

Physics programme at FCC-ee

LFC15: Linear & Future Colliders after the Higgs discovery ECT* Trento, 7th–11th Sept. 2015

David d'Enterria (on behalf of FCC-ee study group) CERN

Standard Model of particles & interactions

Renormalizable QFT of electroweak SU_L(2)×U_Y(1) & strong SU_c(3) gauge interactions O(20) parameters: Couplings, H mass&vev, H-f Yukawa, CKM mix., CP phases. Experimentally confirmed to great precision for 40(!) years:

Standard Model of particles & interactions

Renormalizable QFT of electroweak SU_L(2)×U_Y(1) & strong SU_c(3) gauge interactions O(20) parameters: Couplings, H mass&vev, H-f Yukawa, CKM mix., CP phases. Experimentally confirmed to great precision for 40(!) years:

Open questions in the SM (1)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$$
 [Gauge interactions: $\mathbf{U}_{\mathbf{v}}(1)$, $\mathbf{SU}_{\mathbf{L}}(2)$, $\mathbf{SU}_{\mathbf{c}}(3)$]
 $+ (\bar{\nu}_{L}, \bar{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (h.c.)$ [Lepton dynamics]
 $-\frac{\sqrt{2}}{v} \left[(\bar{\nu}_{L}, \bar{e}_{L}) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \phi \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_{L}, \bar{\nu}_{L}) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right]$ [Lepton masses]
 $+ (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (h.c.)$ [Quark dynamics]
 $-\frac{\sqrt{2}}{v} \left[(\bar{u}_{L}, \bar{d}_{L}) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \phi \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_{L}, \bar{u}_{L}) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right]$ Quark masses]
 $+ (\overline{D_{\mu}} \phi) D^{\mu} \phi - m_{h}^{2} [\bar{\phi} \phi - v^{2}/2]^{2} / 2v^{2}.$ [Higgs dynamics & mass]

× <u>Higgs</u>: Generation of 1^{st} -gen. fermion (and all v's) masses to be confirmed

Open questions in the SM (2)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu}) \qquad \text{[Gauge interactions: } \mathbf{U}_{\mathsf{Y}}(1), \, \mathsf{SU}_{\mathsf{L}}(2), \, \mathsf{SU}_{\mathsf{c}}(3)\text{]} \\ + (\bar{\nu}_L, \bar{e}_L) \, \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \bar{e}_R \sigma^{\mu} i D_{\mu} e_R + \bar{\nu}_R \sigma^{\mu} i D_{\mu} \nu_R + (\mathrm{h.c.}) \qquad \text{[Lepton dynamics]} \\ - \frac{\sqrt{2}}{v} \left[\left(\bar{\nu}_L, \bar{e}_L \right) \phi M^e e_R + \bar{e}_R \bar{M}^e \phi \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[\left(- \bar{e}_L, \bar{\nu}_L \right) \phi^* M^\nu \nu_R + \bar{\nu}_R \bar{M}^\nu \phi^T \begin{pmatrix} -e_L \\ \nu_L \end{pmatrix} \right] \qquad \text{[Lepton masses]} \\ + (\bar{u}_L, \bar{d}_L) \, \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} + \bar{u}_R \sigma^{\mu} i D_{\mu} u_R + \bar{d}_R \sigma^{\mu} i D_{\mu} d_R + (\mathrm{h.c.}) \qquad \text{[Quark dynamics]} \\ - \frac{\sqrt{2}}{v} \left[\left(\bar{u}_L, \bar{d}_L \right) \phi M^d d_R + \bar{d}_R \bar{M}^d \phi \begin{pmatrix} u_L \\ d_L \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[\left(- \bar{d}_L, \bar{u}_L \right) \phi^* M^u u_R + \bar{u}_R \bar{M}^u \phi^T \begin{pmatrix} -d_L \\ u_L \end{pmatrix} \right] \qquad \text{[Quark masses]} \\ + \overline{(D_\mu \phi)} D^\mu \phi \left[- \frac{m_h^2 [\bar{\phi} \phi - v^2/2]^2 / 2v^2} \right] \qquad \text{[Higgs dyn. \& mass]} + \text{new particles/symmetries ?}$$

<u>Higgs</u>: Generation of 1st-gen. fermion (and all v's) masses to be confirmed
 <u>Fine-tuning</u>: Higgs mass virtual corrections «untamed» up to Planck scale

