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The role of Mt in particle physics and cosmology

• A more precise determination of Mt = vyt will add important information to
our knowledge of particle physics and cosmology. Since yt is sizeable, it
plays a crucial role in the predictions of the SM at the quantum level.

I Stability of the EW vacuum: if no NP modifies the short-distance behaviour of the
SM, top-quark loops destabilise the Higgs potential even for δMt ∼ 2 GeV.

I Inflation: small changes in Mt have importnt effects in the evolution of the universe
at the inflationary epoch and determine the viability of scenarios of Higgs inflation.
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Current determination of Mt @ collider

• The most precise quoted value of the top-quark pole mass comes from
the combination of LHC and Tevatron measurements [LHC & Tevatron ’14]

(Mt )pole = 173.34± 0.76 GeV

I Mt is not a physical observable: Its extraction is done through final-state invariant
masses, kinematic distributions, total rates especially sensitive to Mt .

I “Monte-Carlo mass": In the context of hadron colliders, the extraction of Mt suffers
from a variety of effects linked to hadronization like bound-state effects of the t t̄
pairs, parton showering, and other non-perturbative corrections. The extraction of Mt
relies on modelling based on Monte-Carlo generators.

• More robust determination of Mt : through observables calculable in terms of
(Mt )run in perturbative QCD such as the total inclusive t t̄ cross section. (Mt )run
is then translated into (Mt )pole by a relation now known at four-loops in QCD.

(Mt )σt t̄
=


172.9± 2.6 GeV ATLAS
176.7± 2.9 GeV CMS

• e+e− collider operating at the t t̄ threshold: scans of the t t̄ pair production
would reach a statistical accuracy on the mass measurement of about 20–30
MeV [Seidel et al,’13]. Recent N3LO calculations can relate such measurements to a
well-defined Mt , with a theoretical uncertainty below about 50MeV [Beneke et al.,’15].
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Gauge-less theory

• Sensitivity of observables to Mt : the large yt enable us to infer Mt from SM
quantum effects. The observables that are more sensitive to Mt are identified
working in the heavy-top limit Mt � MW ,MZ [Barbieri et al.,’92].

• Gauge-less theory: theory with massive quarks, the Higgs boson h, and 3
Goldstone bosons ~χ related by the equivalence theorem to the longitudinal
components of the W and Z
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• Top-less effective theory: the next step is to integrate out the top quark and
this will generate a set of effective operators whose coefficients describe the
leading top-mass dependence in the large Mt limit.
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Observables sensitive on Mt
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[Giudice, P.P. & Strumia, ’15]
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Mt dependence of observables in the heavy-top limit

• ∆ρ is generated by the dim-4 operator (∂µχ)2 and therefore ∆ρ ∝ y2
t

∆ρ =
3y2

t

32π2 =
3GFM2

t

8
√

2π2

• Z → bb̄, K → πνν̄ and Bs → `+`− arise from the dim-5 operator
(d̄Lγ

µdL)(∂µχ
0) with coefficient of order |Vtd |2y3

t /(16π2Mt ).
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• ∆mBq and εK arise from dim-6 operator involving four dL fields.
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Mt dependence of observables in the heavy-top limit

• Triple gauge boson vertices and WW scattering: dim-5 or dim-6 operators
such as h(∂µχ)2, χ(∂µχ)2, h2(∂µχ)2, and χ2(∂µχ)2 sensitive on M2

t .
Experimental sensitivity too poor to allow for any significant determination of Mt .

• hh → hh scattering: it receives a correction O(y4
t /16π2). This explains the

importance of the top-mass measurement for vacuum stability considerations.

• B → Xsγ: the coefficient of the dim-6 operator mbs̄Lσ
µνbRFµν is estimated to

be (eVtbV ∗ts/16π2)× (y2
t /M

2
t ) with no power sensitivity on Mt .

BR(B → Xsγ) ∝ M 0.38
t

• h → γγ, γZ : is induced by the operators hF 2
µν , hFµνZµν , h(∂µχ

0)∂νFµν , with
coefficients of order (e2/16π2)× (yt/Mt ) for the first two dim-5 operators and
(e/16π2)× (y2

t /M
2
t ) for the third dim-6 operator.

Γ(h→ γγ) ∝ M 0.037
t , Γ(h→ Zγ) ∝ M 0.014

t

• h → WW ∗, ZZ ∗: comes from the dim-5 operator h(∂µχ)2 with coefficient
O(y3

t /16π2Mt ). Even a futuristic measurement of the branching ratio at 1%
could not determine Mt with an error better than 50 GeV.

∆Γ(h→ WW ∗,ZZ ∗)
Γ(h→ WW ∗,ZZ ∗)

= − 5 y2
t

32π2
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Extracting Mt from flavour data

• New Physics Unitary Triangle fit: when searching for NP, the four CKM
parameters are determined by tree-level observables which are expected to be
not affected by NP effects.

