Testing the Standard Model with the lepton g-2

Massimo Passera INFN Padova

> LFC15 ECT* Trento 8 Sep 2015

Outline

Lepton magnetic moments: the basics

• Uhlenbeck and Goudsmit in 1925 proposed:

$$\vec{\mu} = g \frac{e}{2mc} \vec{s}$$
$$g = 2 \pmod{1!}$$

• Dirac 1928:

$$(i\partial_{\mu} - eA_{\mu})\gamma^{\mu}\psi = m\psi$$

• A Pauli term in Dirac's eq would give a deviation...

$$a \frac{e}{2m} \sigma_{\mu\nu} F^{\mu\nu} \psi \quad \to \quad g = 2(1+a)$$

...but there was no need for it! g=2 stood for ~20 yrs.

M. Passera ECT* Sep 08 2015

• Kusch and Foley 1948:

$$\mu_e^{\rm exp} = \frac{e\hbar}{2mc} \ (1.00119 \pm 0.00005)$$

Schwinger 1948 (triumph of QED!):

$$\mu_e^{\rm th} = \frac{e\hbar}{2mc} \left(1 + \frac{\alpha}{2\pi}\right) = \frac{e\hbar}{2mc} \times 1.00116$$

Keep studying the lepton-y vertex:

$$\bar{u}(p')\Gamma_{\mu}u(p) = \bar{u}(p')\Big[\gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m}F_{2}(q^{2}) + \dots\Big]u(p)$$

$$F_1(0)=1$$
 $F_2(0)=a_l$ A pure "quantum correction" effect!

The muon g-2: recent theory progress

• Today: $a_{\mu}^{EXP} = (116592089 \pm 54_{stat} \pm 33_{sys}) \times 10^{-11} [0.5ppm].$

Future: new muon g-2 experiments proposed at:

- Fermilab E989, aiming at ± 16x10⁻¹¹, ie 0.14ppm
- J-PARC proposal aiming at 0.1 ppm

Are theorists ready for this (amazing) precision? No(t yet)

U

The muon g-2: the QED contribution

μ

 $a_{\mu}^{QED} = (1/2)(\alpha/\pi)$

Schwinger 1948

+ 0.765857426 (16) (α/π)²

Sommerfield; Petermann; Suura&Wichmann '57; Elend '66; MP '04

+ 24.05050988 (28) (α/π)³

Remiddi, Laporta, Barbieri ... ; Czarnecki, Skrzypek; MP '04; Friot, Greynat & de Rafael '05, Mohr, Taylor & Newell 2012

+ 130.8773 (61) (α/π)⁴

Kinoshita & Lindquist '81, ..., Kinoshita & Nio '04, '05; Aoyama, Hayakawa,Kinoshita & Nio, 2007, Kinoshita et al. 2012 & 2015; Lee, Marquard, Smirnov2, Steinhauser 2013 (electron loops, analytic), Kurz, Liu, Marquard, Steinhauser 2013 (τ loops, analytic); Steinhauser et al. 2015 (electron loops, analytic); work in progress

+ **752.85 (93)** (α/π)⁵ **COMPLETED**!

Kinoshita et al. '90, Yelkhovsky, Milstein, Starshenko, Laporta, Karshenboim,..., Kataev, Kinoshita & Nio '06; Kinoshita et al. 2012 & 2015

Adding up, we get:

a_μ^{QED} = 116584718.941 (21)(77) x 10⁻¹¹ from coeffs, mainly from 4-loop unc with α=1/137.035999049(90) [0.66 ppb]

The muon g-2: the electroweak contribution

One-loop plus higher-order terms:

The muon g-2: the hadronic LO contribution (HLO)

10

= 6949 (37)_{exp} (21)_{rad} x 10⁻¹¹

Hagiwara et al, JPG 38 (2011) 085003

Alternatively, exchanging the x and s integrations in a_{μ}^{HLO} one gets:

$$a_{\mu}^{\rm HLO} = \frac{\alpha}{\pi} \int_{0}^{1} dx \, (1-x) \, \Delta \alpha_{\rm had}[t(x)] \qquad \qquad t(x) = \frac{x^2 m_{\mu}^2}{x-1} < 0$$

involving the hadronic contribution to the running of α in the spacelike region, which can be extracted from Bhabha scattering data!