Open questions in the SM (3)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$$
 [Gauge interactions: $\mathbf{U}_{\mathbf{v}}(1)$, $\mathbf{SU}_{\mathbf{L}}(2)$, $\mathbf{SU}_{\mathbf{c}}(3)$]
 $+ (\bar{\nu}_{L}, \bar{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (h.c.)$ [Lepton dynamics]
 $-\frac{\sqrt{2}}{v} \left[(\bar{\nu}_{L}, \bar{e}_{L}) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \phi \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} - \frac{\sqrt{2}}{v} \left[(-\bar{e}_{L}, \bar{\nu}_{L}) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right]$ [Lepton masses]
 $+ (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (h.c.)$ [Quark dynamics]
 $-\frac{\sqrt{2}}{v} \left[(\bar{u}_{L}, \bar{d}_{L}) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \phi \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} - \frac{\sqrt{2}}{v} \left[(-\bar{d}_{L}, \bar{u}_{L}) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right]$ [Quark masses]
 $+ (\overline{D_{\mu}}\phi) D^{\mu}\phi - m_{h}^{2} [\bar{\phi}\phi - v^{2}/2]^{2}/2v^{2}.$ [Higgs dynamics & mass]

<u>Higgs</u>: Generation of 1st-gen. fermion (and all v's) masses to be confirmed
 <u>Fine-tuning</u>: Higgs mass virtual corrections «untamed» up to Planck scale
 <u>Flavour</u>: SM cannot generate observed matter-antimatter imbalance

Open questions in the SM (4)

$$\mathcal{L} = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{8}tr(\mathbf{W}_{\mu\nu}\mathbf{W}^{\mu\nu}) - \frac{1}{2}tr(\mathbf{G}_{\mu\nu}\mathbf{G}^{\mu\nu}) \qquad [\text{Gauge interactions: } \mathbf{U}_{\gamma}(1), \, \mathbf{SU}_{L}(2), \, \mathbf{SU}_{c}(3)] \\ + (\bar{\nu}_{L}, \bar{e}_{L})\,\tilde{\sigma}^{\mu}iD_{\mu}\begin{pmatrix}\nu_{L}\\e_{L}\end{pmatrix} + \bar{e}_{R}\sigma^{\mu}iD_{\mu}e_{R} + \bar{\nu}_{R}\sigma^{\mu}iD_{\mu}\nu_{R} + (\text{h.c.}) \qquad [\text{Lepton dynamics}] \\ - \frac{\sqrt{2}}{v}\left[\left(\bar{\nu}_{L}, \bar{e}_{L}\right)\phi M^{e}e_{R} + \bar{e}_{R}\bar{M}^{e}\bar{\phi}\begin{pmatrix}\nu_{L}\\e_{L}\end{pmatrix}\right] - \frac{\sqrt{2}}{v}\left[\left(-\bar{e}_{L}, \bar{\nu}_{L}\right)\phi^{*}M^{\nu}\nu_{R} + \bar{\nu}_{R}\bar{M}^{\nu}\phi^{T}\begin{pmatrix}-e_{L}\\\nu_{L}\end{pmatrix}\right] \left[\text{Lepton masses}\right] \\ + (\bar{u}_{L}, \bar{d}_{L})\,\tilde{\sigma}^{\mu}iD_{\mu}\begin{pmatrix}u_{L}\\d_{L}\end{pmatrix} + \bar{u}_{R}\sigma^{\mu}iD_{\mu}u_{R} + \bar{d}_{R}\sigma^{\mu}iD_{\mu}d_{R} + (\text{h.c.}) \qquad [\text{Quark dynamics}] \\ - \frac{\sqrt{2}}{v}\left[\left(\bar{u}_{L}, \bar{d}_{L}\right)\phi M^{d}d_{R} + \bar{d}_{R}\bar{M}^{d}\bar{\phi}\begin{pmatrix}u_{L}\\d_{L}\end{pmatrix}\right] - \frac{\sqrt{2}}{v}\left[\left(-\bar{d}_{L}, \bar{u}_{L}\right)\phi^{*}M^{u}u_{R} + \bar{u}_{R}\bar{M}^{u}\phi^{T}\begin{pmatrix}-d_{L}\\u_{L}\end{pmatrix}\right] \left[\text{Quark masses}\right] \\ + \overline{(D_{\mu}\phi)}D^{\mu}\phi - m_{h}^{2}[\bar{\phi}\phi - v^{2}/2]^{2}/2v^{2}. \qquad [\text{Higgs dyn. \& mass}] + \text{new particles/symmetries ?}$$

