EXOTIC LEPTONS AT FUTURE LINEAR COLLIDERS

Simone Biondini

T30f - Technische Universität München

LFC15 Workshop - ECT*, 10th September

in collaboration with O. Panella (Phys. Rev. D 92, 015023 (2015))

2 PRODUCTION CROSS SECTIONS FOR E^{--}

③ Standard Model Background and Signal study

4 CONCLUSIONS

The Standard Model today...

- Discovery of the Higgs boson:
 ⇒ last great success
- The picture might appear complete
- Quite a few fundamental particles
 ⇒ explain a lot of phenomena

HOWEVER...

- *m_h* is UV sensitive
- SM alone can not accommodate
 - A) neutrino masses
 - B) dark matter
 - C) baryon asymmetry in the universe

SUSY ET AL

• SUSY provides an elegant solution for the hierarchy problem

H.P. Nilles, Phys. Rep. 110 (1984), H.E. Haber and L. Kane, Phys. Rep. 117 (1985)

 \Rightarrow the Higgs mass is protected by a new symmetry (fermion-boson)

Composite Higgs

D.B. Kaplan and H. Georgi, Phys. Lett. 136 B (1984)

 \Rightarrow emerge as a bound state of some unknown constituents

Other models:

Compositeness and partial compositeness: E. Eichten, K.D. Lane and M.E. Peskin Phys. Rev. Lett. 50 811 (1983);

N. Cabibbo, L. Maiani and Y. Srivastava, Phys. Lett. 139 B 459 (1984); U. Baur, M. Spira and P. Zerwas, Phys. Rev. D 42 815 (1990)

• Extra-dimensions: L. Randall and R. Sundrum, Phys. Rev. Lett. 83 3370 (1999); T. Appelquist, H.C. Cheng and B.A. Dobrescu,

Phys. Rev. D 64 035002 (2001); G.F. Giudice, R. Rattazzi and J.D. Wells, Nucl. Phys. B 544 3 (1999)

S. BIONDINI (TUM)

LFC15 Workshop

Excited fermions at colliders

IF STANDARD MODEL QUARKS AND LEPTONS ARE COMPOSITE

- excited leptons and quarks $e^*, \mu^*, u^*, d^*, \dots$
- contact interactions (CI) and gauge interactions (GI), parameters (Λ, m^*) :

S. Chatrchyan et al. (CMS coll.) Phys. Lett. B 720, 309 (2013); G. Aad et al. (ATLAS coll.) New. J. Phys. 15, 093011 (2013)

 $m^* > 2.2$ TeV for $\Lambda = m^*$: $\Lambda > 10$ TeV for $m^* = 0.6$ TeV

• exotic fermion states by weak isospin symmetry (exotic charges Q = -2, 4/3, 5/3)

Phys. Rev. D 85 095018 (2012):

R. Leonardi, O. Panella and L. Fanó, Phys. Rev. D 90 055001 (2014)

Extended Isospin Model

• compositeness of fermions in the light of Weak Isospin Invariance

G. Pancheri and Y. Srivastava, Phys. Lett. 146 B 87 (1984)

 $\bullet\,$ analogy with Strong Isospin $\to\,$ learning about strong bound states long before discovering quarks and gluons

STRONG SECTOR

- strong isospin multiplets: hadronic resonances
- typical energy scale $\simeq \mathcal{O}(1{
 m GeV})$

ELECTROWEAK SECTOR

 electroweak isospin multiplets: excited fermions (exotic charges)

• the typical energy scale $\simeq \mathcal{O}(1 - 10 \text{TeV})$ (?)

CONSTRUCTION OF THE MULTIPLETS:

- 1) Standard Model $q, \ell \in I_W = 0, \frac{1}{2}$ and $W^{\pm}, Z^0, \gamma \in I_W = 0, 1$
- 2) \Rightarrow excited fermions $\in I_W \leq \frac{3}{2}$

DOUBLY CHARGED LEPTONS AND GI

ISOSPIN MULTIPLETS: $Q = I_{3W} + \frac{Y}{2}$, $L \equiv \text{EXCITED LEPTON}$

$$\begin{pmatrix} L^{0} \\ L^{-} \\ L^{--} \end{pmatrix}, \quad I_{W} = 1, Y = -2 \qquad \begin{pmatrix} L^{+} \\ L^{0} \\ L^{-} \\ L^{--} \end{pmatrix}, \quad I_{W} = \frac{3}{2}, Y = -1$$

GAUGE INTERACTIONS (GI): $\mathcal{L}_{GI} = g W_{\mu} \mathbf{J}^{\mu} + g' B_{\mu} \mathbf{J}^{\mu}_{\mathbf{Y}}$

