(-\frac{x^{2}}{1-x} m_{\mu}^{2}\right) d x
$$

For $\mathrm{t}<0$

Behaviors

$\Delta \alpha \sim \log (-t)$
Dominated at low |t| by leptonic contribution
A. Arbuzov et al., Eur. Phys. J. C 34 (2004) 267

High |t|-values are depressed by 1-x (a kind of analogy with time-like region) The integrand is peaked at $\sim x=0.92$ $\rightarrow \mathrm{t}=-0.11 \mathrm{GeV}^{2}(\sim 330 \mathrm{MeV})$ for which $\Delta \alpha_{\text {had }}(0.92) \sim 10^{-3}$

Experimental considerations

Using Bhabha at small angle (to emphasize t-channel contribution) to extract $\Delta \alpha$:
$\left(\frac{\alpha(t)}{\alpha(0)}\right)^{2} \sim \frac{d \sigma_{e e \rightarrow e e}(t)}{d \sigma_{M C}^{0}(t)}$
Where $\mathrm{do}^{0}{ }_{\mathrm{MC}}$ is the MC prediction for Bhabha process with $\alpha(t)=\alpha(0)$, and there are corrections due to RC...
$\Delta \alpha_{\text {had }}(t)=1-\left(\frac{\alpha(t)}{\alpha(0)}\right)^{-1}-\Delta \alpha_{\text {lept }}(t) \quad \Delta \alpha_{\text {lep }}(\mathrm{t})$ theoretically well known!

Which experimental accuracy we are aiming at? $\delta \Delta \alpha_{\text {had }} \sim 1 / 2$ fractional accuracy on $d \sigma(t) / d \sigma^{0}{ }_{\text {Mc }}(\mathrm{t})$.

If we assume to measure $\delta \Delta \alpha_{\text {had }}$ at 5% at the peak of the integrand ($\Delta \alpha_{\text {had }}$ $\sim 10^{-3}$ at $\left.\mathrm{x}=0.92\right) \rightarrow$ fractional accuracy on $\mathrm{d} \mathrm{\sigma}(\mathrm{t}) / \mathrm{d} \sigma^{0}{ }_{\mathrm{Mc}}(\mathrm{t}) \sim 10^{-4}$!

Very challenging measurement (one order of magnitude improvement respect to date) for systematic error

Experimental considerations - II

Most of the region (up to $x \sim 0.98$) can be covered with a low energy machine (like Dafne/VEPP-2000 or tau/charm-Bfactories)
Example:
Covering up to 60° at $\sqrt{ } \mathrm{s}=1 \mathrm{GeV}$ can arrive at $\mathrm{x}=0.95$ (!)

A different situation can be obtained at tau/charm/ B-factories (and at future ILC/TLEP machines) where smaller angles (below 20°) are needed

$$
t=-s \sin ^{2}\left(\frac{\boldsymbol{\vartheta}}{2}\right)
$$

Statistical consideration

10^{-4} accuracy on Bhabha cross section requires at least 10^{8} events which at 20° mean at least:

- $\mathrm{O}(1) \mathrm{fb}^{-1} @ 1 \mathrm{GeV}$
- O(10) fb-1 @ 3 GeV
- $\mathrm{O}(100) \mathrm{fb}^{-1} @ 10 \mathrm{GeV}$

These luminosities are within reach at flavour factories!

G. Venanzoni, Seminar at LNF, Frascati, 20 May 2015

Additional considerations: s-channel

At low energy ($<10 \mathrm{GeV}$) above 10^{0} there is still a sizeable contribution from s-channel.
At LO no difficulty to deconvolute the cross section for the schannel

Test with Babayaga:
$\mathrm{s}=1 \mathrm{GeV}$
$10^{\circ}<\theta<170^{\circ}$
$\mathrm{d}_{\text {born }} / \mathrm{dt}=1.52 \mathrm{mb} / \mathrm{GeV}^{2}$

However this picture changes with Rad. Corr.

Additional considerations: Rad. Corr.

