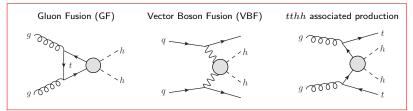
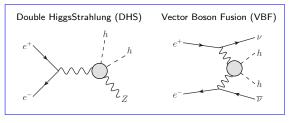
Prospects for double Higgs production

Giuliano Panico


IFAE, Barcelona

'LFC15'


Trento – 9 September 2015

Processes for double Higgs production

pp colliders (HL-LHC, FCC-hh)

e^+e^- colliders (ILC, FCC-ee, CLIC)

The Effective Field Theory approach

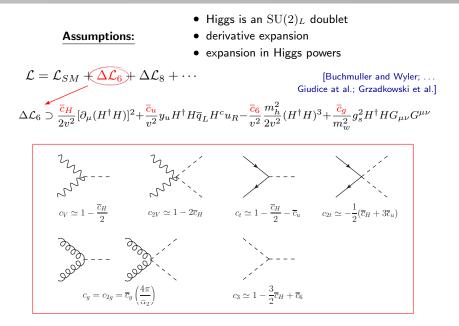
EFT is a perfect framework for low-energy machines with high precision (e⁺e⁻, HL-LHC)

Can not access directly the new states Probe their tail effects with precision measurements

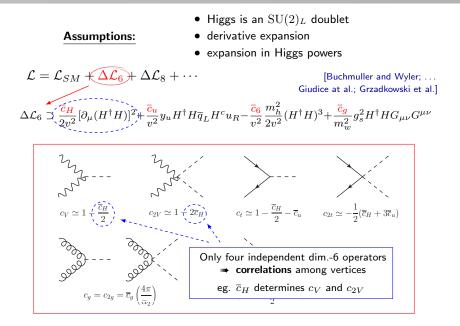
Primary goal of high-energy machines (FCC-hh) is to directly produce new states

EFT can only be used near threshold, well below the new resonances

 useful to obtain a model-independent parametrization of the contributions of the new states in terms of few local operators


The Effective Field Theory approach

✤ New-physics effects in Higgs production typically grow with energy


➤ useful to extend the analysis to higher energies and to use differential distributions to increase the sensitivity

range of validity: $m_h \ll E \ll m_*$

The effective Lagrangian for a Higgs doublet

The effective Lagrangian for a Higgs doublet

The effective Lagrangian for a Higgs doublet

The effective vertices correspond to the interactions in the unitary gauge

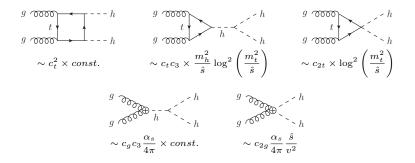
$$\mathcal{L} \supset \left(m_W^2 W_{\mu}^2 + \frac{m_Z^2}{2} Z_{\mu}^2 \right) \left(1 + 2c_V \frac{h}{v} + c_{2V} \frac{h^2}{v^2} \right) - m_t \bar{t} t \left(1 + c_t \frac{h}{v} + c_{2t} \frac{h^2}{2v^2} \right) \\ - c_3 \frac{m_h^2}{2v} h^3 + \frac{g_s^2}{4\pi^2} \left(c_g \frac{h}{v} + c_{2g} \frac{h^2}{2v^2} \right) G_{\mu\nu}^a G^{a \ \mu\nu}$$

This parametrization is more general than the previous one

- valid for a generic Higgs (even not part of a doublet)
- resums the expansion in Higgs powers (if Higgs is a doublet)

Double Higgs at Hadron Colliders

Literature (for FCC₁₀₀):

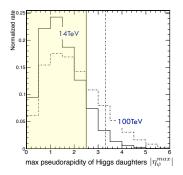

Baglio, Djouadi, Groeber, Muellheitner, Quevillon, Spira, JHEP 1304 (2013) 151 Yao, arXiv:1308.6302 (Snowmass Summer Study 2013) Barr, Dolan, Englert, De Lima, Spannowsky, JHEP 1502 (2015) 016 Azatov, Contino, G.P., Son, Phys.Rev. D92 (2015) 3

Benchmark Scenarios:	LHC_{14}	$\sqrt{s} = 14 \text{ TeV}, \ L = 300 \text{ fb}^{-1}$
	HL-LHC	$\sqrt{s} = 14 \text{ TeV}, \ L = 3 \text{ ab}^{-1}$
	FCC_{100}	$\sqrt{s} = 100 \text{ TeV}, \ L = 3 \text{ ab}^{-1}$