• Difference between multiplets: chiral projectors (P_R, P_L) and the unknown couplings (f, \tilde{f})

$$\mathcal{L}_{GI}^{(1)} = i \frac{g f}{\Lambda} \left(\bar{\psi}_E \sigma_{\mu\nu} \partial^{\nu} W^{\mu} P_R \psi_e \right) + h.c.$$
$$\mathcal{L}_{GI}^{(3/2)} = i \frac{g \tilde{f}}{\Lambda} \left(\bar{\psi}_E \sigma_{\mu\nu} \partial^{\nu} W^{\mu} P_L \psi_e \right) + h.c.$$

DOUBLY CHARGED LEPTONS AND CI

• Contact Interactions (CI) widely used to describe four-fermion interactions between excited and SM fermions

$$\mathcal{L}_{CI} = \left(rac{g_*^2}{2\Lambda^2}
ight)j^\mu j_\mu$$

with

$$j_{\mu} = \left(\eta \bar{f}_L \gamma_{\mu} f_L + \eta' \bar{f}_L \gamma_{\mu} f_L^* + \eta'' \bar{f^*}_L \gamma_{\mu} f_L^* + h.c.\right) + (L \rightarrow R)$$

• just pick the fermion fields necessary for the L^{--} interaction

$$j_{\mu} = \left[\bar{\psi}_{\nu}(x)\gamma_{\mu}P_{L}\psi_{e}(x) + \bar{\psi}_{E}(x)\gamma_{\mu}P_{L}\psi_{e}(x) + h.c.\right]$$
$$\Rightarrow \mathcal{L}_{CI} = \frac{g_{*}^{2}}{\Lambda^{2}} \left[\bar{\psi}_{\nu}(x)\gamma^{\mu}P_{L}\psi_{e}(x)\bar{\psi}_{E}(x)\gamma_{\mu}P_{L}\psi_{e}(x) + h.c.\right]$$

- GI implemented in CalcHEP Phys. Rev. D 85 095018 (2012)
- Cl implemented in CalcHEP R. Leonardi, O. Panella and L. Fanó, Phys. Rev. D 90 055001 (2014)

S. BIONDINI (TUM)

Production Cross Sections for E^{--}

$e^-e^- \rightarrow E^{--}\nu_e$: PRODUCTION PROCESS

• e^-e^- beam option: allows for single production of E^{--}

PRODUCTION CROSS SECTIONS FOR E ---

PRODUCTION CROSS SECTION: GI

DIFFERENT ISOSPIN MULTIPLETS AND GI:

• sensitivity to angular distributions and interference of kinematic channels

Results for E^{--} within different multiplets

$$\begin{pmatrix} \frac{d\sigma}{dt} \end{pmatrix}_{I_W=1} = \frac{1}{4s^2 \Lambda^2} \frac{g^4 f^2}{16\pi} \frac{t}{(t-M_W^2)^2} \left[m^{*2}(t-m^{*2}) + 2su + m^{*2}(s-u) \right] \\ + \frac{1}{4s^2 \Lambda^2} \frac{g^4 f^2}{16\pi} \frac{u}{(u-M_W^2)^2} \left[m^{*2}(u-m^{*2}) + 2st + m^{*2}(s-t) \right] ,$$

$$\begin{split} \left(\frac{d\sigma}{dt}\right)_{I_W=3/2} &= \frac{1}{4s^2\Lambda^2} \frac{g^4\tilde{f}^2}{16\pi} \frac{t}{\left(t-M_W^2\right)^2} \left[m^{*2}(t-m^{*2})+2su-m^{*2}(s-u)\right] \\ &+ \frac{1}{4s^2\Lambda^2} \frac{g^4\tilde{f}^2}{16\pi} \frac{u}{\left(u-M_W^2\right)^2} \left[m^{*2}(u-m^{*2})+2st-m^{*2}(s-t)\right] \\ &+ \frac{1}{8s^2\Lambda^2} \frac{g^4\tilde{f}^2}{16\pi} \frac{1}{\left(u-M_W^2\right)} \frac{1}{\left(t-M_W^2\right)} \left(2stu+\frac{3}{4}utm^{*2}\right). \end{split}$$

S. BIONDINI (TUM)

PRODUCTION CROSS SECTION: GI

• the interference shows up for $E^{--} \in I_W = 3/2$, zero for $E^{--} \in I_W = 1$

• it rises down $\sigma_{I_W=3/2}$, e.g. factor 1/3 at energies of $\sqrt{s} = 1$ TeV