Requires measuring the Bhabha cross section at relatively small angles at better than 10⁻⁴ accuracy. Challenging, but with dedicated work it may become feasible at flavor factories.

Carloni Calame, MP, Trentadue, Venanzoni, PLB 746 (2015)

HNLO: Vacuum Polarization

 $O(\alpha^3)$ contributions of diagrams containing hadronic vacuum polarization insertions:

Krause '96, Alemany et al. '98, Hagiwara et al. 2011

The muon g-2: the hadronic NLO contributions (HNLO) - LBL

μ

Results based also on Hayakawa, Kinoshita '98 & '02; Bijnens, Pallante, Prades '96 & '02

"Bound" a_μ^{HNLO}(IbI) < ~ 160 x 10⁻¹¹ Erler, Sanchez '06, Pivovarov '02; also Boughezal, Melnikov '11
 Pion exch. in holographic QCD agrees. D.K.Hong, D.Kim '09; Cappiello, Catà, D'Ambrosio '11
 Lattice? Very hard but promising Tom Blum et al. 2015
 Dispersive approach proposed Colangelo, Hoferichter, Procura, Stoffer 1402.7081, 1506.01386

μ

HNNLO: Vacuum Polarization

 $O(\alpha^4)$ contributions of diagrams containing hadronic vacuum polarization insertions:

Kurz, Liu, Marquard, Steinhauser 2014

HNNLO: Light-by-light

 $a_{\mu}^{HNNLO}(IbI) = 3 (2) \times 10^{-11}$

Colangelo, Hoferichter, Nyffeler, MP, Stoffer 2014

Adding up all contributions, we get the following SM predictions and comparisons with the measured value:

a_μ^{EXP} = 116592091 (63) x 10⁻¹¹

E821 – Final Report: PRD73 (2006) 072 with latest value of $\lambda = \mu_{\mu}/\mu_{p}$ from CODATA'10

$a_{\mu}^{\rm SM} imes 10^{11}$	$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}}$	σ
116591809(66)	$282~(91) \times 10^{-11}$	3.1 [1]
116591829(57)	$262~(85) \times 10^{-11}$	3.1 [2]
116591855(58)	$236~(86) \times 10^{-11}$	2.8[3]

with the "conservative" $a_{\mu}^{HNLO}(IbI) = 116 (39) \times 10^{-11}$ and the LO hadronic from:

[1] Jegerlehner & Nyffeler, Phys. Rept. 477 (2009) 1

[2] Davier et al, EPJ C71 (2011) 1515 (includes BaBar & KLOE10 2π)

[3] Hagiwara et al, JPG38 (2011) 085003 (includes BaBar & KLOE10 2π)

Note that the th. error is now about the same as the exp. one

- Δa_{μ} can be explained by errors in QED, EW, HNLO, g-2 EXP, HLO, or, we hope, by New Physics!
- Can Δa_{μ} be due to hypothetical mistakes in the hadronic $\sigma(s)$?
- An upward shift of $\sigma(s)$ also induces an increase of $\Delta \alpha_{had}^{(5)}(M_z)$.
- Consider:

$$\begin{aligned} \mathbf{a}_{\mu}^{\mathsf{HLO}} &\to \\ a &= \int_{4m_{\pi}^{2}}^{s_{u}} ds \, f(s) \, \sigma(s), \qquad f(s) = \frac{K(s)}{4\pi^{3}}, \, s_{u} < M_{Z}^{2}, \\ \mathbf{\Delta} \alpha_{\mathsf{had}}^{(5)} &\to \end{aligned} \qquad b &= \int_{4m_{\pi}^{2}}^{s_{u}} ds \, g(s) \, \sigma(s), \qquad g(s) = \frac{M_{Z}^{2}}{(M_{Z}^{2} - s)(4\alpha\pi^{2})}, \end{aligned}$$

and the increase

$$\Delta \sigma(s) = \epsilon \sigma(s)$$

 $(\epsilon > 0)$, in the range:

$$\sqrt{s} \in \left[\sqrt{s_0} - \delta/2, \sqrt{s_0} + \delta/2\right]$$

U

The muon g-2: connection with the SM Higgs mass (2)