Double Higgs production via Gluon Fusion

results from Azatov, Contino, G.P., Son, Phys.Rev. D92 (2015) 3

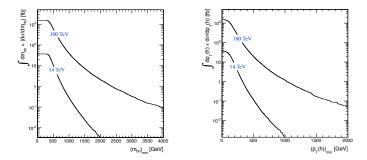
Double Higgs production via gluon fusion


- * Different behaviour at high energy $\sqrt{\hat{s}} = m_{hh} \gg 2m_h$
- Dependence on Higgs trilinear suppressed at high energy
 - events at threshold more sensitive to Higgs trilinear, events at large m_{hh} more important to determine the other operators

Kinematics of the signal

Two main differences between 14 TeV and 100 TeV:

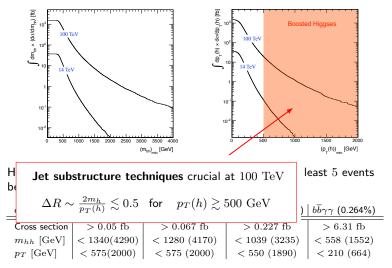
1.


Larger boost of the *hh* system is higher fraction of decay products outside the detector region

- Fraction of events with $|\eta| > 2.5$: 13% at LHC \implies 30% at 100 TeV
- ▶ Need to extend to $|\eta| \leq 3.3$ to keep same fraction of events

Kinematics of the signal

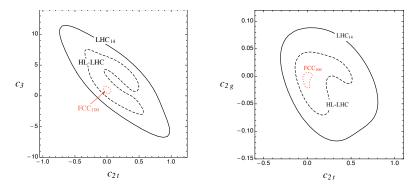
2. Larger invariant mass of the hh system


Highest accessible $m_{\hbar\hbar}$ and p_T estimated by requiring at least 5 events beyond the threshold

channel	$b\overline{b}b\overline{b}$ (33.3%)	$b\overline{b}WW^*$ (24.9%)	$b\overline{b}\tau^+\tau^-$ (7.35%)	$b\overline{b}\gamma\gamma$ (0.264%)
Cross section	> 0.05 fb	$> 0.067 { m ~fb}$	$> 0.227 { m ~fb}$	$> 6.31 \; {\rm fb}$
m_{hh} [GeV]	< 1340(4290)	< 1280 (4170)	< 1039 (3235)	< 558 (1552)
$p_T \; [\text{GeV}]$	< 575(2000)	< 575 (2000)	< 550 (1890)	< 210 (664)

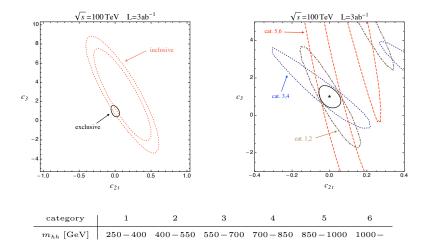
[We use $L=3/{
m ab}$ and assume 10% efficiency. Numbers in parenthesis for a $100~{
m TeV}$ collider]

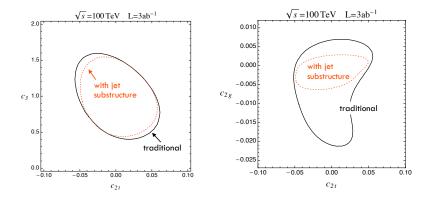
Kinematics of the signal


2. Larger invariant mass of the hh system

[We use $L=3/{
m ab}$ and assume 10% efficiency. Numbers in parenthesis for a $100~{
m TeV}$ collider]

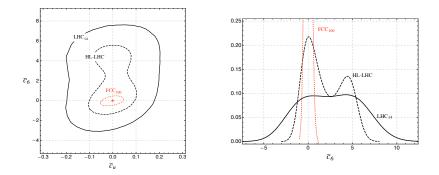
Higgs couplings from the $b\overline{b}\gamma\gamma$ channel

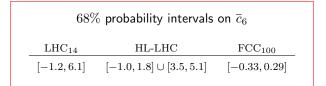

The non-linear Higgs couplings c_3 , c_{2t} , c_{2g} can only be directly accessed in double-Higgs production


- ► Higgs trilinear can only be extracted at FCC (at LHC only O(1) determination possible)
- good precision on c_{2t} and c_{2g}

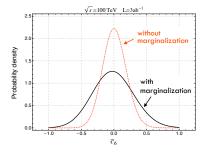
Exclusive vs inclusive analysis

✤ Exclusive analysis is crucial at FCC₁₀₀!

