Higgs Physics at the LHC

Cesare Bini Sapienza Università di Roma and INFN Roma

02|09|15

Outline

- Introduction: Higgs phenomenology at the LHC
- Introduction: LHC: 2012-2013 Run1 dataset
- Higgs signals observed in Run1
- Higgs properties from Run1
 - Mass
 - Width
 - Spin/CP
 - Couplings
- BSM Higgs: a short summary of the searches done
- Run2 and prospects in future LHC runs

ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults</u> CMS: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG</u>

08|09|15

Higgs phenomenology at the LHC – production

The Higgs boson phenomenology at LHC is completely fixed if m_H is known Theory uncertainties up to O(10%) (mostly QCD scale and PDFs knowledge)

Higgs phenomenology at the LHC – decay

Higgs decays: branching ratios and decay width (according to SM) Lower theoretical uncertainties $(2 \div 5)$ % for most relevant decays

Higgs physics at LHC – general strategy of the experiments

- General strategy:
 - *Di-boson channels* (γγ, ZZ→4l, WW→ lvlv)→ first observation, mass measurement, signal strength, spin/CP, width assessment;
 - *Di-fermion channels* ($\tau\tau$, bb) \rightarrow observation, signal strength;
 - *Overall fit* to check compatibility with SM coupling pattern;
 - *ATLAS* + *CMS* combinations (mass first then couplings).
- NB: All results are based on the full Run1 dataset after a careful re-analysis including the best understanding of the detectors.
- Some "Terminology":
 - μ is the signal strength $\mu = \sigma/\sigma_{SM}$: $\mu = 1$ SM ok, $\mu \neq 1 \rightarrow BSM!$
 - κ is a coupling modifier $\kappa = g/g_{SM}; \dots$
 - Results on μ are given as central values and/or upper limits or significance
 - limits [obs. (exp.)] are given at 95% CL using the CL_s prescription.

02|09|15

LHC: 2011-2012 run1 dataset

Evidence of Higgs direct decay to fermions (CMS)

CMS published a combined **bb and tt analysis** to evaluate the significance of the Higgs direct decay to fermion pairs signal.

Signal significativity: observed = 3.8 st.dev. expected = 4.4 st.dev.

Central value: $\mu = 0.83 \pm 0.24$

Higgs signals - ttH

Probe of the largest Higgs coupling using the ttH production mechanism.

Higgs signals – limits on rare decays

Final state	ATLAS	CMS
μμ	7.0 (7.2)	7.4 (6.5)
ee		$pprox 3.7 imes 10^5$
Ζγ	11 (9)	9.5 (10)
llγ (M ₁₁ <20 GeV)		7.7 (6.4)
J /ψγ	≈ 500	≈ 500
Υ (nS) γ	BR<10 ⁻³	

Also limit on "invisible" decays, using VBF and VH as tags. ATLAS $BR_{inv} < 25\% (27\%) (VBF + VH)$ CMS $BR_{inv} < 58\% (44\%) (only VBF)$

02|09|15

Mass precision measurement in $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ \rightarrow 41$ Fully reconstructed channels, mass scales down to permill level. Discriminant variables added to invariant masses

Higgs boson mass - II

Combination: Profile Likelihood Ratio, µ additional "nuisance" parameter

Higgs boson width

Higgs boson Spin/CP - I

16

Spin and Parity **hypothesis tests** in the di-boson channels using *discriminant variables* based on kinematics

• $ZZ \rightarrow 41$

Matrix element dependent on 5 angles and 3 masses: sensitivity to J^P and bck

γγ

Only 2 variables used: $p_T(\gamma\gamma)$ and cos θ^* (Collins-Soper frame)

• WW $\rightarrow ev\mu v$:

ATLAS: BDT with $\Delta \phi(ll)$, $p_t(ll)$, m(ll)CMS: 2D fit to m(ll) and m_T

02|09|15

Higgs boson Spin/CP - II

Higgs boson Spin/CP - III

Higgs boson Spin/CP Alternative tensor structure

Higgs couplings to VV could have additional tensor terms either CP-even or CP-odd (negligible in the SM)

FIT VV data introducing the additional terms and estimate the BSM parameters (Λ =1 TeV in ATLAS analysis):

 $\kappa_{\rm HZZ}/\kappa_{\rm SM}$ and $\kappa_{\rm AZZ}/\kappa_{\rm SM} \tan \alpha$ (ATLAS formulation) Λ and a_1, a_2 (CMS formulation)

02|09|15

Higgs boson Spin/CP Search for CP violation terms

Higgs boson couplings Introduction

Combine channels to extract informations on the way the Higgs couples with particles to be compared to SM expectations.