• How much does the M_H upper bound from the EW fit change when we shift $\sigma(s)$ by $\Delta\sigma(s)$ [and thus $\Delta\alpha_{had}^{(5)}(M_Z)$] to accommodate Δa_{μ} ?

W.J. Marciano, A. Sirlin, MP, 2008 & 2010

μ

- Given the quoted exp. uncertainty of $\sigma(s)$, the possibility to explain the muon g-2 with these very large shifts $\Delta\sigma(s)$ appears to be very unlikely.
- Solution Also, given a 125 GeV SM Higgs, these hypothetical shifts $\Delta\sigma(s)$ could only occur at very low energy (below ~ 1 GeV) where $\sigma(s)$ is precisely measured.
- Vice versa, assuming we now have a SM Higgs with M_H = 125 GeV, if we bridge the M_H discrepancy in the EW fit decreasing the low-energy hadronic cross section, the muon g-2 discrepancy increases.

Limiting two-Higgs-doublet models with the muon g-2

A. Broggio, E.J. Chun, MP, K. Patel, S. Vempati arXiv:1409.3199 (JHEP 2014)

$$\begin{split} \delta a_{\mu}^{^{2\text{HDM}}}(1\text{loop}) &= \frac{G_F \, m_{\mu}^2}{4\pi^2 \sqrt{2}} \sum_{j=h,H,A,H^{\pm}} \left(y_{\mu}^j \right)^2 r_{\mu}^j \, f_j(r_{\mu}^j) \\ \text{For } r_{\mu}^j &= m_{\mu}^2 / M_j^2 \ll 1; \\ f_{h,H}(r) &\sim -\ln r - 7/6 + O(r) > 0 \\ f_A(r) &\sim +\ln r + 11/6 + O(r) < 0 \\ f_{H^{\pm}}(r) &\sim -1/6 + O(r) < 0 \end{split}$$
 roughly scales with m_{\mu}^4!

$$\delta a_{\mu}^{\text{2HDM}}(2\text{loop} - \text{BZ}) = \frac{G_F m_{\mu}^2}{4\pi^2 \sqrt{2}} \frac{\alpha_{\text{em}}}{\pi} \sum_{f; i=h,H,A} N_f^c Q_f^2 y_{\mu}^i y_f^i r_f^i g_i(r_f^i)$$

$$g_{h,H}(r) < 0$$
In type II models, for M_A \approx 3GeV:

In type II models, for
$$M_A \gtrsim 3$$
GeV:
(2loop)_A > (1loop)_A. Similar for X.

1

μ

Limiting 2HDMs with a_{μ}

The 1σ , 2σ and 3σ regions allowed by Δa_{μ} in the M_A -tan β plane taking the limit of $\beta - \alpha = \pi/2$ and $M_{h(H)} = 126$ (200) GeV in type II (left panel) and type X (right panel) 2HDMs. The regions below the dashed (dotted) lines are allowed at 3σ (1.4 σ) by Δa_e . The vertical dashed line corresponds to $M_A = M_h/2$.

The contribution of the τ loop is enhanced by a factor $\tan^2\beta$ both in type II and in X models; it is suppressed by $1/\tan^2\beta$ in models of type I and Y.

Limiting 2HDMs with TH & EW constraints

Vacuum stability and perturbativity constraints ($\beta - \alpha = \pi/2$ and $M_h = 126$ GeV). Left: allowed regions for $\Delta M \equiv M_H - M_{H^{\pm}} = \{20, 0, -30\}$ GeV (darker to lighter), $\lambda_{\max} = \sqrt{4\pi}$. Right: $\lambda_{\max} = \{\sqrt{4\pi}, 2\pi, 4\pi\}, \Delta M = 0$. $\tan \beta = 50$, but negligible change for $\tan \beta \in [5, 100]$.

