wr——
1 ) [
}3M [T TTTTI T TTTTT T TTTTT T T ? [T TTTTT [ v
- i PUAI>hmax) > e_3N
- 100
: Tinax = 100 Ay ‘ y i
i \\ @ _// No Higgs fluctations
2 -
' E nstability
- ' scale A1
. z -n’— N — h
0 e Sl s E 3 M t Quantum =g\ @
,\_1\ \\HHHO\ \\HHHl | HHHH2\ \\HHH?,\ \\HHH4 nrlco organ e unnellin
10 10 10 10 10 10 8
® ogq 7 5.\
20 T . JUniversité de Geneve
o / ) = 042, p(lh]—>o0) = 0.00016
£y=—0.16 , R —— e
18] /
L §H7 - -
16 §H/=
:
< : Ey=—0.1 .‘ v h 0 F \
Qﬁ | H/ 124 126 ]%: // \\\
H I 570'08 | Hijgs pole mass M, in"~ ol R
I £y=—0.06 7 =l | | e
1201 007 _—— —3‘ ‘—2‘ ‘—1““0““1“ ‘2““3
: w0 with Espinosa, Giudice, Riotto, Senatore, Strumia, Tetradis
A:‘W :

10

1505.04825 (accepted by JHEP)




Extrapolate SM up to Planck scale. We assume Higgs 1s SM like, no BSM physics.

Following the SM RG equations, the quartic

Higgs coupling becomes negative around a
scale of 101910 GeV, due to top loop

contribution

top loop: Q Ay
Op 1oop: dlog u 1672

The effective potential, parametrised as

V(h) = A(h)hZ

becomes negative at a scale /g

Higgs quartic coupling A
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Buttazzo & al.
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30 bands in
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M, = 125.7 + 0.3 GeV (blue)
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V(h)

We live 1n an unstable false vacuum, -
Instability

scale A1

which can be destabilised by quantum tunnelling,

“True vacuum” energy large and negative.

— a region of Anti - de Sitter space forms 1

 Buttazzo & al. e |

1 1307.3536 i

%\ 10—500 B i

The tunnelling probability can be computed as 8 i )
g i ]

d_P — AL o= SB(AB) g i i}

dvdt P e n

o i / 1o bands in i

where S5 is the action computed on the bounce % - Mh?125-zi:s°1;3d()}ev ‘
. ° . . . “ i I gay e i
solution with radius /5! that maximises the E - £ @3=0.1184+0.0007 -
B 101500 : ! (red dotted) :

probablhty. 1!

Th ti tial r th : "I/ ] :
e negative exponential suppresses the _ "[ 4731406 )

14 2000 Lo . o .y @eono oy ey )
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Metastability: the values of the SM parameters are very special.

The central values of Miop and Mhpiges are such that the EW vacuum is unstable, but

its lifetime 1s larger than the age of the Universe.

This is highly non trivial, and poses a question about fine-tuning,

Top pole mass M, in GeV
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In the early universe, many effects can modify the situation:

1. Quantum fluctuations during inflation can trigger the formation of

“true vacuum’’ bubbles

2. A non minimal coupling of h to gravity can induce an effective mass

term which stabilises the potential

3. Thermal effects during radiation dominance are twofold: fluctuations
can trigger the “jump” of the barrier, while corrections to the effective

potential create an additional effective barrier.



Quantum fluctuations during inflation

can overcome the potential barrier

= AdS bubbles form

What happens to these
bubbles during

inflation?

After inflation ends, there will be regions in
which 4 has oscillated over the barrier but has
not yet rolled down to its deep minimum.

Can these regions be saved by thermal etfects

in radiation dominance?

What happens during
radiation dominance to the

bubbles which were formed

in the inflationary period?
5




Vh) A

During inflation, quantum fluctuations of long

‘7‘\\}

wavelength modes are governed by the value of the

Hubble parameter H.

If tluctuations are large enough, 4 can “yump” over

the barrier.

The evolution of / (for long wavelengths) 1s controlled by a Langevin equation:

leftL I 3;1 d‘?zéh) = () ((E)n(t')) = 5t — ')

472

This equation is valid only if the effective mass 17" is small enough with respect to H-.

Otherwise all fluctuations are exponentially damped.