• Standard Model Unitary Triangle fit: if we assume the SM to be the true
theory, the best determination of the CKM comes from the loop-induced
processes ∆Md , ∆Md/∆Ms, εK and sin 2β

• Hybrid Unitary Triangle fit: assuming the SM to be exactly valid the extraction
of Mt from flavour processes is done fixing the four CKM parameters from the
most precise measurements independent on Mt , even if they arise at loop level.

|Vus|, |Vcb|, γ, β
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CKM parameters in the Hybrid scheme

• For our analysis we will need the following combinations (where λi = Vid V ∗is )

|Vtd V ∗tb| = |Vus||Vcb|
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• SM predictions for flavour observables are often expressed in terms of the

running MS top quark mass mt (mt ), related to the pole top mass Mt by

Mt

mt
= 1 + 0.4244αs + 0.8345α2

s + 2.375α3
s + (8.49± 0.25)α4

s = 1.060302(35)
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Present values and future uncertainties

Observable Now (2015) Error 2020 Error 2025

MW (GeV) 80.385(15) 8 5
sin2 θW 0.23116(13) 13 1.3
αs(MZ ) 0.1184(7) ? ?
|Vcb| × 103 40.9(11) 4 3
|Vub| × 103 3.81(40) 10 8

sin 2β 0.679(20) 16 8
γ (73.2+6.3

−7.0)◦ 3◦ 1◦

∆mBd (ps−1) 0.510(3) – –
∆mBs (ps−1) 17.757(21) – –

B(Bs→µ+µ−)×109 2.8(7) 3 1.3
B(K + → π+νν̄)×1011 17.3+11.5

−10.5 0.8 0.4
B(KL → π0νν̄)×1011 − 2 0.3

|εK | × 10−3 2.228(11) – –
ηB 0.55(1) 0.5 0.2

fBs (MeV) 226(5) 2 1
B̂Bs 1.33(6) 2 0.7

fBs/fBd 1.204(16) 10 5
B̂Bs/B̂Bd 1.03(8) 2 0.5

[Giudice, P.P. & Strumia, ’15]
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∆mBs

• ∆mBs : SM prediction 2015

∆mBs =
16.9± 1.4

ps

„qB̂Bs fBs

261MeV

«2„ Mt

173.34GeV

«1.52„ |VtsV ∗tb|
0.0400

«2„
ηB

0.55

«
• Error budget 2015

δ(∆mBs ) =

„
±1.04

B̂1/2
Bs

fBs
± 0.91|Vcb| ± 0.31ηB

«
ps
−1

• Error budget 2025

δ(∆mBs ) =

„
± 0.17

B̂1/2
Bs

fBs
± 0.25|Vcb| ± 0.06ηB

«
ps
−1

• Mt prediction: 2015
(Mt )∆mBs

= (179± 10) GeV

• Mt prediction: 2020 & 2025

δ(Mt )∆mBs
≈

± 3.6 GeV (2020)
± 2.1 GeV (2025)

Paride Paradisi (University of Padua) Indirect determinations of the top quark mass LC15 12 / 22



∆mBd

• ∆mBd : SM prediction 2015

∆mBd =
0.54± 0.08

ps

„qB̂Bd fBd

214MeV
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«
,

• Error budget 2015

δ(∆mBd ) =

„
± 0.056

B̂1/2
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• Error budget 2015
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± 0.007

B̂1/2
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± 0.008|Vcb| ± 0.001β ± 0.007γ ± 0.002ηB

«
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• Mt prediction: 2015
(Mt )∆mBd

= (167± 16) GeV

Mt prediction: 2020 & 2025

δ(Mt )∆mBd
≈

± 6.5 GeV (2020)
± 2.7 GeV (2025)
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Bs → µ+µ−

• Bs → µ+µ−: SM prediction 2015

B(Bs → µ+µ−) = (3.35± 0.06)× 10−9 Rtα Rs

Rtα =

„
αs(MZ )

0.1184

«−0.18„ Mt

173.34GeV

«3.06

Rs =

„
fBs

226MeV

«2„ |Vcb|
0.0409

«2„ |VtsV ∗tb/Vcb|
0.980

«2
τ s

H

1.607ps

B(Bs → µ+µ−) = (3.35± 0.23)× 10−9
„

Mt

173.34GeV

«3.06

• Error budget

δ B(Bs → µ+µ−) = (± 0.05th ± 0.14fBs
± 0.17|Vcb|)× 10−9 (2015)

δB(Bs → µ+µ−) = (± 0.01th ± 0.03fBs
± 0.05|Vcb|)× 10−9 (2025)

• Mt predictions

(Mt )Bsµµ
= (167± 14) GeV (2015)

δ(Mt )Bsµµ
≈

± 5.9 GeV (2020)
± 2.5 GeV (2025)