- Type I and Y models cannot account for the present value of Δa_{μ} due to their lack of tan² β enhancements.
- In type II (and Y) models the BR(b→sγ) sets a strong lower bound on M_{H±} of order 380 GeV [Hermann, Misiak, Steinhauser 2012]
 → hardly any space left for the light A required by Δa_µ.
- In type X models, no such strong bounds on M_{H±} from BR(b→sγ), only model-indep. LEP bound M_{H±} ≥ 80 GeV.
- Therefore, out of type I, II, X, Y models, only type X is consistent with all the constraints we considered, provided that M_A ≤ 100 GeV, 80 ≤ M_{H±} ≤ 200 GeV, M_H ~ M_{H±}, large tanβ. Work in progress for additional constraints.

Testing the SM with the electron g-2

G.F. Giudice, P. Paradisi & MP arXiv:1208.6583 (JHEP 2012)

The QED prediction of the electron g-2

e

aeQEL	$P = + (1/2)(\alpha/\pi) - 0.328 478 444 002 55(33)(\alpha/\pi)^2$
	Schwinger 1948 Sommerfield; Petermann; Suura&Wichmann '57: Elend '66; CODATA Mar '12
	$A_1^{(4)} = -0.328 478 965 579 193 78 \rightarrow O(10^{-18})$ in a _e
	$A_2^{(4)} (m_e/m_\mu) = 5.19738668 (26) \times 10^{-7}$
	$A_2^{(4)} (m_e/m_{\tau}) = 1.83798(33) \times 10^{-9}$
	+ 1.181 234 016 816 (11) $(\alpha/\pi)^3$ O(10 ⁻¹⁹) in a _e
	Kinoshita; Barbieri; Laporta, Remidol; , Li, Samuel; MP '06; Giudice, Paradisi, MP 2012
	$A_1^{(6)} = 1.181\ 241\ 456\ 587$
	$A_2^{(6)}(m_e/m_{\mu}) = -7.37394162(27) \times 10^{-6}$ $A_2^{(6)}(m_e/m_{\mu}) = -6.5830(11) \times 10^{-8}$
	$A_3^{(6)}$ (m _e /m _µ , m _e /m _τ) = 1.909 82 (34) x 10 ⁻¹³
	$-1.91206(84)(\alpha/\pi)^4$ 0.210^{-13} in a _e
(4m)	Kinoshita & Lindquist '81,, Kinoshita & Nio '05; Aoyama, Hayakawa, Kinoshita & Nio 2012 & 2015;
	Kurz, Liu, Marguard & Steinhauser 2014: analytic heavy virtual lepton part.
	+ 7.79 (34) $(\alpha/\pi)^5$ Complete Result! (12672 mass indep. diagrams!)
M. Passera	Aoyama, Hayakawa, Kinoshita, Nio, PRL 109 (2012) 111807; PRD 91 (2015) 3, 033006 ECT* Sep 08 2015 $0.2 \ 10^{-13}$ in ae NB: $(\alpha/\pi)^6 \sim O(10^{-16})_{25}$

The SM prediction of the electron g-2

Compare it with other determinations (independent of a_e):

Excellent agreement → beautiful test of QED at 4-loop level!