We can numerically generate random realisations of the Higgs evolution in time (or in the e-

folds number N):

_ _ h2
A(N +dN) = h(N) = 225V (R)dN +r 0= HVAN /(27 B




* The resulting probability

distribution is quasi-gaussian
because the evolution 1is
dominated by the quantum

noise term;

dh 1 dV(h) _ @
it 3H dn !

the potential 1s only relevant

in the very tail of the

distribution. Here the
evolution becomes classical
and the Higgs rolls down

towards its true minimum;

P(h,N) = ! exp (— h ) <h2>—£\/ﬁ

Probability after 60 e—folds

2(h2) " on

/2w (h?)

H = hmax, p(|h|>hmax) =0.42, p(Jh|=00) = 0.00016

&n =0




V(h)

Probability after 60 e—folds

H = hpax, pUAI>hmay) = 0.42, p(Jh]~c0) = 0.00016

&y =0




If, at the end of inflation, the
Higgs is below the barrier,

then it will roll down to the

EW vacuum.

No bubble forms.

Probability after 60 e4folds

H = hpax, pUAI>hmay) = 0.42, p(Jh]~c0) = 0.00016

&y =0




V(h)

The Higgs can be above
the barrier, but without

having fallen into the

true minimum.

This region can be saved

by thermal effects during

re-heating.

2, p(Jhl~o0) = 0.00016

Probability after 60 e—folds

h = h/Rmax



V(h)

Probability after 60 e—folds

Finally, if the Higgs has fallen
to 1ts minimum, bubbles form

during inflation.

This is the non gaussian tail

of the distribution.

&y =0

H = hyax, p(1hl>hmax) =042, p(|h|=>00) = 0.00C




N =60 e—folds, éy =0

100 [LTT I I T TTTTTI [ I T T TTTIT T T T T ITIT
i p(|h|>hmax) ————————— .
2 1072+ |
£ ! |
O
S il |
A 10
10_6 Tl _lll | I.IIIIII | NN | Lt | Lt | Lt | Ll =
1071 109 10! 102 103 10* 10°

H [hmax
Imposing that no bubble formed in the ¢/ Hubble patches that form our

visible Universe, we obtain bounds on the values of inflationary parameters:

Al > hpay) < e 3N — \[ ~ 0.04
p(|h| > ) <e o N

p(Jh| = ) < e 3N — \[—e Tk/2DNT 1 (0.045

max
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Higgs fluctuations during inflation can get damped if the Higgs

doublet @ during inflation acquires an effective mass 7.

* Quartic coupling to the intlaton:

Aol ®r|*¢? — m* = Appd”

* Inflaton decays into SM particles could generate a non-vanishing

temperature during inflation, inducing a thermal mass term

m2 ~ H2
* Non-minimal coupling to gravity:
—¢g|®|°R — m® =&y R = —1264 H?

11
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A non minimal coupling to gravity 1s unavoidable. because it’s cenerated
pung to g , g

by quantum corrections:
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Probability after 60 e—folds

If £p<0 the potential is stabilised by the effective mass term

m? = —12¢g H?

If m®> (9/4)H? (ie £y < —3/16), then fluctuations are damped.

If —3/16 <&y <0 the distribution is quasi-gaussian, narrower than for Eg=0

Vsm(h) — 12éyH?h*[2

&y =—001

—

H = hmax, p(|h|>hmax) =0.075, p(Jh|>00) = 0.

Tl H
Rl T

I
I
I
1

Probability after 60 e—folds

...compare with

H = hpax, p(lhl>hmax) =042, p(Jh|=00) = 0.00016
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Higgs coupling to gravity &y

Bounds on H now depend on &

v H —n
h Amax SN = 4 >
PURL= Fima) < ¢ o TV BN
2] —
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Pmax 3N
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0.05 0.00 0.0:
Higgs coupling to gravity &y

GREEN Region:
The instability is avoided

ORANGE Region:

The Higgs fluctuates beyond its instability

without falling into its deep minimum y



When the Higgs falls into its deep (negative) minimum, that patch

of the universe recetves an Anti-de Sitter metric.

Understanding what happens afterward requires a delicate GR
calculation:

* approximation: spherical bubble with a thin wall;

* relevant parameters: bubble size, initial wall velocity,

internal energy, surface tension.

