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Extrapolate SM up to Planck scale. We assume Higgs is SM like, no BSM physics.

The Higgs vacuum instability

Buttazzo  &  al.  
1307.3536

d�

d logµ
⇠ � y4t

16⇡2top loop:

Following the SM RG equations, the quartic 
Higgs coupling becomes negative around a 
scale of  1010÷1011 GeV, due to top loop 
contribution

V (h) = �(h)
h4

4

The effective potential, parametrised as 

becomes negative at a scale ΛI
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We live in an unstable false vacuum, 
which can be destabilised by quantum tunnelling.

EW  
vacuum

Instability  
scale  ΛI

h

V(h)

Quantum  tunnelling

The Higgs vacuum instability

The tunnelling probability can be computed as 

where SB is the action computed on the bounce 
solution with radius ΛB-1 that maximises the 
probability. 
The negative exponential suppresses the 
probability.

dP
dV dt

= ⇤4
Be

�SB(⇤B)

Buttazzo  &  al.  
1307.3536

“True vacuum” energy large and negative. 

⇒ a region of  Anti - de Sitter space forms
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The Higgs vacuum instability

Metastability: the values of  the SM parameters are very special. 
The central values of  Mtop and Mhiggs are such that the EW vacuum is unstable, but 
its lifetime is larger than the age of  the Universe. 
This is highly non trivial, and poses a question about fine-tuning. 

Buttazzo  &  al.1307.3536
4



In the early universe, many effects can modify the situation: 

1. Quantum fluctuations during inflation can trigger the formation of  
“true vacuum” bubbles 

2. A non minimal coupling of  h to gravity can induce an effective mass 
term which stabilises the potential 

3. Thermal effects during radiation dominance are twofold: fluctuations 
can trigger the “jump” of  the barrier, while corrections to the effective 
potential create an additional effective barrier.

Higgs instability in the early universe
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Quantum fluctuations during inflation 
can overcome the potential barrier 

⇒ AdS bubbles form

What happens to these 
bubbles during 
inflation?

After inflation ends, there will be regions in 
which h has oscillated over the barrier but has 
not yet rolled down to its deep minimum. 
Can these regions be saved by thermal effects 
in radiation dominance?

What happens during 
radiation dominance to the 
bubbles which were formed 
in the inflationary period?

UNIVERSE  EXPANDS

“Timeline”
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Higgs fluctuations during inflation
During inflation, quantum fluctuations of  long 
wavelength modes are governed by the value of  the 
Hubble parameter H. 
If  fluctuations are large enough, h can “jump” over 
the barrier.

The evolution of  h (for long wavelengths) is controlled by a Langevin equation:

dh

dt
+

1

3H

dV (h)

dh
= ⌘(t) h⌘(t)⌘(t0)i = H3

4⇡2
�(t� t0)

We can numerically generate random realisations of  the Higgs evolution in time (or in the e-
folds number N):

h̄(N + dN) = h̄(N)� h2

max

3H2

V̄ 0(h̄) dN + r � = H
p
dN/(2⇡h

max

)

This equation is valid only if  the effective mass V’’ is small enough with respect to H2. 
Otherwise all fluctuations are exponentially damped.

h

V(h)
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Higgs fluctuations during inflation

P (h,N) =

1p
2⇡hh2i

exp
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• The resulting probability 
distribution is quasi-gaussian 
because the evolution is 
dominated by the quantum 
noise term; 

• the potential is only relevant 
in the very tail of  the 
d i s t r i b u t i o n . H e r e t h e 
evolution becomes classical 
and the Higgs rolls down 
towards its true minimum;

dh

dt
+

1

3H

dV (h)

dh
= ⌘(t)
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Higgs fluctuations during inflation
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Higgs fluctuations during inflation
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If, at the end of  inflation, the 
Higgs is below the barrier, 
then it will roll down to the 
EW vacuum. 
No bubble forms. 
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Higgs fluctuations during inflation
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The Higgs can be above 
the barrier, but without 
having fallen into the 
true minimum. 
This region can be saved 
by thermal effects during 
re-heating.
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Higgs fluctuations during inflation
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h

V(h) Finally, if  the Higgs has fallen 
to its minimum, bubbles form 
during inflation. 
This is the non gaussian tail 
of  the distribution.
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Higgs fluctuations during inflation
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Imposing that no bubble formed in the e3N Hubble patches that form our 
visible Universe, we obtain bounds on the values of  inflationary parameters:

p(|h| > h
max

) < e�3N =) H
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⇡ 0.04

p(|h| ! 1) < e�3N =) H
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e⇡

2k/2bN3
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Effective mass term

Higgs fluctuations during inflation can get damped if  the Higgs 

doublet ΦH during inflation acquires an effective mass m. 