<u>Higgs</u>: Generation of 1st-gen. fermion (and all v's) masses to be confirmed
 <u>Fine-tuning</u>: Higgs mass virtual corrections «untamed» up to Planck scale
 <u>Flavour</u>: SM cannot generate observed matter-antimatter imbalance
 <u>Dark matter</u>: SM describes only 4% of Universe (visible fermions+bosons)

Open questions in the SM (5)

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) - \frac{1}{2} tr(\mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu})$$
 [Gauge interactions: $\mathbf{U}_{\gamma}(1)$, $\mathbf{SU}_{L}(2)$, $\mathbf{SU}_{c}(3)$]
 $+ (\bar{\nu}_{L}, \bar{e}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} + \bar{e}_{R} \sigma^{\mu} i D_{\mu} e_{R} + \bar{\nu}_{R} \sigma^{\mu} i D_{\mu} \nu_{R} + (h.c.)$ [Lepton dynamics]
 $-\frac{\sqrt{2}}{v} \left[(\bar{\nu}_{L}, \bar{e}_{L}) \phi M^{e} e_{R} + \bar{e}_{R} \bar{M}^{e} \bar{\phi} \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{e}_{L}, \bar{\nu}_{L}) \phi^{*} M^{\nu} \nu_{R} + \bar{\nu}_{R} \bar{M}^{\nu} \phi^{T} \begin{pmatrix} -e_{L} \\ \nu_{L} \end{pmatrix} \right]$ [Lepton masses]
 $+ (\bar{u}_{L}, \bar{d}_{L}) \tilde{\sigma}^{\mu} i D_{\mu} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} + \bar{u}_{R} \sigma^{\mu} i D_{\mu} u_{R} + \bar{d}_{R} \sigma^{\mu} i D_{\mu} d_{R} + (h.c.)$ [Quark dynamics]
 $-\frac{\sqrt{2}}{v} \left[(\bar{u}_{L}, \bar{d}_{L}) \phi M^{d} d_{R} + \bar{d}_{R} \bar{M}^{d} \bar{\phi} \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \right] - \frac{\sqrt{2}}{v} \left[(-\bar{d}_{L}, \bar{u}_{L}) \phi^{*} M^{u} u_{R} + \bar{u}_{R} \bar{M}^{u} \phi^{T} \begin{pmatrix} -d_{L} \\ u_{L} \end{pmatrix} \right]$ [Quark masses]
 $+ \overline{(D_{\mu} \phi)} D^{\mu} \phi - m_{h}^{2} [\bar{\phi} \phi - v^{2}/2]^{2} / 2v^{2}.$ [Higgs dyn. & mass] + new particles/symmetries ?

<u>Higgs</u>: Generation of 1st-gen. fermion (and all v's) masses to be confirmed
 <u>Fine-tuning</u>: Higgs mass virtual corrections «untamed» up to Planck scale
 <u>Flavour</u>: SM cannot generate observed matter-antimatter imbalance
 <u>Dark matter</u>: SM describes only 4% of Universe (visible fermions+bosons)
 <u>Others</u>: Quantum gravity, cosmological constant, dark energy, inflation,...
 <u>Some/Most(?) of these questions will not be fully answered at the LHC</u>

Why new e⁺e⁻ colliders ?

- New physics (NP): Hidding well ? Or beyond present reach ? At larger masses? Or at smaller couplings? Or both?
- Electron-positron colliders:
 - → Direct model-indep. discovery of new particles coupling to Z^*/γ^* up to m~ $\sqrt{s/2}$
 - Low, very-well understood backgrounds: Fill "blind spots" in p-p searches
 - Polarised beams: Extra handle to constrain theory underlying any NP
 - Sensitivity to weakly-interacting (Z,W) physics
 - ► Indirect constraints on new physics: Precision ~ $1/\Lambda_{NP}^2$

Circular or Linear e⁺e⁻ colliders ?

 \rightarrow Much higher Lumi (better at low \sqrt{s} , lower SR)

 \rightarrow Top-up injection ring to compensate L burnoff

Precise E_{heam} from resonant depolarization

Various Interaction Points possible

- Low repetition rate
 - \rightarrow Lumi from nm-size beams
 - → Large bremsstrahlung
 - \rightarrow Large energy spread
- Longitudinal polarization easier

Why FCC-ee ?