Paride Paradisi (University of Padua) Indirect determinations of the top quark mass LC15 14 / 22



Global flavor fit

150 160 170 180 190 200

Pole top mass Mt in GeV

Present fits and projections for 2020 HredL and 2025 HgreenL

DmBd 166.6 ± 15.9

DmBs 178.7 ± 9.8

Bs®Μ+ Μ- 168.0 ± 14.4

K+ ® Π+ΝΝ 179.2 ± 166.6

ΕK 176.3 ± 23.0

Global flavor fit 175.1 ± 8.0

direct 173.3 ± 0.8

[Giudice, P.P. & Strumia, ’15]
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Impact of key observables
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[Giudice, P.P. & Strumia, ’15]
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Impact of experimental improvements on the flavor fit
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[Giudice, P.P. & Strumia, ’15]

Paride Paradisi (University of Padua) Indirect determinations of the top quark mass LC15 17 / 22



EW data and the εi parameters

• EW fit: EW observables depend on Mt only through the ε1, ε2, ε3 parameters
describing corrections to the tree-level propagators of W±,Z , and through the
εb parameter that describes corrections to the Zbb̄ vertex [Altarelli & Barbieri, ’92].

• SM prediction of εi :8>><>>:
ε1 = +5.22× 10−3 (Mt/173.34GeV)3.15 (Mh/125.15GeV)−0.15

ε2 = −7.32× 10−3 (Mt/173.34GeV)−0.69 (Mh/125.15GeV)−0.03

ε3 = +5.28× 10−3 (Mt/173.34GeV)−0.01 (Mh/125.15GeV)0.11

εb = −6.95× 10−3 (Mt/173.34GeV)2.18

• In the large Mt limit the one-loop corrections to ε1 = ∆ρ and εb = −2∆gbb
L grow

as M2
t , while ε2 and ε3 only have a milder ln Mt dependence.

• Experimental measurement of εi :8>><>>:
ε1 = +(5.6± 1.0)× 10−3

ε2 = −(7.8± 0.9)× 10−3

ε3 = +(5.6± 0.9)× 10−3

εb = −(5.8± 1.3)× 10−3
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Determination of Mt from EW data

150 160 170 180 190 200 210

Pole top mass Mt in GeV

HMtLΕ1
= 178.1 ±  3.1

HMtLΕ2
= 199. ±  15.

HMtLΕ3
= 286. ±  109.

HMtLΕb
= 158.9 ±  14.0

HMtLEW = 177.0 ±  2.6

HMtLpole = 173.2 ±  0.9

[Giudice, P.P. & Strumia, ’15]
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Impact of experimental improvements on the EW fit
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[Giudice, P.P. & Strumia, ’15]
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Discussion of the EW fit

• MW plays the key role, since δMt/Mt = 69 δMW/MW . Measuring MW with a
precision of 5 MeV can lead to δMt ∼ 0.7 GeV.

• The measurements of the various asymmetries have to be improved by more
than a factor of 3 to improve the uncertainty on Mt .

• The uncertainty on Mt would be affected by αem(MZ ) only if its error were
underestimated by more than a factor of 2.

• We can extract Mt using MW as the only input quantity by means of ∆rW defined
as the ratio of two determinations of the weak angle

∆rW ≡ 1− παem(MZ )/
√

2GFM2
Z

M2
W/M

2
Z (1−M2

W/M
2
Z )

= (−25.4± 0.95MW ± 0.10αem)× 10−3

∆rW = − tan−2 θW ε1 + (tan−2 θW − 1) ε2 + 2 ε3

= −24.0× 10−3
„

Mt

173.34GeV

«2.50„ Mh

125.15GeV

«−0.14

• Mt prediction from ∆rW

(Mt )MW = (177.7± 2.8)GeV
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Conclusions

• Indirect determinations of Mt are very important especially in view of the
theoretical ambiguities in the extraction of Mt from collider experiments.

• The Gauge-less limit of the SM allows to identify flavour and EW observables
with power sensitivity on Mt at the quantum level.

• Flavour data determine Mt = (175.1± 8.0) GeV with ∆mBs and Bs → µ+µ−

being the best probe of Mt . Since they require only Vcb as CKM input, a
complete joint fit with all CKM parameters is not necessary.

• Better measurements of Bs → µ+µ−, better lattice computations of the hadronic
parameters relevant for ∆mBs and Bs → µ+µ− and improved calculations of
short-distance effects will bring δMt down to 3 GeV (1.7 GeV) by 2020 (2025).

• EW data determine Mt = (177.0± 2.6)GeV and MW is the best toppometer.
The present uncertainty on MW should be reduced by a factor of 3 by LHC
experiments bringing Mt to a precision of about 0.7 GeV.

A global fit of all indirect determinations of Mt , from both EW and flavour data,
will provide very significant information.
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