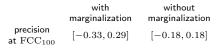

Improvement from jet substructure

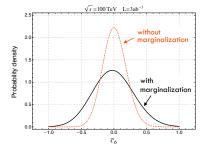


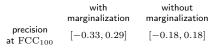
Jet substructure efficiently improves the sensitivity to boosted events

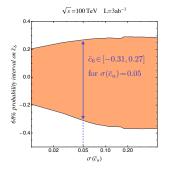

- important to extract c_{2q} (effects in the tail of the distribution)
- not crucial to determine c_3 and c_{2t} (effects close to threshold)

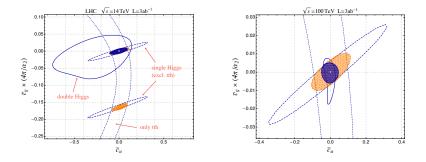
Constraining the dim.-6 operators: \overline{c}_u and \overline{c}_6




The statistical treatment

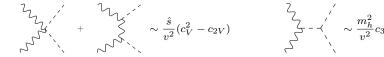

Marginalization has a significant impact on the precision on \overline{c}_6


The statistical treatment


Marginalization has a significant impact on the precision on \overline{c}_6

e.g. uncertainty on \overline{c}_u increases uncertainty on \overline{c}_6

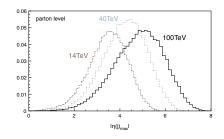
Constraining the dim.-6 operators: \overline{c}_u and \overline{c}_q

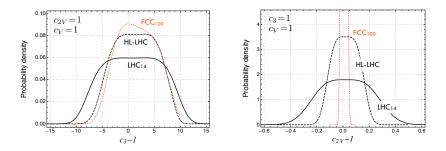

- > double Higgs can resolve the degeneracy in c_g
- > at FCC₁₀₀ it can be competitive with $t\bar{t}h$ for the determination of the top Yukawa \bar{c}_u (if precision from single Higgs similar to the LHC one)

Orange region: single Higgs incl. $t\bar{t}h$ Blue region: single + double Higgs

Double Higgs production via Vector Boson Fusion

results from Contino, Rojo, work in progress (courtesy of R. Contino)


Double Higgs production via vector boson fusion

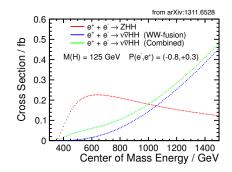

- Sensitivity on c₃ mainly from events at threshold
- Events with large m_{hh} more important to extract c_{2V}

Study of double Higgs in VBF at 100 TeV requires a detector in the very forward region

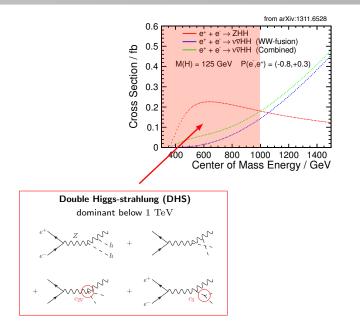
 $\sim 67\%$ of signal events has $|\eta(j)_{max}| > 4.5$

Higgs couplings from the $hh \rightarrow 4b$ channel

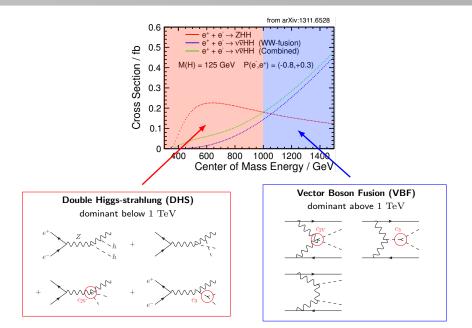
Huge background, sensitive only if deviations much larger than the SM


- Poor precision on Higgs trilinear (not competitive with gluon fusion)
- FCC_{100} can provide good bounds on $\Delta c_{2V} \equiv c_{2V} 1$

68% probability intervals	LHC_{14}	HL-LHC	FCC_{100}
on Δc_{2V}	[-0.18, 0.22]	[-0.08, 0.12]	[-0.01, 0.03]


Double Higgs at e^+e^- Colliders

taken from R. Contino, talk at HPPC2015 (Mainz)


Main production channels

Main production channels

Main production channels

Expected precision on c_3 and c_{2V}

	COM Energy	Precision	Process	Reference
	500 GeV $[L = 500 \text{ fb}^{-1}]$	$\Delta c_3 \sim 104\%$	DHS	ILC TDR, Volume 2, arXiv:1306.6352
ILC	1 TeV	$\Delta c_3 \sim 28\%$	VBF	ILC TDR, Volume 2, arXiv:1306.6352
	$[L=1 \text{ ab}^{-1}]$	$\Delta c_{2V} \sim 20\%$	DHS	Contino et al., JHEP 1402 (2014) 006
	$1.4 { m TeV}$	$\Delta c_3 \sim 24\%$		
CLIC	$[L = 1.5 \text{ ab}^{-1}]$	$\Delta c_{2V} \sim 7\%$	VBF	Roloff (CLICdp Coll.), talk at LCWS14
	$\begin{array}{c} 3 \ \mathrm{TeV} \\ [L=2 \ \mathrm{ab}^{-1}] \end{array}$	$\Delta c_3 \sim 12\%$. 51	
		$\Delta c_{2V} \sim 3\%$		

