Indirect determinations of the top quark mass

Paride Paradisi

University of Padua

LC15 8 September 2015, ECT*, Trento, Italy

Based on arXiv:1508.05332 in collaboration with Giudice and Strumia

- **1** The role of M_t in particle physics and cosmology
- 2 Mt dependence of observables in the heavy-top limit
- **3** Extracting M_t from flavour data
- 4 Future determinations of *M_t* from flavour
- **6** Extracting M_t from electroweak precision data
- 6 Conclusions and future prospects

The role of M_t in particle physics and cosmology

- A more precise determination of $M_t = vy_t$ will add important information to our knowledge of particle physics and cosmology. Since y_t is sizeable, it plays a crucial role in the predictions of the SM at the quantum level.
 - Stability of the EW vacuum: if no NP modifies the short-distance behaviour of the SM, top-quark loops destabilise the Higgs potential even for $\delta M_t \sim 2$ GeV.
 - Inflation: small changes in M_t have importnt effects in the evolution of the universe at the inflationary epoch and determine the viability of scenarios of Higgs inflation.

Higgs mass M_h in GeV

• The most precise quoted value of the top-quark pole mass comes from the combination of LHC and Tevatron measurements [LHC & Tevatron '14]

 $(M_t)_{
m pole} = 173.34 \pm 0.76 \, {
m GeV}$

- *M_t* is not a physical observable: Its extraction is done through final-state invariant masses, kinematic distributions, total rates especially sensitive to *M_t*.
- "Monte-Carlo mass": In the context of hadron colliders, the extraction of M_t suffers from a variety of effects linked to hadronization like bound-state effects of the tt pairs, parton showering, and other non-perturbative corrections. The extraction of M_t relies on modelling based on Monte-Carlo generators.
- More robust determination of M_t : through observables calculable in terms of $(M_t)_{run}$ in perturbative QCD such as the total inclusive $t\bar{t}$ cross section. $(M_t)_{run}$ is then translated into $(M_t)_{pole}$ by a relation now known at four-loops in QCD.

$$(M_t)_{\sigma_{\tilde{t}\tilde{t}}} = \left\{ \begin{array}{ll} 172.9 \pm 2.6 \; \mathrm{GeV} & \mathrm{ATLAS} \\ 176.7 \pm 2.9 \; \mathrm{GeV} & \mathrm{CMS} \end{array} \right.$$

• e^+e^- collider operating at the $t\bar{t}$ threshold: scans of the $t\bar{t}$ pair production would reach a statistical accuracy on the mass measurement of about 20–30 MeV [Seidel et al,13]. Recent N³LO calculations can relate such measurements to a well-defined M_t , with a theoretical uncertainty below about 50 MeV [Beneke et al,15].

Gauge-less theory

- Sensitivity of observables to M_t : the large y_t enable us to infer M_t from SM quantum effects. The observables that are more sensitive to M_t are identified working in the heavy-top limit $M_t \gg M_W$, M_Z [Barbieri et al., '92].
- Gauge-less theory: theory with massive quarks, the Higgs boson *h*, and 3 Goldstone bosons $\vec{\chi}$ related by the equivalence theorem to the longitudinal components of the *W* and *Z*

$$L = y_t \, \overline{t}_R \, H^T \begin{pmatrix} V_{ti} \, d_{iL} \\ -t_L \end{pmatrix} + \text{h.c.} \,, \qquad \qquad H = \frac{1}{\sqrt{2}} e^{\frac{i \overline{\sigma} \cdot \vec{x}}{v}} \begin{pmatrix} 0 \\ v + h \end{pmatrix}$$

$$\begin{split} L &= - \frac{y_t}{\sqrt{2}} \left(\cos |\vec{\chi}| / v \right) (v+h) \, \bar{t}t \\ &+ y_t \left(\frac{\sin |\vec{\chi}| / v}{|\vec{\chi}| / v} \right) \left(1 + \frac{h}{v} \right) \left[\frac{i}{\sqrt{2}} \chi^0 \bar{t} \gamma_5 t + \left(\chi^+ \bar{t}_R V_{ti} \, d_{iL} + \text{h.c.} \right) \right] \,, \end{split}$$

• **Top-less effective theory:** the next step is to integrate out the top quark and this will generate a set of effective operators whose coefficients describe the leading top-mass dependence in the large *M*_t limit.