- Indirect searches through loops in high-stat W, Z, H, top precision studies at very high-luminosity e-e colliders with <<1% accuracy</p>
- Indirect constraints on new physics: Precision ~ $1/\Lambda_{NP}^2$
- New <u>scalar-coupled</u> physics:

At $\Lambda_{NP} \sim 1$ TeV: ~5% deviations of Higgs couplings wrt. SM:

$$\frac{\delta g_{\rm HXX}}{g_{\rm HXX}^{\rm SM}} \le 5\% \times \left(\frac{1 {\rm TeV}}{\Lambda}\right)^2$$

~10⁶ Higgs \Rightarrow ~0.1% Higgs couplings precision \Rightarrow Λ >7 TeV

New weakly-coupled physics:

Excluded below Λ_{NP} ~3 TeV by current EWK precision fit.

David d'Enterria (CERN)

Why FCC-ee ?

- Indirect searches through loops in high-stat W, Z, H, top precision studies at very high-luminosity e-e colliders with <<1% accuracy</p>
- Indirect constraints on new physics: Precision ~ $1/\Lambda_{NP}^2$
- New <u>scalar-coupled</u> physics:

At Λ_{NP} ~1 TeV: ~5% deviations of Higgs couplings wrt. SM:

 $\frac{\delta g_{\rm HXX}}{g_{\rm HXX}^{\rm SM}} \le 5\% \times \left(\frac{1 {\rm TeV}}{\Lambda}\right)^2$

~10⁶ Higgs \Rightarrow ~0.1% Higgs couplings precision \Rightarrow Λ >7 TeV

 New weakly-coupled physics: Excluded below Λ_{NP}~3 TeV by EWK fit.
 Λ_{NP}~30 TeV requires: ×10² precision w.r.t. LEP (10⁴ W's, 10⁷ Z's), i.e. ×10⁴ more stats. (10⁸ W's, 10¹¹ Z's) reachable in e⁺e⁻ circular collider with R~80–100 km

FCC-ee characteristics

- \rightarrow Top-up injection ring to compensate L burnoff
- Various Interaction Points possible: 4 expected
- **Precise E** $_{\text{beam}}$ from resonant depolarization: $\pm 0.1 \text{ MeV}$ (2 MeV at LEP)

EU HEP short-term perspectives (2020-2030)

In May 2013, European Strategy said (very similar statements from US)

- Exploit the full potential of the LHC until ~2030 as the highest priority
 - Get 75-100 fb⁻¹ at 13-14 TeV by 2018
 - Get ~300 fb⁻¹ at 14 TeV by 2022

(LHC Run2: running)

(LHC Run3: approved)

- Upgrade machine and detectors to get 3 ab⁻¹ at 14 TeV by 2035 (HL-LHC: project)
 - A first step towards both energy and precision frontier

EU HEP long-term perspectives (2040-2060)

In May 2013, European Strategy said (very similar statements from US)

- Perform R&D and design studies for high-energy frontier machines at CERN
 - HE-LHC, a programme for an energy increase to 33 TeV in the LHC tunnel
 - FCC, a 100-km circular ring with a pp collider long-term project at √s = 100 TeV
 - CLIC, an e⁺e⁻ collider project with √s from 0.3 to 3 TeV

Similar circular projects (50 or 70km) in China pp collisions at √s ~ 50 or 70 TeV

LFC'15, ECT* Trento, Sept'15

EU HEP mid-term perspectives (2030-2040)

In May 2013, European Strategy said (very similar statements from US)

- Acknowledge the strong physics case of e^+e^- colliders with intermediate \sqrt{s}
 - Participate in ILC if Japan government moves forward with the project
 - In the context of the FCC, perform accelerator R&D and design studies
 - In view of a high-luminosity, high-energy, circular e⁺e⁻ collider as a first step

FCC (100 km)

First step: FCC-ee (91-400GeV) [Use the tunnel ultimately aimed at FCC-hh]

Note: CLIC can also run at √s ~ 350 GeV in ~2035-2040

FCC-ee is an ongoing CERN study project

Lepton studies – Coordinators A. Blondel, P. Janot (EXP) + J.Ellis, C.Grojean (TH)

Study the properties of the Higgs and other particles with unprecedented precision