Old and new determinations of alpha

Gabrielse, Hanneke, Kinoshita, Nio & Odom, PRL99 (2007) 039902 Hanneke, Fogwell & Gabrielse, PRL100 (2008) 120801 Bouchendira et al, PRL106 (2011) 080801 Using α = 1/137.035 999 049 (90) [⁸⁷Rb, 2011], the SM prediction for the electron g-2 is

$$a_e^{SM} = 115\ 965\ 218\ 16.5\ (0.2)\ (0.2)\ (0.2)\ (7.6)\ x\ 10^{-13}$$

 $\delta C_4^{qed}\ \delta C_5^{qed}\ \delta a_e^{had}\ from\ \delta \alpha$

• The EXP-SM difference is (note the negative sign):

$$\Delta a_e = a_e^{EXP} - a_e^{SM} = -9.2 (8.1) \times 10^{-13}$$

The SM is in very good agreement with experiment (1 σ). NB: The 4-loop contrib. to a_e^{QED} is -556 x 10⁻¹³ ~ 70 $\delta \Delta a_e$! (the 5-loop one is 6.2 x 10⁻¹³)

- The present sensitivity is $\delta \Delta a_e = 8.1 \times 10^{-13}$, ie (10⁻¹³ units): $(0.2)_{\text{QED4}}, (0.2)_{\text{QED5}}, (0.2)_{\text{HAD}}, (7.6)_{\delta\alpha}, (2.8)_{\delta a_e^{\text{EXP}}}$ $(0.4)_{TH}$ ← may drop to 0.2
- The (g-2)_e exp. error may soon drop below 10⁻¹³ and work is in progress for a significant reduction of that induced by $\delta \alpha$.

 \rightarrow sensitivity of 10⁻¹³ may be reached with ongoing exp. work

In a broad class of BSM theories, contributions to a scale as

 $\frac{\Delta a_{\ell_i}}{\Delta a_{\ell_i}} = \left(\frac{m_{\ell_i}}{m_{\ell_i}}\right)^2$ This Naive Scaling leads to:

$$\Delta a_e = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) \ 0.7 \times 10^{-13}; \qquad \Delta a_\tau = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) \ 0.8 \times 10^{-6}$$

Summary of the exp. contributions to the relative uncertainty of $\delta \alpha$ and δa_e (in ppb). F. Terranova & G.M. Tino, PRA89 (2014) 052118

- The experimental sensitivity in ∆a_e is not very far from what is needed to test if the discrepancy in (g-2)_µ also manifests itself in (g-2)_e under the naive scaling hypothesis.
- NP scenarios exist which violate Naive Scaling. They can lead to larger effects in ∆a_e and contributions to EDMs, LFV or lepton universality breaking observables.
- Example: In the MSSM with non-degenerate but aligned sleptons (vanishing flavor mixing angles), ∆a_e can reach 10⁻¹² (at the limit of the present exp sensitivity). For these values one typically has breaking effects of lepton universality at the few per mil level (within future exp reach).

Positronium contribution to the electron g-2

M. Fael & MP, arXiv:1402.1575 (PRD 2014)

The leading contribution of positronium to a_e comes from:

Mishima 1311.7109; Fael & MP 1402.1575; Melnikov et al. 1402.5690; Eides 1402.5860; Hayakawa 1403.0416

• The e⁺e⁻ bound states appear as poles in the vac. pol. $\Pi(q^2)$ right below the branch-point $q^2 = (2m)^2$. Their contribution is:

$$a_{e}(vp) = \frac{\alpha}{\pi^{2}} \int_{0}^{\infty} \frac{ds}{s} \operatorname{Im} \Pi(s+i\epsilon) K(s)$$

$$a_{e}^{P} = \frac{\alpha^{5}}{4\pi} \zeta(3) \left(8 \ln 2 - \frac{11}{2}\right) = 0.9 \times 10^{-13} = 1.3 \left(\frac{\alpha}{\pi}\right)^{5}$$

$$K(4m^{2})$$
Mishima 1311.7109

• Of the same magnitude of the exp. unc. of a_e & the "naively rescaled" muon Δa_{μ} . Of the same order of α as the 5-loop term!