Observables sensitive on M_t

Indirect determinations of the top quark mass

M_t dependence of observables in the heavy-top limit

• $\Delta \rho$ is generated by the dim-4 operator $(\partial_{\mu} \chi)^2$ and therefore $\Delta \rho \propto y_t^2$

$$\Delta
ho = rac{3y_t^2}{32\pi^2} = rac{3G_{
m F}M_t^2}{8\sqrt{2}\pi^2}$$

• $Z \to b\bar{b}, K \to \pi \nu \bar{\nu}$ and $B_s \to \ell^+ \ell^-$ arise from the dim-5 operator $(\bar{d}_L \gamma^\mu d_L) (\partial_\mu \chi^0)$ with coefficient of order $|V_{td}|^2 y_t^3 / (16\pi^2 M_t)$.

$$\begin{split} \frac{g}{c_{\mathrm{W}}} \, \bar{d}_i \left[\left(g_L + \Delta g_L \right)^{ij} P_L + g_R^{ij} P_R \right] \not Z d_j \,, \qquad \Delta g_L^{ij} = \frac{V_{ii}^* \, V_{ij} \, y_l^2}{32\pi^2} \,, \\ & \Gamma(Z \to b\bar{b}) = \frac{\rho \, G_{\mathrm{F}} M_Z^3}{\pi\sqrt{2}} \left[\left(g_L^{bb} + \Delta g_L^{bb} \right)^2 + \left(g_R^{bb} \right)^2 \right] \\ & \mathcal{H}_{K \to \pi \nu \bar{\nu}}^{\mathrm{eff}} = \frac{\Delta g_L^{sd}}{2v^2} \left(\bar{s}_L \gamma^\mu d_L \right) (\bar{\nu}_L^\ell \gamma_\mu \nu_L^\ell) + \mathrm{h.c.} \,, \\ & \mathcal{H}_{B_S \to \ell^+ \ell^-}^{\mathrm{eff}} = -\frac{\Delta g_L^{bs}}{2v^2} \left(\bar{b}_L \gamma^\mu s_L \right) (\bar{\ell}_L \gamma_\mu \ell_L) + \mathrm{h.c.} \,. \end{split}$$

• Δm_{B_q} and ϵ_K arise from dim-6 operator involving four d_L fields.

$$\mathcal{H}^{\mathrm{eff}}_{\Delta F=2} = rac{y_t^2 (V_{ti}^* V_{ij})^2}{256\pi^2 v^2} (\bar{d}_{iL} \gamma^{\mu} d_{jL}) (\bar{d}_{iL} \gamma_{\mu} d_{jL}) + \ \mathrm{h.c.}$$

M_t dependence of observables in the heavy-top limit

- Triple gauge boson vertices and WW scattering: dim-5 or dim-6 operators such as h(∂_μχ)², χ(∂_μχ)², h²(∂_μχ)², and χ²(∂_μχ)² sensitive on M²_t. Experimental sensitivity too poor to allow for any significant determination of M_t.
- *hh* → *hh* scattering: it receives a correction *O*(*y*⁴_t/16π²). This explains the importance of the top-mass measurement for vacuum stability considerations.
- $B \rightarrow X_s \gamma$: the coefficient of the dim-6 operator $m_b \bar{s}_L \sigma^{\mu\nu} b_R F_{\mu\nu}$ is estimated to be $(eV_{tb}V_{ts}^*/16\pi^2) \times (y_t^2/M_t^2)$ with no power sensitivity on M_t .