FCC-ee physics programme in a nutshell

4 IP's and in the crab-waist optics scheme :

√s (GeV)	90 (Z)	160 (WW)	240 (HZ)	350 (tt)	350 (WW→H)	
Lumi (ab ⁻¹ /yr)	86.o	15.2	3.5	1.0	1.0	
Events/year	3.7×10 ¹²	6.1×10 ⁷	7.0×10 ⁵	4.2×10 ⁵	2.5×10 ⁴	
# years	(0.3) 2.5	1	3	0.5	3	
Events@LC (*)	3×10 ⁹	2×10 ⁶	1.4×10 ⁵	10 ⁵	3.5×104	
LC @ FCC-ee	1 day	1 week	2 months	3 months	1.5 year	

^(*)LC = 500 fb⁻¹ @ 500 GeV (6 y), 200 fb⁻¹ @ 350 GeV (2 y), 500 fb⁻¹ @ 250 GeV (5 y)

100 fb⁻¹ @ 90 GeV (>3 y), 500 fb⁻¹ @ 160 GeV (>5 y) with ±80% / ±30% polarization for e⁻/e⁺ beams

>21 vears
$(1 y = 10^7 s)$

FCC-ee core physics programme can be completed in 8–10 years

See e.g., arXiV:1506.07830

"ILC Operating Scenarios"

FCC-ee physics: High-precision W,Z,top

LFC'15, ECT* Trento, Sept'15

David d'Enterria (CERN)

High-precision W,Z,top: FCC-ee uncertainties

- Experimental uncertainties mostly of systematic origin
 - So far, mostly conservatively estimated based on LEP experience
 - Work ahead to establish more solid numbers

Observable	Measurement	Current precision	FCC-ee stat. Possible syst.		Challenge	
m _z (MeV)	Lineshape	91187.5 ± 2.1	0.005	< 0.1	QED corr.	
Γ _z (MeV)	Lineshape	2495.2 ± 2.3	0.008	< 0.1	QED corr.	
R _I	Peak	20.767 ± 0.025	0.0001	< 0.001	Statistics	
R _b	Peak	0.21629 ± 0.00066	0.00003	< 0.00006	g -> bb	
N _v	Peak	2.984 ± 0.008	0.00004	0.004	Lumi meast.	
Α _{FB} ^{μμ}	Peak	0.0171 ± 0.0010	0.000004	<0.00001	E _{beam} meast.	
α _s (m _z)	R _i	0.1190 ± 0.0025	0.000001	0.00015	New Physics	
m _w (MeV)	Threshold scan	80385 ± 15	0.3	< 1	QED corr.	
N _v	Radiative return e⁺e⁻ -> <mark>γ</mark> Z(inv)	2.92 ± 0.05 2.984 ± 0.008	0.0008	< 0.001	?	
α _s (m _w)	$B_{had} = (\Gamma_{had}/\Gamma_{tot})_{W}$	B _{had} = 67.41 ± 0.27	0.00018	0.00015	CKM Matrix	
m _{top} (MeV)	Threshold scan	173200 ± 900	10	10	QCD (~40 MeV)	

Generally better by factor ≥ 25

Theoretical developments needed to match expected experimental uncertainties

LFC'15, ECT* Trento, Sept'15

David d'Enterria (CERN)

High-precision W,Z,top: BSM constraints

- Combination of all precision electroweak measurements (Z, W, top)
 - In absence of new physics, the (m_{top}, m_w) plot would look like this

- Indirect constraints on new weakly-coupled physics:
 - Precision ~ $1/\Lambda_{NP}^2$, i.e. $\Lambda_{NP}^2 \sim O(30 \text{ TeV})$

High-precision W,Z,top: Weakly-coupled BSM

- Higher-dimensional operators as relic of new physics
 - Possible corrections to the Standard Model Lagrangian