A Monte Carlo procedure has been developed to check if $\Delta \alpha_{\text {had }}(\mathrm{t})$ can be obtained by a minimization procedure with a different $\Delta \alpha_{\text {had }}(t)$ ' inside

$$
\left.\frac{d \sigma}{d t}\right|_{\text {data }}=\left.\frac{d \sigma}{d t}(\alpha(t), \alpha(s))\right|_{\mathrm{MC}},
$$

$$
\rightarrow
$$

$$
\left.\frac{d \sigma}{d t}\right|_{j, \text { data }}=\left.\frac{d \sigma}{d t}\left(\bar{\alpha}(t)+\frac{i_{j}}{N} \delta(t), \alpha(s)\right)\right|_{j, \mathrm{MC}}{ }^{\circ} \cdot \mathbf{0 . 0 9 5}
$$

Additional consideration: Normalization

To compare Bhabha absolute cross section from data with MC we need Luminosity of the machine.
Two possibilities:

1) Use Bhabha at very small angle where the uncertainty on $\Delta \alpha_{\text {had }}$ can be neglected (for example at $E_{\text {beam }}=1 \mathrm{GeV}$ and $\theta=5^{\circ}, \Delta \alpha_{\text {had }}$ $\sim 10^{-5}$).
2) Use a process with $\Delta \alpha_{\text {had }}=0$, like $\mathrm{e}+\mathrm{e}-\rightarrow \gamma \gamma$. However very difficult to determine it at 10^{-4} accuracy.

Option 1) looks better to us as some of the common systematics cancel in the measurement !

Measurement of DAFNE Luminosity with KLOE/KLOE-2 at 10^{-4} ?

F. Ambrosino et al [KLOE] Eur. Phys. J. C 47, 589-596 (2006)

Table 2. Summary of the corrections and systematic errors in the measurement of the luminosity correction (\%) systematic error (\%)

angular acceptance	+0.25	0.25
tracking	-	0.06
clustering	+0.14	0.11
background	-0.62	0.13
cosmic veto	+0.40	-
energy calibration	-	0.10
center of mass energy	+0.10	0.10
	+0.34	0.32

Adding in quadrature: 0.3%
(can be improved by a factor 10?)
G. Venanzoni, Seminar at LNF, Frascati, 20 May 2015

From F. Nguyen 2006
 Polar angle systematics

\checkmark global agreement is very good
but the cut occurs in a steep region of the distributions \Rightarrow estimate of border mismatches
\checkmark after normalizing MC to make it coincide with data in the region $65^{\circ}<\theta<115^{\circ}$, we estimate as a systematic error:
$\frac{N_{[55: 65]+[115: 125]}^{d a t}-N_{[55: 65]+[115: 125]}^{M C}}{N_{T O T}^{d a t}} \sim 0.25 \%$
Can be improved at 10^{-4} ?
G. Venanzoni, Seminar at LNF, Frascati, 20 May 2015

A measurement of the Luminosity at 10^{-4} at LEP

Giovanni Abbiendi
INFN - Bologna

Eur. Phys. J. C 45, 1-21 (2006)