• Signal strengths μ_i and μ_f related to channels for data category *c*

$$n_s^c = \sum_i \sum_f \mu_i(\sigma_i)_{\rm SM} \times \mu_f({\rm BR}_f)_{\rm SM} \times A_{if}^c \times \varepsilon_{if}^c \times \mathcal{L}^c$$

• Coupling modifiers κ according to different scenarios related to "couplings to particles" (based on LO diagrams)

$$\sigma(i \to H \to f) = \frac{\sigma_i(\kappa_j) \cdot \Gamma_f(\kappa_j)}{\Gamma_H(\kappa_j)}$$

Reminder: μ and κ are "normalized" to SM \rightarrow any significant deviation from 1 means BSM...

02|09|15

Higgs boson signal strengths Significativities

Production process	Observed Significance(σ)	Expected Significance (σ)	
VBF	5.4	4.7	
WH	2.4	2.7	
ZH	2.3	2.9	
VH	3.5	4.2	
ttH	4.4	2.0	
Decay channel			
Η→ττ	5.5	5.0	
H→bb	2.6	3.7	
After combination:	 Observation of VBF, Evidence of VH "Evidence" of ttH "Evidence" 	, of H→ττ Non-Evidence" of b	b
02/09/15	23	Higgs p	hysics at L

Higgs boson coupling ratios ATLAS+CMS combination

-2 In $\Lambda(\lambda_{wz})$

ATLAS and CMS

LHC Run 1

8 Preliminary

 $[\kappa_{gZ}, \lambda_{bZ}, \lambda_{\gamma Z}, \lambda_{\tau Z}, \lambda_{tg}, \lambda_{WZ}, \lambda_{Zg}]$

---- SM expected ---- Observed

Additional fits based on the ratios of different channels (some syst. cancel) -- WZ (custodial symmetry)

- -- Up/Down fermions
- -- Leptons/Quarks

Higgs boson couplings 5(+1)-parameter fit

Fit including 5 most relevant coupling modifiers: $\kappa_W \kappa_Z \kappa_t \kappa_\tau \kappa_b + \kappa_\mu$

LHC: 2011-2012 run1 dataset A complete SM "radiography"

BSM Higgs searches A summary

- Anomalies in H⁰ properties: $\mu, \kappa \neq 1, \text{ spin}^{P} \neq 0^{+},...$ (see above)
- SM forbidden H⁰ decays
 - Lepton Flavour Violations
 (H→ μτ)
 - Invisible decays (tagged by VBF and/or VH)
- Extra Higgs
 - $X \rightarrow WW/ZZ$ to $m_X = 1 \div 1.5$ TeV
 - $X \rightarrow$ invisible / quasi-invisible
 - A→Zh
 - $H/A \rightarrow Z + A/H$

- Charged Higgses
 - $H^{\pm} \rightarrow \tau^{\pm} \nu$,
 - H[±]→cs
 - $H^{\pm} \rightarrow W^{\pm}Z$, Higgs cascade
- - φ→ μμ,
 - $\phi \rightarrow \tau \tau$

Many analyses ongoing, "open eyes" as soon as new data come

05|09|15

LHC: status of run2

Ongoing run2 at 13 TeV	Cross-	sections	at 125 GeV
\rightarrow 50 \rightarrow 25 ns interbunch (pileup reduced)		8 TeV	13 TeV
\rightarrow Relevant experiment upgrades	ggF	19 pb	44 pb
\rightarrow Aiming 1×10 ³⁴ cm ⁻² s ⁻¹ luminosity	VBF	1.6 pb	3.7 pb
→ Program: $10 \div 15 \text{ fb}^{-1}$ within 2015	νн	1.1 pb	2.2 pb
100 fb^{-1} within 2013 100 fb ⁻¹ within 2018	ttH	0.13 pb	0.51 pb
\rightarrow At the end of run2 about × (8 ÷18) Higgses produced	tH	~20 fb	~90 fb