• Quartic coupling to the inflaton: 

• Inflaton decays into SM particles could generate a non-vanishing 
temperature during inflation, inducing a thermal mass term 

• Non-minimal coupling to gravity:

�h�|�H |2�2 �! m2 = �h��
2

m2 ⇡ H2

�⇠H |�H |2R �! m2 = ⇠HR = �12⇠HH2
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Coupling to gravity

A non minimal coupling to gravity is unavoidable, because it’s generated 
by quantum corrections:

S =

Z
d

4
x

p
g


� M̄

2
Pl

2
R� ⇠H |�H |2R+ |Dµ�H |2 � V + · · ·

�
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Coupling to gravity
If  ξH<0 the potential is stabilised by the effective mass term

m2 = �12⇠HH2

p
hh2i = H

4⇡
p
�2⇠H

If                             (i.e.                     ), then fluctuations are damped.m2 > (9/4)H2 ⇠H < �3/16

If                              the distribution is quasi-gaussian, narrower than for ξH=0 �3/16 < ⇠H < 0
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Bounds on H now depend on ξH:
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Coupling to gravity

GREEN Region: 
The instability is avoided

RED Region: 
The Higgs falls into its 

instability during inflation

ORANGE Region: 
The Higgs fluctuates beyond its instability 

without falling into its deep minimum 14



When the Higgs falls into its deep (negative) minimum, that patch 
of  the universe receives an Anti-de Sitter metric. 

Understanding what happens afterward requires a delicate GR 

calculation: 

• approximation: spherical bubble with a thin wall; 

• relevant parameters: bubble size, initial wall velocity, 

internal energy, surface tension.

Evolution of AdS bubbles
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space

time

space

time

During inflation (de Sitter exterior) an 
anti - de Sitter bubble can have a variety 
of  possible behaviours. 
In general, even if  bubbles expand, 
exponential expansion wins and they 
are hidden behind a de Sitter horizon.

After inflation ends (quasi-Minkowski 
exterior) expanding bubbles continue 
their growth faster than the expansion 
rate of  the universe, and eat all space.

Evolution of AdS bubbles
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space

time

Evolution of AdS bubbles

General conclusion: no GR effect prevents AdS 
bubbles from “eating” all the visible universe. 

We must impose that 
no bubble nucleation happens during inflation. 
The “red” region is excluded.
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Higgs evolution after inflation

h

V(h)

ORANGE Region: 
The Higgs fluctuates beyond its 
instability without falling into its 

deep minimum

Even if  we avoid bubble creation during inflation, we will be left with 
regions in which the Higgs fluctuated over the barrier without falling 
into the deep minimum. 
Can these regions be saved by the post-inflationary dynamics?
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Higgs evolution after inflation

After inflation ends: 

1. pre-heating: inflaton oscillates, curvature scalar R decreases, matter-

dominated phase → coupling to gravity 

2. reheating: inflaton decays into SM, temperature rises → thermal effects

19



Reheating

The reheating phase can be described by
8
><

>:

d⇢�
dt

= �3Hr⇢� � ��⇢�

d⇢R
dt

= �4Hr⇢R + ��⇢�
Hr =

ȧ

a
=

s
8⇡

3

⇢� + ⇢R
M2

Pl

with

The temperature evolution is given by

LogHtimeL

Lo
gHTê

h m
ax
L TRH

T ⇡ 1.3 T
max

a�3/8(1� a�5/2)1/4

Tmax = 0.54

 
HMPlT

2
RH

g
1/2
⇤

!1/4

with
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Thermal effects

When the inflaton decays into SM particles, a rising temperature 
generates (reheating phase). Two contrasting effects:

1. If  thermal fluctuations are 
large enough, h can jump 
over the barrier

2. Thermal corrections to the 
potential create an additional 
effective barrier that 
stabilises low values of  h

h

V(h)

h

V(h)

This second effect is known to be dominant: thermal corrections stabilise 
low energy values of  the field (Espinosa, Giudice & Riotto, 0710.2484) 21



Because of  thermal corrections, the Higgs potential receives an 
extra mass term                 valid up to                . 

The thermal correction to the potential can be approximated as

m2 ⇠ T 2 h . 2⇡T

VT ⇡
✓
0.21� 0.0071 log10

T

GeV

◆
T 2h

2

2

e
� h2

(2⇡T )2

10-1 100 101 102 103 104 105
100

101

102

103

Hêhmax

h e
nd
êh ma

x

xH = 0

Tmax = 100 hmax

Tmax = 10 hmax

Tmax = hmax

Tmax ` hmax

h
end

.
✓

8

45

◆
1/6

H�1/3 T
4/3
maxp

|�|

In order for the Higgs to be “saved” 
by thermal effects it must be

Effect of the thermal barrier
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Putting together the effects of  ξH and of  temperature, we find the 
minimal reheating temperature that can save the largest fluctuation that 
we expect to happen somewhere in our visible universe, i.e. the one for 
which p(hend > h⇤) = e�3N
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Higgs evolution after inflation

The ORANGE Region 
in which the Higgs fluctuates 

beyond its instability without falling 
into its deep minimum can be saved 
by thermal effects for a high enough 

reheating temperature.
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Summary

• We studied the evolution of  the Higgs field and its instability, during 
inflation and during the early phases of  radiation dominance. 