Digital Object Identifier (DOI) 10.1140/epjc/s2005-02389-3

THE EUROPEAN
PHYSICAL JOURNAL C

Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

The OPAL Collaboration
G. Abbiendi ${ }^{2}$, C. Ainsley ${ }^{5}$, P.F. Åkesson ${ }^{3, y}$, G. Alexander ${ }^{22}$, G. Anagnostou ${ }^{1}$, K.J. Anderson ${ }^{9}$, S. Asai ${ }^{23}$, D. Axen ${ }^{27}$, I. Bailey ${ }^{26}$, E. Barberio ${ }^{8, \mathrm{p}}$, T. Barillari ${ }^{32}$, R.J. Barlow ${ }^{16}$, R.J. Batley ${ }^{5}$, P. Bechtle ${ }^{25}$, T. Behnke ${ }^{25}$, K.W. Bell ${ }^{20}$, P.J. Bell ${ }^{1}$, G. Bella ${ }^{22}$, A. Bellerive ${ }^{6}$, G. Benelli ${ }^{4}$, S. Bethke ${ }^{32}$, O. Biebel ${ }^{31}$, O. Boeriu ${ }^{10}$, P. Bock ${ }^{11}$, M. Boutemeur ${ }^{31}$, S. Braibant ${ }^{2}$, R.M. Brown ${ }^{20}$, H.J. Burckhart ${ }^{8}$, S. Campana ${ }^{4}$, P. Capiluppi ${ }^{2}$, R.K. Carnegie ${ }^{6}$, A.A. Carter ${ }^{13}$, J.R. Carter ${ }^{5}$, C.Y. Chang ${ }^{17}$, D.G. Charlton ${ }^{1}$, C. Ciocca ${ }^{2}$, A. Csilling ${ }^{29}$, M. Cuffiani ${ }^{2}$, S. Dado ${ }^{21}$, G.M. Dallavalle ${ }^{2}$, A. De Roeck ${ }^{8}$, E.A. De Wolf ${ }^{8, \mathrm{~s}}$, K. Desch ${ }^{25}$, B. Dienes ${ }^{30}$, J. Dubbert ${ }^{31}$, E. Duchovni ${ }^{24}$, G. Duckeck ${ }^{31}$, I.P. Duerdoth ${ }^{16}$, E. Etzion ${ }^{22}$, F. Fabbri ${ }^{2}$, P. Ferrari ${ }^{8}$, F. Fiedler ${ }^{31}$, I. Fleck ${ }^{10}$, M. Ford ${ }^{16}$, A. Frey ${ }^{8}$, P. Gagnon ${ }^{12}$, J.W. Gary ${ }^{4}$, C. Geich-Gimbel ${ }^{3}$, G. Giacomelli ${ }^{2}$, P. Giacomelli ${ }^{2}$, R. Giacomelli ${ }^{2}$, M. Giunta ${ }^{4}$, J. Goldberg ${ }^{21}$, E. Gross ${ }^{24}$, J. Grunhaus ${ }^{22}$, M. Gruwé ${ }^{8}$, P.O. Günther ${ }^{3}$, A. Gupta ${ }^{9}$, C. Hajdu ${ }^{29}$, M. Hamann ${ }^{25}$, G.G. Hanson ${ }^{4}$, A. Harel ${ }^{21}$, M. Hauschild ${ }^{8}$, C.M. Hawkes ${ }^{1}$, R. Hawkings ${ }^{8}$, R.J. Hemingway ${ }^{6}$, G. Herten ${ }^{10}$, R.D. Heuer ${ }^{25}$, J.C. Hill ${ }^{5}$, D. Horváth ${ }^{29, \mathrm{c}}$, P. Igo-Kemenes ${ }^{11}$, K. Ishii ${ }^{23}$, H. Jeremie ${ }^{18}$, P. Jovanovic ${ }^{1}$, T.R. Junk ${ }^{6, \mathrm{i}}$, J. Kanzaki ${ }^{23, \mathrm{u}}$, D. Karlen ${ }^{26}$, K. Kawagoe ${ }^{23}$, T. Kawamoto ${ }^{23}$, R.K. Keeler ${ }^{26}$ R.G. Kellogg ${ }^{17}$, B.W. Kennedy ${ }^{20}$, S. Kluth ${ }^{32}$, T. Kobayashi ${ }^{23}$, M. Kobel ${ }^{3}$, S. Komamiya ${ }^{23}$, T. Krämer ${ }^{25}$, P. Krieger ${ }^{6,1}$, J. von Krogh ${ }^{11}$, T. Kuhl ${ }^{25}$, M. Kupper ${ }^{24}$, G.D. Lafferty ${ }^{16}$, H. Landsman ${ }^{21}$, D. Lanske ${ }^{14}$, D. Lellouch ${ }^{24}$, J. Letts ${ }^{\circ}$, L. Levinson ${ }^{24}$, J. Lillich ${ }^{10}$, S.L. Lloyd ${ }^{13}$, F.K. Loebinger ${ }^{16}$, J. Lu ${ }^{27, w}$, A. Ludwig ${ }^{3}$, J. Ludwig ${ }^{10}$, W. Mader ${ }^{3, \mathrm{~b}}$, S. Marcellini ${ }^{2}$, A.J. Martin ${ }^{13}$, T. Mashimo ${ }^{23}$, P. Mättig ${ }^{\text {m }}$, J. McKenna ${ }^{27}$, R.A. McPherson ${ }^{26}$, F. Meijers ${ }^{8}$, W. Menges ${ }^{25}$ F.S. Merritt ${ }^{9}$, H. Mes ${ }^{6, \mathrm{a}}$, N. Meyer ${ }^{25}$, A. Michelini ${ }^{2}$, S. Mihara ${ }^{23}$, G. Mikenberg ${ }^{24}$, D.J. Miller ${ }^{15}$, W. Mohr ${ }^{10}$, T. Mori ${ }^{23}$, A. Mutter ${ }^{10}$, K. Nagai ${ }^{13}$, I. Nakamura ${ }^{23, v}$, H. Nanjo ${ }^{23}$, H.A. Neal ${ }^{33}$, R. Nisius ${ }^{32}$, S.W. O’Neale ${ }^{1, *}$, A. Oh^{8}, M.J. Oreglia ${ }^{9}$, S. Orito ${ }^{23, *}$, C. Pahl ${ }^{32}$, G. Pásztor ${ }^{4, g}$, J.R. Pater ${ }^{16}$, J.E. Pilcher ${ }^{9}$, J. Pinfold ${ }^{28}$, D.E. Plane ${ }^{8}$, O. Pooth ${ }^{14}$, M. Przybycień ${ }^{8, n}$, A. Quadt ${ }^{3}$, K. Rabbertz ${ }^{8, \mathrm{r}}$, C. Rembser ${ }^{8}$, P. Renkel ${ }^{24}$, J.M. Roney ${ }^{26}$, A.M. Rossi ${ }^{2}$, Y. Rozen ${ }^{21}$, K. Runge ${ }^{10}$, K. Sachs ${ }^{6}$, T. Saeki ${ }^{23}$, E.K.G. Sarkisyan ${ }^{8, j}$, A.D. Schaile ${ }^{31}$, O. Schaile ${ }^{31}$, P. Scharff-Hansen ${ }^{8}$, J. Schieck ${ }^{32}$, T. Schörner-Sadenius ${ }^{8, z}$, M. Schröder ${ }^{8}$, M. Schumacher ${ }^{3}$, R. Seuster ${ }^{14, f}$, T.G. Shears ${ }^{8, h}$, B.C. Shen ${ }^{4}$, P. Sherwood ${ }^{15}$, A. Skuja ${ }^{17}$, A.M. Smith ${ }^{8}$, R. Sobie ${ }^{26}$, S. Söldner-Rembold ${ }^{16}$, F. Spano ${ }^{9}$, A. Stahl ${ }^{3, \mathrm{x}}$, D. Strom ${ }^{19}$, R. Ströhmer ${ }^{31}$, S. Tarem ${ }^{21}$, M. Tasevsky ${ }^{8, \mathrm{~s}}$, R. Teuscher ${ }^{9}$, M.A. Thomson ${ }^{5}$, E. Torrence ${ }^{19}$, D. Toya ${ }^{23}$, P. Tran ${ }^{4}$, I. Trigger ${ }^{8}$, Z. Trócsányi ${ }^{30,}$, E. Tsur ${ }^{22}$, M.F. Turner-Watson ${ }^{1}$, I. Ueda ${ }^{23}$, B. Ujvári ${ }^{30, e}$, C.F. Vollmer ${ }^{31}$, P. Vannerem ${ }^{10}$, R. Vértesi ${ }^{30, \mathrm{e}}$, M. Verzocchi ${ }^{17}$, H. Voss $^{8, \mathrm{q}}$, J. Vossebeld ${ }^{8, \text { h }}$, C.P. Ward ${ }^{5}$, D.R. Ward ${ }^{5}$, P.M. Watkins ${ }^{1}$, A.T. Watson ${ }^{1}$, N.K. Watson ${ }^{1}$, P.S. Wells ${ }^{8}$, T. Wengler ${ }^{8}$, N. Wermes ${ }^{3}$, G.W. Wilson ${ }^{16, \text {, }}$, J.A. Wilson ${ }^{1}$, G. Wolf ${ }^{24}$, T.R. Wyatt ${ }^{16}$, S. Yamashita ${ }^{23}$, D. Zer-Zion ${ }^{4}$, L. Zivkovic ${ }^{24}$