Expected precision on c_3 and c_{2V}

	COM Energy	Precision	Process	Reference
	500 GeV [L = 500 fb ⁻¹]	$\Delta c_3 \sim 104\%$	DHS	ILC TDR, Volume 2, arXiv:1306.6352
ILC	1 TeV	$\Delta c_3 \sim 28\%$	VBF	ILC TDR, Volume 2, arXiv:1306.6352
	$[L=1 \text{ ab}^{-1}]$	$\Delta c_{2V}\sim 20\%$	DHS	Contino et al., JHEP 1402 (2014) 006
			<u>```</u>	Precision on Higgs trilinear
	$1.4 { m TeV}$	$\langle \Delta c_3 \sim 24\% \rangle$	·	slightly better than FCC_{100}
	$[L = 1.5 \text{ ab}^{-1}]$	$\Delta c_{2V} \sim 7\%$	1	(effects at threshold)
CLIC		$\Delta c_{2V} \approx 170$	VBF	Roloff (CLICdp Coll.), talk at LCWS14
	3 TeV $[L = 2 \text{ ab}^{-1}]$	$\langle \Delta c_3 \sim 12\% \rangle$	*	
		$\Delta c_{2V} \sim 3\%$		

Expected precision on c_3 and c_{2V}

	COM Energy	Precision	Process	Reference
	500 GeV [L = 500 fb ⁻¹]	$\Delta c_3 \sim 104\%$	DHS	ILC TDR, Volume 2, arXiv:1306.6352
ILC	1 TeV	$\Delta c_3 \sim 28\%$	VBF	ILC TDR, Volume 2, arXiv:1306.6352
	$[L=1 \text{ ab}^{-1}]$	$\Delta c_{2V} \sim 20\%$	DHS	Contino et al., JHEP 1402 (2014) 006
				Precision on c_{2V} worse
	1.4 TeV [L = 1.5 ab ⁻¹]	$\Delta c_3 \sim 24\%$ $\langle \Delta c_{2V} \sim 7\% \rangle$	•	than FCC_{100} (effects grow with energy)
CLIC			У́ВF	Roloff (CLICdp Coll.), talk at LCWS14
	3 TeV $[L = 2 \text{ ab}^{-1}]$	$\Delta c_3 \sim 12\%$ $\left(\Delta c_{2V} \sim 3\%\right)$		

Conclusions

Conclusions

- Double Higgs production is an essential channel to extract information on the non-linear Higgs couplings
 - Measure the Higgs trilinear coupling c_3
 - Access new couplings to top and gluon: c_{2t} , c_{2g} , c_{2V}
- Leptonic vs Hadronic colliders
 - e^+e^- machines
 - can extract c_3 and c_{2V} , but $\sqrt{s} \gtrsim 1 \text{ TeV}$ is needed
 - pp machines
 - ▶ better precision with energy-growing interactions c_{2t} , c_{2g} , c_{2V}
 - ▶ good precision on Higgs trilinear thanks to high statistics

Backup material

Sensitivity on the EFT coefficients

Precision on single-Higgs observables from ATLAS projection

[ATL-PHYS-PUB-2013-014]

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt=300 \text{ fb}^{-1}; \int Ldt=3000 \text{ fb}^{-1}$

	$300 {\rm ~fb^{-1}}$	3 ab^{-1}
$\sigma(\overline{c}_H)$	7.9%	5.4%
$\sigma(\overline{c}_u)$	$5.9\%~(w/t\overline{t}h)$	$5.4\%~(w/t\bar{t}h)$
	$20\%~(t\bar{t}h)$	$7.7\%~(t\bar{t}h)$
$\sigma(\overline{c}_d)$	6.3%	4.4%

10 - 11 101. j.c.	-000 ib ,j2ai-0000 ib
H→μμ (comb.)	
(incl.)	· · · · · · · · · · · · · · · · · · ·
(ttH-like)	-0.7
H→ττ (VBF-like)	
H→ZZ (comb.)	
(VH-like)	
(ttH-like)	
(VBF-like)	
(ggF-like)	
H→WW (comb.)	
(VBF-like)	
(+1j)	
(+0j)	
H→Zy (incl.)	-1.5
H→γγ (comb.)	
(VH-like)	-0.8
(ttH-like)	
(VBF-like)	
(+1j)	
(+0j)	
	0 0.2 0.4

Δμ/μ