PRODUCTION CROSS SECTION: CI

RESULTS FOR THE σ_{CI} :

$$\sigma_{CI} = \left(\frac{g_*^2}{\Lambda^2}\right)^2 \frac{s}{4\pi} \left(1 - \frac{m^{*2}}{s}\right)^2 = \left(\frac{s}{\Lambda^2}\right)^2 \frac{4\pi}{s} \left(1 - \frac{m^{*2}}{s}\right)^2$$

$$g_*^2=4\pi$$
, some affinities with $g_
ho^2\simeq 4\pi imes 2.1$,

$e^-e^- ightarrow E^{--} u_e$

- standard adopted normalization $\Rightarrow \sigma_{CI}$ is dominant over σ_{GI}
- we use CI+GI for both production and decays of E⁻⁻

・ロト ・回ト ・ヨト

STANDARD MODEL BACKGROUND AND SIGNAL STUDY

FINAL STATE SIGNATURE

• we consider the following decays

$$E^{--}
ightarrow W^- e^-
ightarrow e^- \ell^-
u_\ell$$

• the signature we investigate is

$$e^-e^- \rightarrow e^-e^- \nu_e \bar{\nu}_e (\text{LSD} + \not \!\!\! E_T)$$

Analysis structure:

- Signal (CI + GI): 8 diagrams (CalcHEP),
- Standard Model Background:
 - irreducible: 28 + 301 (CalcHEP and MadGraph)
 - reducible (CalcHEP and MadGraph)
- Study the kinematic variables \Rightarrow kinematic cuts
- Detector effects: cuts on p_T and geometrical acceptance
- Beam effects: ISR and Beamstrahlung
- Statistical significance $S(\Lambda, m^*)$ and exclusion plots

SM BACKGROUND PRELIMINARIES: BASE CUTS

- Set 1): $e^-e^-
 ightarrow e^-e^-
 u_e \overline{
 u}_e$
- 28 diagrams (exchange of identical particles)
- $\sigma = 188.2$ fb at $\sqrt{s} = 1$ TeV
- $\sigma = 209.3$ fb at $\sqrt{s} = 3$ TeV

- Set 2): $e^-e^- \rightarrow e^-e^- \nu_e \nu_e \bar{\nu}_e \bar{\nu}_e$
- 301 diagrams (exchange of identical particles)

•
$$\sigma = 0.306$$
 fb at $\sqrt{s} = 1$ TeV

• $\sigma=1.356~{
m fb}$ at $\sqrt{s}=3~{
m TeV}$

KINEMATICS DISTRIBUTIONS SAMPLE

• Adopted improved cuts: $p_T^{max}(e^-) > 200$ GeV, $-1 < \eta^{max}(e^-) < 2.5$

臣

KINEMATICS DISTRIBUTIONS SAMPLE

STANDARD MODEL BACKGROUND AND SIGNAL STUDY

CUTS AND LSD INVARIANT MASS DISTRIBUTION

- a useful distribution to look at is $M_{e^-e^-}$ (invariant LSD mass)
- comparison of the base (left panels) and improved cuts (right panels)

STANDARD MODEL BACKGROUND AND SIGNAL STUDY

ISR AND BEAMSTRAHLUNG

Beamstrahlung:

- electrons radiate photons due to EM field of the other bunch
- already implemented in CalcHEP

P. Chen, Phys. Rev. D 46 (1992)

- Both processes induce energy loss and beam degradation
- Cross sections are affected: we consider this effect in the simulation

S. BIONDINI (TUM)

LFC15 Workshop

ECT^{*}-Trento 7-11 September

Image: A math a math

18 / 25

ISR AND BEAMSTRAHLUNG

PARAMETERS

	σ_x^* (nm)	σ_y^* (nm)	$\sigma_z^*~(\mu m)$	N
ILC	481	2.8	250	1.74×10^{10}
CLIC	45	1	44	$3.72 imes 10^9$

G. Aarons et al. (ILC coll.) arXiv:0709.1893; L. Lissen, A. Miyamoto, M. Stanitzki and H. Weerts arXiv 1202.5940;

E. Accomando (CLIC Physics Working Group) hep-ph/0412251.

ILC - $\sqrt{s} = 1$ TeV						
Model	σ (fb)	$\sigma_{\rm ISR}$ (fb)	$\sigma_{\rm ISR} / \sigma$			
SM $(e^-e^- ightarrow e^-e^- u_e ar u_e)$	35.2	29.6	pprox 0.84			
$\Lambda=10$, $m^*=0.5$ (TeV)	25.67	19.93	pprox 0.78			
$\Lambda=10,\ m^*=0.65$ (TeV)	17.36	12.32	pprox 0.71			
$\Lambda=10,\ m^*=0.8$ (TeV)	8.16	4.86	pprox 0.60			