"Today" 0.2 fb⁻¹/expt.: first results (not yet Higgs) already there

08|09|15

Prospects of Higgs physics in future LHC runs

- LHC Run2: 13 TeV 100 fb⁻¹ expected 2018
 - Observation of $H \rightarrow \tau \tau$, bb by ATLAS and CMS independently;
 - Observation of VBF and VH by ATLAS and CMS independently;
 - Clarification of evidence for ttH
- LHC Run3: 14 TeV 300 fb⁻¹ expected 2022
 - Probable observation of ttH
 - Evidence $H \rightarrow \mu \mu$
 - Precision measurement of Higgs couplings at the level of ≈ 10 %
 - **HL-LHC**: 14 TeV 3000 fb⁻¹: expected >2030...
 - Observation ttH
 - Observation of $H \rightarrow \mu \mu$ and $H \rightarrow Z \gamma$
 - Precision measurement of Higgs couplings at the level of few %
 - Evidence for HH production
 - Sensitivity to SM $\Gamma_{\rm H}$ through indirect "off-shell" method

05|09|15

Theoretical uncertainties

				Decay channel	Branching ratio [%]
Production	Cross see	ction [pb]	Order of	TT 11	57.5 . 1.0
process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	calculation	$H \rightarrow bb$	57.5 ± 1.9
ggF	15.0 ± 1.6	19.2 ± 2.0	NNLO(QCD)+NLO(EW)	$H \rightarrow WW$	21.6 ± 0.9
VBF	1.22 ± 0.03	1.58 ± 0.04	NLO(QCD+EW)+APP.NNLO(QCD)	$H \rightarrow gg$	8.56 ± 0.86
WH	0.577 ± 0.016	0.703 ± 0.018	NNLO(QCD)+NLO(EW)	$H \rightarrow \tau \tau$	6.30 ± 0.36
ZH	0.357 ± 0.015	0.446 ± 0.019	NNLO(QCD)+NLO(EW)		0.50 ± 0.50
$ZH: gg \rightarrow ZH$			LO(QCD)	$H \rightarrow c \bar{c}$	2.90 ± 0.35
bbH	0.156 ± 0.021	0.203 ± 0.028	5FS NLO(QCD) + 4FS NLO(QCD)	$H \rightarrow ZZ$	2.67 ± 0.11
ttH	0.086 ± 0.009	0.129 ± 0.014	NLO(QCD)	$H \rightarrow \gamma \gamma$	0.228 ± 0.011
tH	0.012 ± 0.001	0.018 ± 0.001	NLO(QCD)	$H \rightarrow 7 \mu$	0.155 ± 0.014
Total	17.4 ± 1.6	22.3 ± 2.0		$\Pi \rightarrow Z\gamma$	0.133 ± 0.014
				$H \rightarrow \mu \mu$	0.022 ± 0.001

SM ggF, ttH, bbH theory uncertainty: ~10% VBF, VH, ZH: 2-3%

SM BR theory uncertainties 2-5% for most important ones

Mass measurement systematics

02|09|15

35

Figure 1. Representative Feynman graphs for the Higgs signal process (left) and the $q\bar{q}$ - (center) and gg-initiated (right) continuum background processes at LO.