 $BR(B \rightarrow X_s \gamma) \propto M_t^{0.38}$

• $h \to \gamma \gamma, \gamma Z$: is induced by the operators $hF_{\mu\nu}^2, hF_{\mu\nu}Z_{\mu\nu}, h(\partial_{\mu}\chi^0)\partial_{\nu}F_{\mu\nu}$, with coefficients of order $(e^2/16\pi^2) \times (y_t/M_t)$ for the first two dim-5 operators and $(e/16\pi^2) \times (y_t^2/M_t^2)$ for the third dim-6 operator.

 $\Gamma(h
ightarrow \gamma \gamma) \propto M_t^{0.037}, \qquad \Gamma(h
ightarrow Z \gamma) \propto M_t^{0.014}$

• $h \rightarrow WW^*, ZZ^*$: comes from the dim-5 operator $h(\partial_{\mu}\chi)^2$ with coefficient $\mathcal{O}(y_t^3/16\pi^2 M_t)$. Even a futuristic measurement of the branching ratio at 1% could not determine M_t with an error better than 50 GeV.

$$\frac{\Delta\Gamma(h \to WW^*, ZZ^*)}{\Gamma(h \to WW^*, ZZ^*)} = -\frac{5 y_t^2}{32\pi^2}$$

Extracting M_t from flavour data

- New Physics Unitary Triangle fit: when searching for NP, the four CKM parameters are determined by tree-level observables which are expected to be not affected by NP effects.
- Standard Model Unitary Triangle fit: if we assume the SM to be the true theory, the best determination of the CKM comes from the loop-induced processes ΔM_d , $\Delta M_d / \Delta M_s$, ϵ_K and sin 2β
- Hybrid Unitary Triangle fit: assuming the SM to be exactly valid the extraction of *M_t* from flavour processes is done fixing the four CKM parameters from the most precise measurements independent on *M_t*, even if they arise at loop level.

$$|V_{us}|, |V_{cb}|, \gamma, \beta$$

• For our analysis we will need the following combinations (where $\lambda_i = V_{id} V_{is}^*$)

$$\begin{split} |V_{td}V_{tb}^*| &= |V_{us}||V_{cb}| \frac{\sin\gamma}{\sin(\gamma+\beta)} \left[1 + \mathcal{O}(\lambda^4)\right] \\ |V_{ts}V_{tb}^*| &= |V_{cb}| \left[1 - \frac{\lambda^2 \sin(\gamma-\beta)}{2 \sin(\gamma+\beta)} + \mathcal{O}(\lambda^4)\right] \\ \operatorname{Re}\lambda_t &= -|V_{cb}|^2 |V_{us}| \frac{\sin\gamma\cos\beta}{\sin(\gamma+\beta)} \left[1 + \lambda^2 \left(\frac{1}{2} - \frac{\sin\gamma}{\cos\beta\sin(\gamma+\beta)}\right) + \mathcal{O}(\lambda^4)\right] \\ \operatorname{Re}\lambda_c &= -|V_{us}| \left[1 - \frac{\lambda^2}{2} + \mathcal{O}(\lambda^4)\right], \\ \operatorname{Im}\lambda_t &= -\operatorname{Im}\lambda_c = |V_{cb}|^2 |V_{us}| \frac{\sin\gamma\sin\beta}{\sin(\gamma+\beta)} \left[1 + \frac{\lambda^2}{2} + \mathcal{O}(\lambda^4)\right] \end{split}$$

• SM predictions for flavour observables are often expressed in terms of the running \overline{MS} top quark mass $\overline{m}_t(m_t)$, related to the pole top mass M_t by

$$\frac{M_t}{\overline{m}_t} = 1 + 0.4244 \,\alpha_s + 0.8345 \,\alpha_s^2 + 2.375 \,\alpha_s^3 + (8.49 \pm 0.25) \,\alpha_s^4 = 1.060302(35)$$