Dim-6 operators Pomarol & Riva basis 1308.1426

$$L_{\text{eff}} = \frac{C_n V^2}{2} O_n$$

$$\mathcal{O}_R^e = (iH^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H)(\bar{e}_R \gamma^{\mu} e_R)$$

$$\mathcal{O}_{LL}^{(3)l} = (\bar{L}_L \sigma^a \gamma^{\mu} L_L) (\bar{L}_L \sigma^a \gamma_{\mu} L_L)$$

$$\mathcal{O}_W = \frac{ig}{2} \left(H^{\dagger} \sigma^a \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W_{\mu\nu}^a$$

$$\mathcal{O}_B = \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D_{\mu}} H \right) \partial^{\nu} B_{\mu\mu}$$

$$\mathcal{O}_T = \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^2$$

LEP constraints: Λ_{NP} >3-10 TeV

After FCC-ee: Λ_{NP} > 30-100 TeV

Sensitivity to Weakly-coupled NP

J. Ellis, T. You, see e.g. 8th FCC-ee Workshop, Paris, Oct. 2014

Higgs physics at FCC-ee

- Precision (<1%) Higgs couplings studies, plus total width.</p>
- Higgs self-coupling constrain through loop corrections.
- 1st (uds, e[±]) and 2nd fermion generation Yukawa couplings.
- Rare and exotic decays, in particular DM decays.

LFC'15, ECT* Trento, Sept'15

David d'Enterria (CERN)

Precision Higgs couplings & total width

Recoil method in H-Z is unique to lepton collider, allows to tag Higgs event independent of its decay mode.

|≩⁴⁰⁰F

a 350

300 250

200E

150

100F

50E

Provides high-precision (0.05%) measurement of $\sigma(ee \rightarrow ZH) \propto g_{HZ}^{2}$

CMS Simulation

FCC-ee 500 ho", (6-240 GoV

90 100 110 120 130 140

Higgs mass (GeV)

$$m_{\text{recoil}}^2 = (\sqrt{s} - E_{\ell\ell})^2 - |\vec{p}_{\ell\ell}|^2$$

$H \rightarrow \tau \tau$ with $Z \rightarrow q \overline{q}$	Model-independent fit				
		FCC-ee -240	FCC-ee		
- Signal FCC-EE	$g_{\rm HZZ}$	0.16%	0.15%	(0.18%)	
	$g_{ m HWW}$	0.85%	0.19%	(0.23%)	
	$g_{ m Hbb}$	0.88%	0.42%	(0.52%)	
	$g_{ m Hcc}$	1.0%	0.71%	(0.87%)	
	$g_{ m Hgg}$	1.1%	0.80%	(0.98%)	
	$g_{\mathrm{H} au au}$	0.94%	0.54%	(0.66%)	
	$g_{{ m H}\mu\mu}$	6.4%	6.2%	(7.6%)	
60 80 100 120 140	$g_{\mathrm{H}\gamma\gamma}$	1.7%	1.5%	(1.8%)	
niggs mass (Gev)	$\mathrm{BR}_{\mathrm{exo}}$	0.48%	0.45%	(0.55%)	

stat. uncertainties

Total width (Γ_H) with <1% precision from combination of measurements: σ(ee → ZH(→ X)) ∝ Γ_{H→X}, plus known BR (H → X): Obtain Γ_H
 Branching fraction to invisible tested directly to 0.2% @ 95% CL

Z -> II with H -> bb

Signal

500

450E

400È

350 300 250

200

150

100E

50 0 50

60 70 80

Higgs physics at FCC-ee(240): Self-coupling

• Higgs self-coupling through loop corrections to $\sigma(H+Z)$:

Self-coupling correction δ_h : energy-dependent δ_z : energy-independent (distinguishable).

- Tiny effect but visible thanks to extreme precision on g_{ZH} (0.05%) coupling reachable at FCC-ee.
- Indirect and model-dependent limits on trilinear Higgs coupling can be set (~70% level) comparable to HL-LHC

[M. McCullough, 2014]

Higgs physics at FCC-ee: 1st-gen. Yukawa

- First and second generation couplings accessible
 - Study of ργ channel most promising; expect ~50 evts.
 - Sensitivity to u/d quark Yukawa coupling
 - Sensitivity due to interference

 $\frac{\mathrm{BR}_{h\to\rho\gamma}}{\mathrm{BR}_{h\to b\bar{b}}} = \frac{\kappa_{\gamma}\left[(1.9\pm0.15)\kappa_{\gamma}-0.24\bar{\kappa}_{u}-0.12\bar{\kappa}_{d}\right]}{0.57\bar{\kappa}_{b}^{2}}\times10^{-5}$

 Alternative H→MV decays should be studied (V= γ, W, and Z)

Higgs physics at FCC-ee(125): e[±] Yukawa

Is the measurement of Higgs to electron coupling completely hopeless ?