Melnikov, Vainshtein & Voloshin (MVV) 1402.5690 determined a nonpert. contrib. of the e⁺e⁻ continuum right above threshold that cancels one-half of a_e^P:

$$a_e(vp)^{cont,np} = -\frac{|\alpha|^5}{8\pi}\zeta(3)\left(8\ln 2 - \frac{11}{2}\right)$$

Check: the total positronium poles + continuum nonperturbative contribution to a_e arising from the threshold region at LO in α is:

$$a_e^{\rm thr}({\rm vp}) = -\frac{\alpha}{\pi} \, K(4m^2) \operatorname{Re} A(1)$$

with

$$A(\beta) = -\frac{\alpha^2}{2} \left[\gamma + \psi \left(1 - \frac{i\alpha}{2\beta} \right) \right] = \frac{\alpha^2}{2} \sum_{k=1}^{\infty} \zeta(k+1) \left(\frac{i\alpha}{2\beta} \right)^k$$

so that

$$a_e^{\rm thr}({\rm vp}) = rac{lpha^5}{8\pi} \zeta(3) \, K(4m^2) = rac{a_e^{\rm P}}{2}$$

- So, should we add this total threshold contribution a_e^P/2 to the perturbative QED 5-loop result of Kinoshita and collaborators?
- Using the Coulomb Green's function, MVV 1402.5690 argued that it is already contained in the contribution of $O(\alpha^5)$.
- Hayakawa 1403.0416 claimed that positronium contributes to a_e only through a specific class of diagrams of $O(\alpha^7)$.
- To address this question we studied the 5-loop QED contribution to a_e arising from the insertion of the 4-loop VP in the photon line. This has been computed via:

• Using explicit expressions for $\Pi^{(8)}(q^2)$ (Baikov, Maier, Marquard '13) in

$$a_e^{(10)}(vp) = -\frac{\alpha}{\pi} \int_0^1 dx \,(1-x) \,\Pi^{(8)} \left(-\frac{m^2 x^2}{1-x}\right)$$

we obtain:

$$a_e^{(10)}(vp) = n_e \frac{\alpha^5}{8\pi} \zeta(3) K(4m^2) + \dots = \frac{a_e^{\rm P}}{2} + \dots$$

a_e^P/2 is already included in the 5-loop contribution of class I(i).
 There is no additional contrib of QED bound states beyond PT!

M.A. Braun 1968; Barbieri, Christillin, Remiddi 1973

The tau g-2: opportunities or fantasies?

Work in progress in collaboration with S. Eidelman, D. Epifanov, M. Fael, L. Mercolli

arXiv:1301.5302 arXiv:1310.1081 arXiv:1506.03416

The SM prediction of the tau g-2

- The very short lifetime of the tau makes it very difficult to determine a_T measuring its spin precession in a magnetic field.
- DELPHI's result, from e⁺e⁻ → e⁺e⁻τ⁺τ⁻ total cross-section measurements at LEP 2 (the PDG value):

PDG 2014

With an effective Lagrangian approach, using data on tau lepton production at LEP1, SLC, and LEP2:

 $-0.007 < a_{\perp}^{NP} < 0.005$ (95% CL)

 $a_{\tau} = -0.018 (17)$

Gonzáles-Sprinberg et al 2000

• Bernabéu et al, propose the measurement of $F_2(q^2=M_Y^2)$ from e⁺e⁻ $\rightarrow \tau^+\tau^-$ production at B factories. NPB 790 (2008) 160

The τ g-2 via τ radiative leptonic decays: a proposal

Must employ the polarized differential decay rate.

Study the full phase space.

$$d\Gamma = d\Gamma_{\rm o} + \left(\frac{m_{\tau}}{M_W}\right)^2 d\Gamma_W + \frac{\alpha}{\pi} d\Gamma_{\rm NLO} + \tilde{a}_{\tau} d\Gamma_{\rm a} + \tilde{d}_{\tau} d\Gamma_{\rm d}$$

Under investigation for Belle-II analysis. Should at least improve the Delphi bound. Work in progress. The branching ratio of radiative μ and τ leptonic decays for a minimum photon energy ω_0 :

$$\mathcal{B}(\omega_0) \propto \int d\Phi_4 \left(d\Gamma_{
m LO} + d\Gamma_{
m virt}
ight) + \int d\Phi_5 d\Gamma_{\gamma\gamma}$$