Present values and future uncertainties

Observable	Now (2015)	Error 2020	Error 2025
		0	-
$M_W(\text{GeV})$	80.385(15)	8	5
$\sin^2 heta_{ m W}$	0.23116(13)	13	1.3
$\alpha_s(M_Z)$	0.1184(7)	?	?
$ V_{cb} imes 10^3$	40.9(11)	4	3
$ V_{ub} imes 10^3$	3.81(40)	10	8
$\sin 2\beta$	0.679(20)	16	8
γ	$(73.2^{+6.3}_{-7.0})^{\circ}$	3°	1°
$\Delta m_{B_d}(\mathrm{ps}^{-1})$	0.510(3)	_	_
$\Delta m_{B_s}(\text{ps}^{-1})$	17.757(21)	_	_
$B(B_s \rightarrow \mu^+ \mu^-) \times 10^9$	2.8(7)	3	1.3
$B(K^+ ightarrow \pi^+ u ar{ u}) imes 10^{11}$	$17.3^{+11.5}_{-10.5}$	0.8	0.4
$B(K_L ightarrow \pi^0 u ar{ u}) imes 10^{11}$	_	2	0.3
$ \epsilon_{\kappa} imes 10^{-3}$	2.228(11)	_	_
η_B	0.55(1)	0.5	0.2
$f_{B_s}(MeV)$	226(5)	2	1
\hat{B}_{B_s}	1.33(6)	2	0.7
f_{B_s}/\check{f}_{B_d}	1.204(16)	10	5
$\hat{B}_{B_s}/\hat{B}_{B_d}$	1.03(8)	2	0.5

[Giudice, P.P. & Strumia, '15]

• Δ*m_{Bs}*: SM prediction 2015

$$\Delta m_{B_s} = \frac{16.9 \pm 1.4}{\text{ps}} \left(\frac{\sqrt{\hat{B}_{B_s}} f_{B_s}}{261 \text{ MeV}} \right)^2 \left(\frac{M_t}{173.34 \text{ GeV}} \right)^{1.52} \left(\frac{|V_{ts} V_{tb}^*|}{0.0400} \right)^2 \left(\frac{\eta_B}{0.55} \right)$$

• Error budget 2015

$$\delta(\Delta m_{B_s}) = \left(\pm 1.04_{\hat{B}_{B_s}^{1/2} f_{B_s}} \pm 0.91_{|V_{cb}|} \pm 0.31_{\eta_B}\right) \text{ ps}^{-1}$$

Error budget 2025

$$\delta(\Delta m_{\mathcal{B}_{\mathcal{S}}}) = \left(\pm 0.17_{\hat{\mathcal{B}}_{\mathcal{B}_{\mathcal{S}}}^{1/2} f_{\mathcal{B}_{\mathcal{S}}}} \pm 0.25_{|V_{cb}|} \pm 0.06_{\eta_{\mathcal{B}}}\right) \text{ ps}^{-1}$$

• *M_t* prediction: 2015

$$(M_t)_{\Delta m_{B_s}} = (179 \pm 10) \, {
m GeV}$$

• *M_t* prediction: 2020 & 2025

$$\delta(M_t)_{\Delta m_{B_s}} \approx \begin{cases} \pm 3.6 \text{ GeV} & (2020) \\ \pm 2.1 \text{ GeV} & (2025) \end{cases}$$

• Δm_{B_d} : SM prediction 2015

$$\Delta m_{B_d} = \frac{0.54 \pm 0.08}{\text{ps}} \left(\frac{\sqrt{\hat{B}_{B_d}} f_{B_d}}{214 \,\text{MeV}}\right)^2 \left(\frac{M_t}{173.34 \,\text{GeV}}\right)^{1.52} \left(\frac{|V_{td} V_{tb}^*|}{0.0088}\right)^2 \left(\frac{\eta_B}{0.55}\right),$$

Error budget 2015

$$\delta(\Delta m_{\mathcal{B}_d}) = \left(\pm 0.056_{\dot{\mathcal{B}}_{\mathcal{B}_d}^{1/2} f_{\mathcal{B}_d}} \pm 0.029_{|V_{cb}|} \pm 0.001_{\beta} \pm 0.047_{\gamma} \pm 0.009_{\eta_B}\right) \text{ ps}^{-1}$$