15



space

During inflation (de Sitter exterior) an
antt - de Sitter bubble can have a variety
of possible behaviours.

In general, even if bubbles expand,
exponential expansion wins and they

are hidden behind a de Sitter horizon.

After inflation ends (quasi-Minkowski
exterior) expanding bubbles continue
their growth faster than the expansion

rate of the universe, and eat all space.

16



time

General conclusion: no GR effect prevents AdS

bubbles from “eating’ all the visible universe.

We must impose that

no bubble nucleation happens during inflation.

space

The “red” region is excluded.

—-0.20 -0.15 —-0.10 -0.05 0.00 0.05 0.10

Higgs coupling to gravity &y 17



V(h)

ORANGE Region:
The Higgs fluctuates beyond its

" instability without falling into its

deep minimum

Even if we avoid bubble creation during inflation, we will be left with

regions in which the Higgs fluctuated over the barrier without falling

into the deep minimum.

Can these regions be saved by the post-inflationary dynamics?

18



After inflation ends:

1. pre-heating: inflaton oscillates, curvature scalar R decreases, matter-

dominated phase — coupling to gravity

2. reheating: inflaton decays into SM, temperature rises — thermal effects

19



The reheating phase can be described by

dpy

o = —3Hrp¢ — F¢p¢ with
d H, =% = |8 Pet IR
c[l)tR = —4H,pr +1Lypg ‘ \/ 3 Ma

The temperature evolution 1s given by

T~ 1.3 Tax a 2/8(1 —a=5/%)1/4

with g
HMp T2\ E
Tnax = 0.54 ( = RH) .

9*/2

Log(time)
20



When the inflaton decays into SM particles, a rising temperature

generates (reheating phase). Two contrasting effects:

1. If thermal fluctuations are

large enough, / can jump

over the barrier

, Vih) A
2. Thermal corrections to the

potential create an additional

effective barrier that

stabilises low values of /

This second effect 1s known to be dominant: thermal corrections stabilise

low energy values of the tield (Espinosa, Giudice & Riotto, 0710.2484) 21



Because of thermal corrections, the Higgs potential recetves an

extra mass term m?* ~ T2 valid up to h <277 .

The thermal correction to the potential can be approximated as

2 2
)cr?h—e‘mf?—nz
2

&n =0
1O3E [ T TTTTT [ T TTTTT [T TTTTTIT [T [TTTIT [T TTTTI [T TTTTI

Tmax = 100 Ay

In order for the Higgs to be “saved”

by thermal effects it must be

hend/ hmax

B < (8 )1/6 H/3 Tl
end ~J

45 Ny

10° 22




Putting together the effects of §mand of temperature, we find the
minimal reheating temperature that can save the largest fluctuation that

we expect to happen somewhere in our visible universe, ze. the one for

which p(hend > hy) = e 3V hmax = 10'° GeV
10" £ E
S 10 % %
5 - -
The ORANGE Region § 0 -
: : : s 107 ¢ 5
in which the Higgs fluctuates E - -
o :
beyond its instability without falling g 1012 §
into its deep minimum can be saved T = - -
S - _

: g
by thermal effects for a high enough = Z 10" - -
reheating temperature. 2 -
é 1010 = =
10°

—-0.20 -0.15 —0.10 —0.05 0.00
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* We studied the evolution of the Higgs field and its instability, during

inflation and during the early phases of radiation dominance.

* Whenever the Higgs falls in its deep minimum, a bubble of AdS

forms, (possibly) expands and eventually eats all the visible universe.

* We can put bounds on inflationary parameters by requiring that no
bubble forms during inflation (RED region excluded)

* Thermal effects after inflation and induced Higgs mass terms (e.g.

non minimal coupling to gravity) play a key role in “saving” the EW

vacuuim

24



* Is a fully gauge-invariant treatment possible? What are the gauge
invariant quantities related to the instability and/or to the bubble

nucleation process?

* Is metastability related to quantum-gravity, as a way to escape
from stable de Sitter?