Higgs boson width - III

Higgs boson lifetime

CMS has presented an analysis of the Higgs lifetime based on the measurement of the flight distance in $H \rightarrow ZZ \rightarrow 41$ events

38

• Lifetime from flight distance in $H \rightarrow ZZ^* \rightarrow 4l$ events

$$\Delta t = \frac{m_{4\ell}}{p_T} \left(\Delta \vec{r}_T \cdot \hat{p}_T \right)$$

Displacement vertex between H production and decay

 $c\tau_{\rm H} < 57\mu m$ at the 95% CL $\Gamma_{\rm H} > 3.5 \times 10^{-3} \text{ eV}$ at 95% CL

Higgs Spin/CP – ATLAS exclusions

Tested Hypothesis	$p_{exp,\mu=1}^{ALT}$	$p_{exp,\mu=\hat{\mu}}^{ALT}$	p_{obs}^{SM}	p_{obs}^{ALT}	Obs. $\operatorname{CL}_S(\%)$
0_{h}^{+}	$2.5 \cdot 10^{-2}$	$4.7 \cdot 10^{-3}$	0.85	$7.1 \cdot 10^{-5}$	$4.7 \cdot 10^{-2}$
0-	$1.8 \cdot 10^{-3}$	$1.3\cdot10^{-4}$	0.88	$< 3.1 \cdot 10^{-5}$	$< 2.6 \cdot 10^{-2}$
2^{+}	$4.3 \cdot 10^{-3}$	$2.9\cdot10^{-4}$	0.61	$4.3 \cdot 10^{-5}$	$1.1 \cdot 10^{-2}$
$2^+(\kappa_q = 0; p_{\rm T} < 300)$	$< 3.1\cdot 10^{-5}$	$< 3.1\cdot 10^{-5}$	0.52	$< 3.1\cdot 10^{-5}$	$< 6.5\cdot 10^{-3}$
$2^+(\kappa_q = 0; p_{\rm T} < 125)$	$3.4\cdot10^{-3}$	$3.9\cdot10^{-4}$	0.71	$4.3\cdot10^{-5}$	$1.5 \cdot 10^{-2}$
$2^+(\kappa_q = 2\kappa_q; p_{\rm T} < 300)$	$< 3.1\cdot 10^{-5}$	$< 3.1\cdot 10^{-5}$	0.28	$< 3.1\cdot 10^{-5}$	$< 4.3 \cdot 10^{-3}$
$2^+(\kappa_q = 2\kappa_g; p_{\rm T} < 125)$	$7.8\cdot10^{-3}$	$1.2\cdot10^{-3}$	0.80	$7.3\cdot10^{-5}$	$3.7\cdot10^{-2}$

39

Alternative tensor structure: different formulations

ATLAS

$$\mathcal{L}_{0}^{V} = \left\{ c_{\alpha} \kappa_{\mathrm{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] - \frac{1}{4} \frac{1}{\Lambda} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] - \frac{1}{2} \frac{1}{\Lambda} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \right\} X_{0}.$$

CMS
$$A(\text{HVV}) \sim \left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}}q_{\text{V1}}^{2} + \kappa_{2}^{\text{VV}}q_{\text{V2}}^{2}}{(\Lambda_{1}^{\text{VV}})^{2}}\right] m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

$$BSM \text{ CP-even } BSM \text{ CP-odd}$$

When, in addition to the SM term, only one CP-even or CP-odd BSM contribution is present, the conversion between the parameterisation used in this analysis and the (f_{gi}, ϕ_{gi}) parameterisation is given by Eq. (13) rewritten in the following way:

$$f_{g_i} = \frac{r_{i1}^2}{1 + r_{i1}^2}; \quad (i = 2, 4), \tag{14}$$

where r_{41} and r_{21} are chosen such that:

$$r_{21}^2 = \frac{\sigma_{HVV}}{\sigma_{SM}} \left(\frac{\tilde{k}_{HVV}}{k_{SM}}\right)^2, \text{ and } r_{41}^2 = \frac{\sigma_{AVV}}{\sigma_{SM}} \left(\frac{\tilde{k}_{AVV}}{k_{SM}}\right)^2 \tan^2 \alpha.$$
(15)

The numeric coefficients σ_{SM} , σ_{HVV} and σ_{AVV} are effective cross sections of the HVV interaction calculated when only each of the κ_{SM} -, κ_{HVV} - and κ_{AVV} -related terms is present in the Lagrangian.