David d'Enterria (CERN)

Higgs physics at FCC-ee(125): e[±] Yukawa

New physics constraints (1): SUSY

FCC-ee measurements significantly improve limits in benchmark SUSY models (CMSSM, NUHM1):

David d'Enterria (CERN)

New physics constraints (2): Dark Matter

DM freeze-out fixes $\sigma v \approx 3 \ 10^{-26} \text{cm}^3/\text{s}$. If m_{DM} is just below $m_{Z,H}/2$,

DM freeze-out dominated by resonant Z,H exchange, fixing $\Gamma_{z,H}$.

Invisible BR suggested by DM thermal relic abundance

■ <10⁻³ and <10⁻¹ precision measurements of invisible Z & H widths are best collider option to test any m_{DM} < $m_{Z,H}$ /2 that couples via SM mediators.

New physics constraints (3): RH neutrinos

Opportunities for direct searches for new physics through rare decays

- 10^{12} (10^{13}) Z, 10^{11} b, c or τ : A fantastic potential that remains to be explored.
- E.g, search for right-handed neutrino in Z decays

$$Z \rightarrow Nv_{i}$$
, with $N \rightarrow W^*I$ or Z^*v_j

• Number of events depend on mixing between N and v, and on m_{N}

Summary

FCC-ee circular (R~100 km) collider provides unparalleled luminosities O(1-100 ab⁻¹) at $\sqrt{s} = 90-350$ GeV for high-precision W,Z,H,t studies (<<1% uncert.) setting unique new physics constraints up to O(30 TeV):

David d'Enterria (CERN)

Backup slides

Luminosity gain: FCC-ee vs. LEP

Employ B-factory design to gain factor ~500 w.r.t. LEP:

Low vertical emittance combined small value of β^*_y (very strong focussing in vertical plane):

- Electrons and positrons have a much higher chance of interacting
- Very short beam lifetimes (few minutes)
- Top-up injection: feed beam continuously with an ancillary accelerator

Two separate beam pipes for e⁺ and e⁻ to avoid collisions away from IPs

Hence, a total of three beam pipes

e+e- colliders: FCC-ee vs. LEP, CepC

parameter	LEP2	FCC-ee					
		Z	Z (c.w.)	W	н	t	н
E _{beam} [GeV]	104	45	45	80	120	175	120
circumference [km]	26.7	100	100	100	100	100	54
current [mA]	3.0	1450	1431	152	30	6.6	16.6
P _{SR,tot} [MW]	22	100	100	100	100	100	100
no. bunches	4	16700	29791	4490	1360	98	50
<i>N_b</i> [10 ¹¹]	4.2	1.8	1.0	0.7	0.46	1.4	3.7
ε _x [nm]	22	29	0.14	3.3	0.94	2	6.8
ε _y [pm]	250	60	1	1	2	2	20
β* _x [m]	1.2	0.5	0.5	0.5	0.5	1.0	0.8
β* _y [mm]	50	1	1	1	1	1	1.2
σ* _y [nm]	3500	250	32	130	44	45	160
σ _{z,SR} [mm]	11.5	1.64	2.7	1.01	0.81	1.16	2.3
σ _{z,tot} [mm] (w beamstr.)	11.5	2.56	5.9	1.49	1.17	1.49	2.7
hourglass factor F_{hg}	0.99	0.64	0.94	0.79	0.80	0.73	0.61
<i>L</i> /IP [10 ³⁴ cm ⁻² s ⁻¹]	0.01	28	212	12	6	1.7	1.8
τ _{beam} [min]	300	287	39	72	30	23	40

FCC-ee beam energy spread

Non-destructive focusing and collision of beams: - Center-of-mass energy spread by construction modest

Beam energy spread via resonant depolarization

Resonant depolarization

- use naturally occuring transverse beam polarization
- add fast oscillating horizontal B field to depolarize at Thomas precession frequency

Experience from LEP: Depolarization resonance very narrow: ~100 keV precision for each measurement

- However, final systematic uncertainty was 1.5 MeV due to transport from dedicated polarization runs
- At FCC-ee, continuous calibration with dedicated bunches: no transport uncertainty

Energy [GeV]

Scaling from LEP experience:

Polarization expected up to the WW threshold

< 100 keV beam energy calibration at Z peak and at WW threshold

Higgs couplings: FCC-ee uncertainties

Higgs couplings: FCC-ee uncertainties

Facility		ILC		ILC(LumiUp)	TLI	P (4 IP)		CLIC	
\sqrt{s} (GeV)	250	500	1000	250/500/1000	240	350	350	1400	3000
$\int \mathcal{L} dt \ (\text{fb}^{-1})$	250	+500	+1000	$1150 + 1600 + 2500^{\ddagger}$	10000	+2600	500	+1500	+2000
$P(e^-,e^+)$	(-0.8, +0.3)	(-0.8, +0.3)	(-0.8, +0.2)	(same)	(0, 0)	(0, 0)	(-0.8, 0)	(-0.8, 0)	(-0.8, 0)
Γ_H	12%	5.0%	4.6%	2.5%	1.9%	1.0%	9.2%	8.5%	8.4%
κ_{γ}	18%	8.4%	4.0%	2.4%	1.7%	1.5%	-	5.9%	$<\!\!5.9\%$
κ_g	6.4%	2.3%	1.6%	0.9%	1.1%	0.8%	4.1%	2.3%	2.2%
κ_W	4.9%	1.2%	1.2%	0.6%	0.85%	0.19%	2.6%	2.1%	2.1%
κ_Z	1.3%	1.0%	1.0%	0.5%	0.16%	0.15%	2.1%	2.1%	2.1%
κ_{μ}	91%	91%	16%	10%	6.4%	6.2%	-	11%	5.6%
κ_{τ}	5.8%	2.4%	1.8%	1.0%	0.94%	0.54%	4.0%	2.5%	$<\!\!2.5\%$
κ_c	6.8%	2.8%	1.8%	1.1%	1.0%	0.71%	3.8%	2.4%	2.2%
κ_b	5.3%	1.7%	1.3%	0.8%	0.88%	0.42%	2.8%	2.2%	2.1%
κ_t	_	14%	3.2%	2.0%	-	13%	_	4.5%	$<\!\!4.5\%$
BR _{inv}	0.9%	< 0.9%	< 0.9%	0.4%	0.19%	< 0.19%			

FCC-ee sensitivity to new physics: Composite Higgs

$\sigma(e^+e^-\rightarrow H)$ reduction: Beam energy spread + ISR

Extra ~40% reduction also due to initial state radiation:

Higgs physics at FCC-ee(125): H-e Yukawa

■ Resonant s-channel Higgs production at FCC-ee ($\sqrt{s} = 125$ GeV): $\sigma(e^+e^- \rightarrow H)_{B-W} \sim 1.64$ fb $\sigma(e^+e^- \rightarrow H)_{visible} \sim 280$ ab (ISR + E_{beam-spread} $\Gamma_{H} = 4.2$ MeV)

 Signal + backgrounds study for 7 decay channels: WW*(2j,lv) (σ = 28 ab), WW*(2l2v) (σ = 6.7 ab), WW*(4j) (σ = 29.5 ab), ZZ*(2j2v) (σ = 2.3 ab), ZZ*(2l2j) (σ = 1.14 ab), bb (2j) (σ = 156 ab), gg (2j) (σ = 24 ab)

Preliminary analysis:

 $\begin{array}{l} \mathsf{L}_{\mathsf{int}} = 10 \; \mathsf{ab}^{\text{-1}}, \; \mathsf{S} = 0.65; \; \mathsf{BR}(\mathsf{Hee}) < 4.63 \times \mathsf{BR}_{\mathsf{SM}} \; (3\sigma), \; \mathsf{g}_{\mathsf{hee}} < 2.15 \times \mathsf{g}_{\mathsf{Hee},\mathsf{SM}} \; (3\sigma) \\ \mathsf{Evidence} \; (\mathsf{observation?}) \; \mathsf{will} \; \mathsf{require} \; \mathsf{further} \; \mathsf{improvements} \; \mathsf{in} \; \mathsf{large-BR} \\ \mathsf{(huge background)} \; \mathsf{jet channels:} \; \mathsf{H} \rightarrow \mathsf{bb}, \; \mathsf{H} \rightarrow \mathsf{WW} \rightarrow \mathsf{4j} \end{array}$

Challenging accelerator conditions: mono-chromatization, huge lumi

- Fundamental & unique physics accessible if measurement feasible:
 - → Electron Yukawa coupling
 - → Higgs width measurable ("natural" threshold scan)

LFC'15, ECT* Trento, Sept'15