* Avoiding the instability can be used as a guidance to put bounds

on specific models of inflation (different couplings to gravity,

coupling Higgs-inflaton ez.) and/or reheating,

25



The effective action and the effective potential 17()) are known to be gauge-dependent.
Their E-dependence is determined by the Nielsen identity:

0Sas 4
o :‘/“K[hwm

5}(10387\ T T T T T T T T T T T T T T T

0.10 m
SM potential in different £ gauges ] 43 10% -
0.08 ry . . ]
N\ Dashed: non—canonical Higgs 1 I
006l N\ Continous: canonical higgs field 1 3% 1038 ,
<r I
= , . ;
S 004 % 2% 1038 r
z
qu 0.02 - S 1x10% —
~ i
0.00 0
—0.02 | I
I -1x10% |-
—0.04 - . :
104 106 108 1010 1012 1014 1016 1018 1020 —2% 1038 (\)
Higgs h in GeV Higgs / in GeV

Can we obtain physical gauge-independent quantities (bubble nucleation

rates, survival probability, ...) from a gauge-dependent potential? y



We adopt a “practical”’ solution to this problem.
p p p

Starting from the Nielsen identity, and expanding in the number of derivative, we

obtain a simple expression for the E-dependence of the effective potential:

[ Sualt] = [[dta|-vin) + 32000 + 0" IV
i Kl =€) + D, W — BB + O - fa FC(h)V' =0
|2 v L2 @) — 942 (h)0,h) + O §

which tells us that the explicit &-dependence of the effective potential could be

compensated by an implicit E&-dependence of the field h:

dh dV

27



To describe the Higgs fluctuations during inflation, we will need the

Langevin and the Fokker-Planck equations:

d_h 1

LANGEVIN[h] =V Z— + Vi—np=0
7] i 30vZ7 )
1 0 1 [0 (H> P 1 PV’ 1 OP
F P P = — —
OKKERPLANCK|P(h,t)] 77 oh {\/? [8h <8772 ﬁ) + Ve \/7}} 7 ot 0

It turns out that both them and the equation of motion of the Higgs

become cgauge independent if we assume the same &-dependence of the
gaug p p

Higgs field that works for the Nielsen identity:

d _
3¢ LANGEVIN|h] |h:hL =0

i
J¢ FOKKERPLANCK|[P(h, t)]| =0

& =Ch) —

28



Consider the SM effective lagrangian

(Ouh)”

Lo = Z(h,ﬁ)T

It’s useful to rewrite it in terms of the canonically normalised field Jux(h,E)

O Brean)?
— g1/2 , _ ( p'lcan
dh Lot 2

With this field redefinition, the gauge
dependence of the effective potential is
reduced.

The reason is that, at leading order, the
transformation that makes the field canonical
is precisely the one dictated by the Nielsen
identity.

V(h) in GeV*

h4
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We choose to work in Landau gauge (§=0) 1X10%

Landau gauge: £=0

and with canonically normalised Higgs field. .

The ettective potential at NNLO accuracy

. 6x10% |
can be approximated by ’

4%x1038

2x 1038

N
R
=
&
|
S
-
7 N
>
(\V)
>
(\V)
R
N—
~| =
Higgs field in GeV

hmax 1S NOt 2 gauge invariant quantity, but the o

T

results will be gauge invariant.

|

|

|

|

—4x1038

O -

2x 1010

4%1010

V(h) in GeV*

In Landau gauge, for the present best fit

value of the SM parameters,

hmax = 5 x 101V GeV

6x 1010

8 x 1010
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As the inflaton oscillates the Hubble rate decreases as i

and so does the mass term m

4
max

Higgs potential V(h)/h

0.005

Hy, = H/a%?

° = —12¢yH;

0.004 -
0.003 -
0.002 -

0.001

0.000 —

~0.001 b

I

N

0.0

0

|

|

|
AT
5 1.0

Higgs vev h/hmax

1.5

20

As the induced barrier height decreases,
b rolls down the potential and,
depending on its value at the end of
inflation Jend and on the initial height, it

can safely land in the EW vacuum.
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Solving for the classical evolution of the Higgs field in a matter-dominated
background, one can find the maximum value of /Jend that can be “saved”

by the mass term:

d?h dh oV d?h 5 dh a OV
3H., =0 — — 4+ —— =0
dt2 + () 8h da2+2ada+H2 oh

20 T

1.8+

£4=-0.14 f The instability is avoided if

1.6 -

hend SJ hma,xa_ 2o

max

hend/ hmax

1.4

3 12{g H”

’ . A where a ~ —
' é /4 max bhmax

H/hmax

32