- For $m^* > 0.5$ TeV the effect is larger for the signal
- The higher the m^* the more important the effect

S. BIONDINI (TUM)

< ロ > < 同 > < 回 > < 回 >

STATISTICAL SIGNIFICANCE FOR e^-e^- COLLISIONS

- $S = \frac{N_s}{\sqrt{N_s + N_b}}$, given $N_s = L\sigma_s$ and $N_b = L\sigma_b$ as function of m^* and Λ
- Reduced luminosity: $L_{e^-e^-} = \frac{1}{4}L_{e^+e^-}$ D. Shulte, Int. J. Mod. Phys. A 18 2851 (2003)

S. BIONDINI (TUM)

Accessible (Λ, m^*) phase space: LHC and LC

COMMENTS:

G. AAD AE AL. (ATLAS COLL.) NEW J. PHYS. 15 093011 (2013); CMS COLL. CMS-PAX-EXO-14015 (2014)

- comparison of excited leptons within different multiplets,
- $m^* = 0.6$ TeV: $\Lambda > 15$ TeV at LHC (run I) whereas $\Lambda > 18$ TeV ($\Lambda > 28$) at ILC (CLIC),
- $m^* = 2$ TeV: $\Lambda > 5$ TeV at LHC (run I) whereas $\Lambda > 22$ TeV ($\Lambda > 25$) at CLIC for L = 125 fb⁻¹ (L = 250 fb⁻¹),
- CLIC fares well for $m^* = 2$ TeV with LHC run II at L = 300 fb⁻¹ (same model)

CONCLUSIONS

CONCLUSIONS

- Production of E^{--} at Linear Colliders
- We focus on the e^-e^- beam setting $(L_{e^-e^-} = \frac{1}{4} L_{e^+e^-})$
- For gauge interactions: interference between u and t kinematic channels
- For production within gauge interactions: the interference plays a role
- Shape the detection strategy: SM background (irreducible) with 28 diagrams (and interference)
- Set of kinematic cuts for ideally reconstructed particles, however ISR and Beamstrahlung are considered
- At ILC and CLIC: (Λ, m^{*}) can be rather extended
- High mass region (m^{*} = 2 TeV): Λ > 22-25 TeV at CLIC, whereas Λ > 5 TeV (run I) and Λ > 11.6 TeV (run II) at LHC

Outlook

- Consider other new physics backgrounds
- Provide the simulation of reconstructed particles (detector smearing)
- Consider indirect effects on the Higgs boson width

- The Q = 0 neutral leptons, L^0 , are suitable for implementing Leptogenesis if different couplings and masses appear
- E₆ string-inspired models also provide neutral fermions

M. Dhuria, C. Hati, R. Rangarajan and U. Sarkar, Phys. Rev. D 91 5 (2015)

< ロ > < 同 > < 三 > < 三

PARAMETERS

$\overline{\text{CLIC} - \sqrt{s} = 3 \text{ TeV}}$							
Model	σ (fb)	$\sigma_{\rm ISR}$ (fb)	$\sigma_{\rm ISR} / \sigma$				
${ m SM}~(e^-e^- ightarrow e^-e^- u_ear u_e)$	78.8	40.6	pprox 0.51				
$\Lambda = 15, \ m^* = 1.5 \ ({ m TeV})$	48.35	8.28	pprox 0.17				
$\Lambda = 15, \ m^* = 2.0 \ ({ m TeV})$	31.64	4.42	pprox 0.14				
$\Lambda = 15, \ m^* = 2.5 \ (\text{TeV})$	13.98	1.52	pprox 0.11				

G. Aarons et al. (ILC coll.) arXiv:0709.1893; L. Lissen, A. Miyamoto, M. Stanitzki and H. Weerts arXiv 1202.5940;

E. Accomando (CLIC Physics Working Group) hep-ph/0412251.

æ

・ロト ・回ト ・ヨト ・ヨト

REDUCIBLE BACKGROUNDS: $e^-e^- \rightarrow jet jet e^-\nu_e \rightarrow \sigma \sim O(100) fb$

• Jets or Photons misidentified with leptons

 \Rightarrow it helps jet rejection factors $\mathcal{O}(10^{-5})$

G. Aad et al (ATLAS coll.) arXiv:0901.0512

- $\bullet\,$ Non-prompt leptons from heavy flavour hadrons \Rightarrow Again coming from jets
- The other jet has to be lost or not reconstructed or understood as missing energy...