• Whenever the Higgs falls in its deep minimum, a bubble of  AdS 
forms, (possibly) expands and eventually eats all the visible universe. 

• We can put bounds on inflationary parameters by requiring that no 
bubble forms during inflation (RED region excluded) 

• Thermal effects after inflation and induced Higgs mass terms (e.g. 
non minimal coupling to gravity) play a key role in “saving” the EW 
vacuum
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New directions

★ Is a fully gauge-invariant treatment possible? What are the gauge 
invariant quantities related to the instability and/or to the bubble 
nucleation process? 

★ Is metastability related to quantum-gravity, as a way to escape 
from stable de Sitter? 

★ Avoiding the instability can be used as a guidance to put bounds 
on specific models of  inflation (different couplings to gravity, 
coupling Higgs-inflaton etc.) and/or reheating. 

★ …
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Gauge (in-)dependence

The effective action and the effective potential V(h) are known to be gauge-dependent. 

Their ξ-dependence is determined by the Nielsen identity:

Can we obtain physical gauge-independent quantities (bubble nucleation 
rates, survival probability, …) from a gauge-dependent potential?
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We adopt a “practical” solution to this problem. 
Starting from the Nielsen identity, and expanding in the number of  derivative, we 

obtain a simple expression for the ξ-dependence of  the effective potential:

⇠
@V

@⇠
+ C(h)V 0 = 0

which tells us that the explicit ξ-dependence of  the effective potential could be 

compensated by an implicit ξ-dependence of  the field h:

Gauge (in-)dependence

⇠
dh

d⇠
= C(h)

dV

d⇠
= 0

8
>>><

>>>:

Se↵ [h] =

Z
d

4
x


�V (h) +

1

2
Z(h)(@µh)

2 +O(@4)

�

K[h] = C(h) +D(h)(@µh)
2 � @

µ[D̃(h)@µh] +O(@4)
�Se↵

�h
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1

2
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2 � @

µ[Z(h)@µh] +O(@4)
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To describe the Higgs fluctuations during inflation, we will need the 
Langevin and the Fokker-Planck equations:

Gauge (in-)dependence

Langevin[h] ⌘
p
Z
dh

dt
+

1

3H
p
Z
V 0 � ⌘ = 0

FokkerPlanck[P (h, t)] ⌘ 1p
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@
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@
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✓
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8⇡2

Pp
Z
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1

3H

PV 0
p
Z

��
� 1p

Z
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It turns out that both them and the equation of  motion of  the Higgs 

become gauge independent if  we assume the same ξ-dependence of  the 
Higgs field that works for the Nielsen identity:

⇠
dh
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= C(h)
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Consider the SM effective lagrangian

It’s useful to rewrite it in terms of  the canonically normalised field hcan(h,ξ)

Gauge (in-)dependence

Le↵ = Z(h, ⇠)
(@µh)2

2
� �e↵(h, ⇠)

h4

4
+ · · ·

dhcan

dh
= Z1/2 Le↵ =

(@µhcan)2

2
� �can(hcan, ⇠)

h4
can

4
+ · · ·

0 2¥1010 4¥1010 6¥1010
-2¥1038

-1¥1038

0

1¥1038

2¥1038

3¥1038

4¥1038

5¥1038

Higgs h in GeV

V
HhLi

n
G
eV

4

-4
-2
0
12
4

10

hmax

With this field redefinition, the gauge 
dependence of  the effective potential is 
reduced. 
The reason is that, at leading order, the 
transformation that makes the field canonical 
is precisely the one dictated by the Nielsen 
identity.
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We choose to work in Landau gauge (ξ=0) 
and with canonically normalised Higgs field. 
The effective potential at NNLO accuracy 
can be approximated by

Gauge (in-)dependence

V
e↵

(h) ⇡ �b ln

✓
h2

h2

max

p
e

◆
h4

4

hmax is not a gauge invariant quantity, but the 
results will be gauge invariant. 

In Landau gauge, for the present best fit 
value of  the SM parameters, 

hmax = 5 x 1010 GeV

0 2¥1010 4¥1010 6¥1010 8¥1010
-4¥1038

-2¥1038

0

2¥1038

4¥1038

6¥1038

8¥1038

1¥1039

VHhL in GeV4
H
ig
gs
fie
ld
in
G
eV

Landau gauge: x=0

hmax

30



As the inflaton oscillates the Hubble rate decreases as 

and so does the mass term m2 = �12⇠HH2
m

Hm = H/a3/2
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xH = -0.1 As the induced barrier height decreases, 
h rolls down the potential and, 
depending on its value at the end of  
inflation hend and on the initial height, it 
can safely land in the EW vacuum.

Coupling to gravity after inflation
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Solving for the classical evolution of  the Higgs field in a matter-dominated 
background, one can find the maximum value of  hend that can be “saved” 
by the mass term:

d2h
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dt
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a3
max

⇡ �12⇠HH2

bh
max

where

Coupling to gravity after inflation
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