02/09/15

Higgs boson cross-sections - I

Measurement of total and fiducial cross-sections ATLAS \rightarrow combination of $\gamma\gamma$ and 4l to get $\sigma(pp \rightarrow H)$ total c-s CMS \rightarrow fiducial $\sigma(pp \rightarrow H \rightarrow 4l)$ compared to SM

Higgs boson cross-sections - II

Differential cross-sections (vs. \mathbf{p}_T^{H} , \mathbf{y}^{H} , \mathbf{p}_T^{j1} , \mathbf{N}_{jets}) sensitive to QCD, PDFs,... Still statistic-limited.

Still statistic-illined.

Higgs boson couplings Decay signal strengths

Global fits of the decay signal strengths μ_f (assuming $\mu_i=1$)

Global fits of the production signal strengths μ_i (assuming $\mu_f=1$)

02109115

Coupling parameterization

Production	Loops	Interference	Expressio	on in fundamental coupling-strength scale factors
$\sigma(ggF)$	\checkmark	b-t	$\kappa_q^2 \sim$	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
$\sigma(\text{VBF})$	-	-	· ~	$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$
$\sigma(WH)$	-	-	~	κ_W^2
$\sigma(q\bar{q}\to ZH)$	-	-	~	κ_Z^2
$\sigma(gg \to ZH)$	\checkmark	Z-t	$\kappa_{aaZH}^2 \sim$	$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(bbH)$	-	-	~	κ_b^2
$\sigma(ttH)$	-	-	~	κ_t^2
$\sigma(gb \to WtH)$	-	W-t	~	$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qb \to tHq')$	-	W-t	~	$3.4 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
artial decay width				
$\Gamma_{b\bar{b}}$	-	-	~	κ_b^2
Γ_{WW}	-	-	~	κ_W^2
Γ_{ZZ}	-	-	~	κ_Z^2
$\Gamma_{ au au}$	-	-	~	κ_{τ}^2
$\Gamma_{\mu\mu}$	-	-	~	κ_{μ}^2
$\Gamma_{\gamma\gamma}$	\checkmark	W-t	$\kappa_{\gamma}^2 \sim$	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$
$\Gamma_{Z\gamma}$	\checkmark	W-t	$\kappa_{Z\gamma}^2 \sim$	$1.12 \cdot \kappa_W^2 + 0.00035 \cdot \kappa_t^2 - 0.12 \cdot \kappa_W \kappa_t$
Total decay width				
		117 4		$0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_g^2 +$
Γ_H	\checkmark	w - t	$\kappa_H^2 \sim$	$0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$
		v - i		$0.0023 \cdot \kappa_{\perp}^2 + 0.0016 \cdot \kappa_{\pi}^2 + 0.00022 \cdot \kappa_{\perp}^2$

Higgs boson couplings Additional fits

19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV)

🛑 68% CL

CMS

Other approaches:

"Custodial symmetry fit" $\lambda_{WZ} = \kappa_W / \kappa_Z$ "Fit *almost* without assumptions": all SM particles move in the loops..

LHC and HL-LHC timeline

New LHC / HL-LHC Plan

Expected precision on signal strength

channel	Prec. (%) 100 fb ⁻¹	Prec. (%)) 300 fb ⁻¹	Prec. (%)	3000 fb ⁻¹
ttH H→γγ	~65	38	36	17	12
ttH H \rightarrow ZZ* \rightarrow 41	~85	49	48	20	16
VBF H→γγ	~80	47	43	22	15
VBF H \rightarrow ZZ* \rightarrow 41	~60	36	33	21	16
Н→μμ	~70	39	38	16	12
Η→ττ	~18	14	8	8	5
H→bb	~20	14	11	7	5
Н→үү	~15	12	6	8	4
H → 41	~15	11	7	9	4
H → 41	~15	11	7	7	4

ATLAS: experimental & theory uncertianties; only exp. uncertainty

CMS: current exp.l & theory uncertianties; exp. unc. $\propto 1/\sqrt{L}$ and $\frac{1}{2}$ theory unc.

02|09|15

50

Expected precision on coupling modifiers with L=300 and 3000 fb⁻¹

Higgs width at HL-LHC

02|09|15