 𝔅^{Exc}(ω₀): only one γ of energy ω > ω₀, additional second soft photon ω' < ω₀.
 𝔅^{Exc}(ω₀) = ■

• $\mathcal{B}^{\mathrm{Inc}}(\omega_0)$: at least one γ of energy $\omega > \omega_0$.

$$\mathcal{B}^{ ext{Inc}}\left(\omega_{0}
ight)=oldsymbol{ ext{=}}+oldsymbol{ ext{=}}$$

B.R. of radiative $ au$ leptonic decays ($\omega_0=$ 10 MeV)			
	$ au o e ar u u \gamma$	$ au o \mu ar u u \gamma$	
$\mathcal{B}_{ ext{lo}}$	$1.834 imes 10^{-2}$	3.663×10^{-3}	
$\mathcal{B}_{_{ m NLO}}^{ m Inc}$	$-1.06(1)_n(10)_N imes 10^{-3}$	$-5.8(1)_n(2)_N imes 10^{-5}$	
$\mathcal{B}_{_{ m NLO}}^{ m Exc}$	$-1.89(1)_n(19)_N imes 10^{-3}$	$-9.1(1)_n(3)_N imes 10^{-5}$	
$\mathcal{B}^{ ext{Inc}}$	$1.728(10)_{ m th}(3)_{ au} imes 10^{-2}$	$3.605(2)_{ m th}(6)_{ au} imes 10^{-3}$	
$\mathcal{B}^{ ext{Exc}}$	$1.645(19)_{ m th}(3)_{ au} imes 10^{-2}$	$3.572(3)_{ m th}(6)_{ au} imes 10^{-3}$	
$\mathcal{B}^{\dagger}_{\scriptscriptstyle\mathrm{EXP}}$	$1.847(15)_{\rm st}(52)_{\rm sy} imes 10^{-2}$	$3.69(3)_{ m st}(10)_{ m sy} imes 10^{-3}$	

(n): numerical errors (N): uncomputed NNLO corr. $\sim (\alpha/\pi) \ln r \ln(\omega_0/M) imes \mathcal{B}_{
m NLO}^{
m Exc/Inc}$ $^{\dagger}{
m BABAR}$ - PRD 91 (2015) 051103 (th): combined $(n) \oplus (N)$ (τ) : experimental error of τ lifetime: $\tau_{\tau} = 2.903(5) \times 10^{-13}$ s

$$\begin{array}{ccc} \tau \rightarrow e \bar{\nu} \nu \gamma & \tau \rightarrow \mu \bar{\nu} \nu \gamma \\ \Delta^{\mathrm{Exc}} & 2.02\,(57) \times 10^{-3} \rightarrow 3.5\sigma & 1.2\,(1.0) \times 10^{-4} \rightarrow 1.1\sigma \end{array}$$

Fael, Mercolli, MP, arXiv:1506.03416 (JHEP 2015)

Conclusions

- Solution $\Delta a_{\mu} \sim 3 \div 3.5 \sigma$. Is it NP? New upcoming g-2 experiment: QED & EW terms ready for the challenge; how about the hadronic one? Future of hadronic LBL??
- Sould Δa_{μ} be due to mistakes in the hadronic $\sigma(s)$? Very unlikely. Also, given a 125 GeV SM Higgs, these hypothetical shifts $\Delta \sigma(s)$ could only occur at very low energies (below ~ 1GeV).
- Solution Section Se
- Solution The sensitivity of the electron g-2 has improved. It may soon be possible to test if Δa_{μ} manifests itself also in the electron g-2! A robust and ambitious experimental program is under way to improve α & a_e . The positronium contribution shouldn't be added!
- The tau g-2 is essentially unknown: we propose to measure it at Belle II via its radiative leptonic decays. BaBar's recent precise measurement of $\mathcal{B}(\tau \to e \bar{\nu} \nu \gamma)$ differs from our prediction by 3.5 σ !

The End