Small-angle Bhabha scattering in OPAL

2 cylindrical calorimeters encircling the beam pipe at $\pm 2.5 \mathrm{~m}$ from the Interaction Point

19 Silicon layers

Total Depth $22 \mathrm{X}_{0}$
18 Tungsten layers (14 cm)

Each detector layer divided into 16 overlapping wedges

Sensitive radius: 6.2 - $\mathbf{1 4 . 2} \mathbf{~ c m}$, corresponding to scattering angle of $\mathbf{2 5} \mathbf{- 5 8} \mathbf{~ m r a d}$ from the beam line

Final Error on Luminosity

After all the effort on Radial reconstruction the dominant systematic error is related to Energy (mostly tail in the E response and nonlinearity) Quantitatively: (OPAL Collaboration, Eur.Phys.J. C14 (2000) 373)

	Systematic Error $\left(\times 10^{-4}\right)$
Energy	1.8
Inner Anchor	1.4
Radial Metrology	1.4

Total Experimental Systematic Error : $\quad 3.4 \times 10^{-4}$

Theoretical Error on Bhabha cross section: 5.4×10^{-4}

Conclusions

- Measuring $\alpha_{e m}$ running in time-like and space like region appears to be very interesting. (Relatively) high q^{2}-values can be explored at ILC/TLEP
- An alternative formula for $\mathrm{a}_{\mu}{ }^{H L O}$ in spacelike region has been studied in details. It emphasizes low values of $t\left(<1 \mathrm{GeV}^{2}\right)$ and can be explored at low energy e+e- machines (VEPP2000/ DAFNE, $\tau /$ charm, B-factories)
- It requires to measure the Bhabha cross section at relatively small angles at (better than) 10^{-4} accuracy!
- Reaching such an accuracy demands a dedicated experimental and theoretical work for the next few years
- Can this method apply also at other (e-e-; fixed target) machines?

Thanks!

END

test

$\Delta \alpha_{e m}{ }^{\text {HAD }}(\mathrm{s})$ dependence

Which is the best energy/angle configuration?
 $-\dagger=9(1-\cos \theta) / 2$

 $x=\frac{t}{2 m_{\mu}^{2}}\left(1-\sqrt{1-\frac{4 m^{2}}{t}}\right)$2013/06/24 00.37

x vs t behaviour

Measuring $\mathrm{a}_{\mu}{ }^{\mathrm{HLO}}$ in the spacelike region

C.M.C. Calame ${ }^{1}$, M. Passera², L. Trentadue ${ }^{3}$, G. Venanzoni ${ }^{4}$
[arXiv:1504.02228, Phys.Lett. B746 (2015) 325-32]
${ }^{1}$ Universita' di Pavia, Pavia, Italy
${ }^{2}$ INFN, Sezione di Padova, Padova, Italy
${ }^{3}$ Universita' di Parma, Parma, Italy and Sezione INFN Milano Bicocca, Milano, Italy
${ }^{4}$ INFN, Laboratori Nazionali di Frascati, Frascati, Italy

LFC15: Physics prospects for Linear and other Future Colliders after the discovery of the Higgs

Trento, September 7-11, 2015

Muon g-2 Physics Workshop, Seattle, 14 July 2015

Impact of DAFNE-2 on exclusive channels in the range [1-2.5] GeV with a scan (Statistics only)

- Published BaBar results:89 fb ${ }^{-1}$ (ISR) \triangle "BaBar" $\times 10\left(890 \mathrm{fb}^{-1}\right)$
o KLOE-2 energy scan: $20 \mathbf{p b}^{-1} /$ point @ $L=10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, 25 MeV bin $\Rightarrow 1$ year data-taking

DAFNE-2 is statistically equivalent to $5 \div 10 \mathrm{ab}^{-1}$ (Super)B-factory

[^0]: OPAL