Error budget 2015

$$\delta(\Delta m_{\mathcal{B}_d}) = \left(\pm 0.007_{\hat{\mathcal{B}}_{\mathcal{B}_d}^{1/2} f_{\mathcal{B}_d}} \pm 0.008_{|V_{cb}|} \pm 0.001_{\beta} \pm 0.007_{\gamma} \pm 0.002_{\eta_B}\right) \text{ ps}^{-1}$$

• *M_t* prediction: 2015

$$(M_t)_{\Delta m_{B_d}} = (167 \pm 16) \text{ GeV}$$

M_t prediction: 2020 & 2025

$$\delta(M_t)_{\Delta m_{B_d}} \approx \begin{cases} \pm 6.5 \,\mathrm{GeV} & (2020) \\ \pm 2.7 \,\mathrm{GeV} & (2025) \end{cases}$$

 $B_s \rightarrow \mu^+ \mu^-$

• $B_s \to \mu^+ \mu^-$: SM prediction 2015 $\mathcal{B}(B_s \to \mu^+ \mu^-) = (3.35 \pm 0.06) \times 10^{-9} R_{t\alpha} R_s$ $R_{t\alpha} = \left(\frac{\alpha_s(M_Z)}{0.1184}\right)^{-0.18} \left(\frac{M_t}{173.34 \,\text{GeV}}\right)^{3.06}$ $R_s = \left(\frac{f_{B_s}}{226 \,\text{MeV}}\right)^2 \left(\frac{|V_{cb}|}{0.0409}\right)^2 \left(\frac{|V_{ts}V_{tb}^*/V_{cb}|}{0.980}\right)^2 \frac{\tau_H^s}{1.607 \,\text{ps}}$ $\mathcal{B}(B_s \to \mu^+ \mu^-) = (3.35 \pm 0.23) \times 10^{-9} \left(\frac{M_t}{173.34 \,\text{GeV}}\right)^{3.06}$

Error budget

$$\begin{split} \delta \, \mathcal{B}(B_{s} \to \mu^{+} \mu^{-}) &= (\pm \, 0.05_{\rm th} \pm 0.14_{f_{B_{s}}} \pm 0.17_{|V_{cb}|}) \times 10^{-9} \quad (2015) \\ \delta \mathcal{B}(B_{s} \to \mu^{+} \mu^{-}) &= (\pm \, 0.01_{\rm th} \pm 0.03_{f_{B_{s}}} \pm 0.05_{|V_{cb}|}) \times 10^{-9} \quad (2025) \end{split}$$

M_t predictions

$$\begin{array}{ll} (M_t)_{B_{s}\mu\mu} = (167 \pm 14) \ {\rm GeV} & (2015) \\ \delta(M_t)_{B_{s}\mu\mu} \approx \left\{ \begin{array}{ll} \pm 5.9 \ {\rm GeV} & (2020) \\ \pm 2.5 \ {\rm GeV} & (2025) \end{array} \right. \end{array}$$

Paride Paradisi (University of Padua)

Indirect determinations of the top quark mass

Global flavor fit

[Giudice, P.P. & Strumia, '15]

Indirect determinations of the top quark mass

Impact of key observables

M_t from flavour data

[Giudice, P.P. & Strumia, '15]

Impact of experimental improvements on the flavor fit

[Giudice, P.P. & Strumia, '15]

EW data and the ϵ_i parameters

- **EW fit**: EW observables depend on M_t only through the $\epsilon_1, \epsilon_2, \epsilon_3$ parameters describing corrections to the tree-level propagators of W^{\pm}, Z , and through the ϵ_b parameter that describes corrections to the $Zb\bar{b}$ vertex [Altarelli & Barbieri, '92].
- SM prediction of *ε_i*:

$$\begin{array}{l} \left\{ \begin{array}{l} \varepsilon_1 = +5.22 \times 10^{-3} \; (M_t/173.34 \, {\rm GeV})^{3.15} & (M_h/125.15 \, {\rm GeV})^{-0.15} \\ \varepsilon_2 = -7.32 \times 10^{-3} \; (M_t/173.34 \, {\rm GeV})^{-0.69} \; (M_h/125.15 \, {\rm GeV})^{-0.03} \\ \varepsilon_3 = +5.28 \times 10^{-3} \; (M_t/173.34 \, {\rm GeV})^{-0.01} \; (M_h/125.15 \, {\rm GeV})^{0.11} \\ \varepsilon_b = -6.95 \times 10^{-3} \; (M_t/173.34 \, {\rm GeV})^{2.18} \end{array} \right.$$

- In the large M_t limit the one-loop corrections to $\varepsilon_1 = \Delta \rho$ and $\varepsilon_b = -2\Delta g_L^{bb}$ grow as M_t^2 , while ε_2 and ε_3 only have a milder ln M_t dependence.
- Experimental measurement of ε_i:

$$\left(\begin{array}{c} \varepsilon_1 = +(5.6\pm1.0)\times10^{-3} \\ \varepsilon_2 = -(7.8\pm0.9)\times10^{-3} \\ \varepsilon_3 = +(5.6\pm0.9)\times10^{-3} \\ \varepsilon_b = -(5.8\pm1.3)\times10^{-3} \end{array} \right)$$

Determination of M_t from EW data

[Giudice, P.P. & Strumia, '15]

Impact of experimental improvements on the EW fit

M_t from electro–weak data

[Giudice, P.P. & Strumia, '15]

Indirect determinations of the top quark mass

• M_W plays the key role, since $\delta M_t/M_t = 69 \ \delta M_W/M_W$. Measuring M_W with a precision of 5 MeV can lead to $\delta M_t \sim 0.7 \text{ GeV}$.

- The measurements of the various asymmetries have to be improved by more than a factor of 3 to improve the uncertainty on M_t .
- The uncertainty on *M_t* would be affected by *α*_{em}(*M_Z*) only if its error were underestimated by more than a factor of 2.
- We can extract M_t using M_W as the only input quantity by means of Δr_W defined as the ratio of two determinations of the weak angle

$$\begin{split} \Delta r_W &\equiv 1 - \frac{\pi \alpha_{\rm em}(M_Z)/\sqrt{2}G_{\rm F}M_Z^2}{M_W^2/M_Z^2(1 - M_W^2/M_Z^2)} = (-25.4 \pm 0.95_{M_W} \pm 0.10_{\alpha_{\rm em}}) \times 10^{-3} \\ \Delta r_W &= -\tan^{-2}\theta_{\rm W}\,\varepsilon_1 + (\tan^{-2}\theta_{\rm W} - 1)\,\varepsilon_2 + 2\,\varepsilon_3 \\ &= -24.0 \times 10^{-3} \left(\frac{M_t}{173.34\,{\rm GeV}}\right)^{2.50} \left(\frac{M_h}{125.15\,{\rm GeV}}\right)^{-0.14} \end{split}$$

• M_t prediction from Δr_W

$$(M_t)_{M_W} = (177.7 \pm 2.8) \,\mathrm{GeV}$$

- Indirect determinations of *M_t* are very important especially in view of the theoretical ambiguities in the extraction of *M_t* from collider experiments.
- The Gauge-less limit of the SM allows to identify flavour and EW observables with power sensitivity on *M_t* at the quantum level.
- Flavour data determine $M_t = (175.1 \pm 8.0)$ GeV with Δm_{B_s} and $B_s \rightarrow \mu^+ \mu^-$ being the best probe of M_t . Since they require only V_{cb} as CKM input, a complete joint fit with all CKM parameters is not necessary.
- Better measurements of $B_s \to \mu^+ \mu^-$, better lattice computations of the hadronic parameters relevant for Δm_{B_s} and $B_s \to \mu^+ \mu^-$ and improved calculations of short-distance effects will bring δM_t down to 3 GeV (1.7 GeV) by 2020 (2025).
- EW data determine $M_t = (177.0 \pm 2.6) \text{ GeV}$ and M_W is the best toppometer. The present uncertainty on M_W should be reduced by a factor of 3 by LHC experiments bringing M_t to a precision of about 0.7 GeV.

A global fit of all indirect determinations of M_t , from both EW and flavour data, will provide very significant information.